
1

WHITEPAPER

Best practices
for microservices
Implementing a foundation
for continuous innovation

CONTENTS

Executive summary . 4

Why microservices? . 6

Benefits to the business . 7

What are microservices? . 9

Consumption modes . 9

API-led connectivity . 10

The API gateway . 11

The “micro” of microservices . 12

Scope of responsibility . 12

Team organization and responsibilities . 13

Scope of effort . 14

Ease of deployment . 14

Fundamental principles of microservice design 15

Business domain orientation of microservice
architecture . 17

Microservices and the monolith . 19

Microservice implementation patterns . 23

Command query responsibility segregation . 23

Event sourcing . 23

Continuous delivery of composed applications . 24

Self-service consumption of microservices . 24

3

Microservices on Anypoint Platform . 27

End-to-end microservice lifecycle . 28

Design and implementation with

Anypoint Design Center . 29

Continuous delivery with Anypoint Studio,

Maven, and Docker . 30

Deployment as a microservice container . 33

Deployment on CloudHub . 36

Event-driven microservices with Anypoint MQ . 37

Operational management with Anypoint Runtime Manager . . 37

API management with Anypoint Platform’s API solution 38

Publication and engagement with Anypoint Exchange 39

Analysis with Anypoint Analytics . 41

Decentralized platform for microservices . 41

Unified platform for microservices . 42

Summary . 45

About MuleSoft . 47

4

Executive summary

Today’s business environment is extraordinarily competitive.
No company, no matter its size or what industry it is in is safe
from disruption. It is easier than ever for new entrants to
come into a market, turning entire industries upside down.
Unless organizations can nimbly innovate at the speed of their
competition, they will be left behind, and large organizations
with calcified processes and structures will be hit the hardest.

Organizations that have successfully laid
a foundation for continuous innovation
and agility have adopted microservice

architectures to respond rapidly to
the demands of the business.

It is possible for any organization to harness the opportunities
that digital transformation provides; it simply requires a more
agile enterprise. This type of business employs a framework
of smaller, hyper-focused teams rapidly innovating on defined
units of business value, working in concert to deliver something
much larger. We call this becoming the composable enterprise.
Making an organization composable requires changes to how
IT supports the business. It means creating scale through
reusable services and enabling self-service consumption of
those services.

The ability of your business to change quickly, innovate
easily, and meet competition wherever it arises is a strategic
necessity today. This will allow you to thrive in a market which
constantly changes, and create new customer experiences in
new contexts using new technologies. Your business can shape
innovative customer experiences only if your IT team provides
digital assets in the form of core business capabilities that bring

5

real value to your business in multiple contexts. This is how IT
can be an enabler of the strategic goals of your business.

Organizations that have successfully laid a foundation for
continuous innovation and agility have adopted microservice
architectures to respond rapidly to the never-ending demands
of the business.

6

Why microservices?

Microservices are the evolution of best-practice architectural
principles that shape the delivery of solutions to the business
in the form of services. All businesses, no matter what
industry they are in, must strive to deliver the ideal customer
experience, as customers are more demanding than ever and
will abandon a business that is too slow to respond. IT must
deliver solutions that can be adapted to deliver a holistic and
uniform experience to the customer across all the business
channels.

To achieve this the architecture should identify and define
digital assets which align to core business capabilities. They
offer the potential to break down the coupling between
business channels and the backend systems of record that
cater to them. A microservice that encapsulates a core
business capability and adheres to the design principles and
goals outlined below should be considered a true digital asset.
It can bring value to the business because it can be adapted
for use in multiple contexts. The contexts for use of the service
are the business processes and transactions, and the channels
through which your customer, employee, or partner interacts
with your business.

7

Benefits to the business

A microservice architecture aligns with the business in such a
way that changes to your business can be dealt with in an agile
fashion. Business processes and transactions are automated
with the composition of microservices. When processes are
changed or when new ones are introduced, IT can respond by
re-wiring services into new compositions.

The ease and speed with which your
company can change will determine your
ability to react to trends in your industry

and maintain competitive advantage.

The ease and speed with which your company can change will
determine your ability to react to trends in your industry and
maintain competitive advantage. With solution logic in the form
of composable services, IT can run at the pace of the business
and match business changes with an agile response in the
delivery of solution logic. Innovation is the face of this agility.
It may take the form of new channels of business (like Google
creating new revenue streams by productizing their APIs), new
digital engagements with customers (like Spotify engaging with
their customers through Uber), entirely new products and
services which may demand entirely new business processes,
or the simple modification of existing business processes. All
of this speaks of change. Companies need to be able to alter
direction based on market forces. IT must be able to facilitate
change by composing existing digital assets into new business
capabilities.

Your enterprise can deliver solution logic in a decentralized
manner with the standardization of microservice contracts in
the form of APIs. Multiple teams from different domains can

8

implement services with their own choice of technology but
yet remain aligned with the business in their purpose. This
represents the evolution of IT’s role from provider to partner
resulting in the enablement of teams from the lines of business
to adapt the core capabilities built by the central team to their
own particular needs.

Microservices are natively able to communicate with each other
because of industry-wide adoption of standards like HTTP and
JSON. In other words, they are intrinsically interoperable. They
facilitate an exchange of information independent of how they
have been implemented because their interface is defined
according to standards which already exist at the level of the
industry and which are also defined by the teams in your
organization.

Your business can pick and choose best-of-breed vendor products
and platforms because of the interoperability that standardized
interfaces bring. For the same reason, your teams can also
choose the best technologies to implement the microservices
with a polyglot approach to development.

9

What are microservices?

Traditionally, enterprises have delivered software applications
in siloes. These arose from the isolated demands of individual
departments. Software was developed or purchased in
attention to these limited scopes. Customer facing business
processes on the other hand typically span multiple
departments. The lack of alignment between these two realities
led to duplicate efforts and missing or inaccurate information
in each solution. The latter was a major force behind enterprise
integration.

The service concept evolved from attempts to respect the
business process as focal point of solution requirements. The
need to modify existing processes or invent entirely new ones
should be met with an agile response from IT to adapt to the
change. Rather than build or purchase “applications” in the
traditional sense, a service approach stipulates the creation
of services as the building block of solution logic which are
composable to address the automation requirements of
business processes.

Consumption modes
Microservices are most often directly invoked by HTTP REST
API calls. Standards like RAML (Restful API Modelling Language)
allow for the formal definition of REST APIs. RAML can define
every resource and operation exposed by the microservice.
It’s an industry standard which has gained popularity as a
lightweight approach to microservice interface definition and
publication.

In those cases where microservices collaborate for the
realization of a complex business transaction or process, an
event-driven approach is also adopted. The idea is for the
microservice to subscribe to business domain events which are
published to a message broker. Standards like JMS and AMQP

10

are dominant in major broker technologies in the industry.
The involvement of a message broker in the microservice
invocation adds reliability to the consumption model. Even
if the microservice subscribed to a particular queue, topic
or exchange were down when the event was published, the
messaging paradigm guarantees that the microservice will
receive the message once it comes back online again.

The composition of microservices is realized with a mix of
direct calls through HTTP and indirect calls through a message
broker.

API-led connectivity
With the conviction that building an adaptable business
capability is much better than building a tactical point-to-
point integration, IT should strive to deliver assets which
are accessible through API invocation and domain event
subscription, and which can deliver value to the business in
multiple contexts.

SaaS
apps

Mainframe FTP, Files DatabasesWeb
services

Legacy
Systems

Applications

Experience APIs
(purpose-built APIs for apps)

Process APIs
(orchestration, composable APIs, Microservices)

System APIs
(legacy modernization, connectivity to SaaS apps, web services & Restful APIs)

App Dev

LoB
Dev/IT

Central IT

Accessibility
and

ownership

Figure 1: Microservices classification

The asset is primarily an encapsulation of a business entity
capability, like Customer, Order, or Invoice. These system APIs

11

or system-level microservices are in line with the concept
of an autonomous service which has been designed with
enough abstraction to hide the underlying systems of record.
None of these system details are leaked through the API.
The responsibility of the API is discrete and agnostic to any
particular business process.

System APIs are composable with other APIs to form aggregate
Process APIs. The composition of system APIs can take the
form of explicit API orchestration (direct calls) or through the
more reliable API choreography by which they are driven by
business events relevant to the context of the composition
(order fulfillment, for example).

The API gateway
Both process and system APIs should be tailored and
exposed to suit the needs of each business channel and
digital touchpoint. The adaptation is shaped by the desired
digital experience and is what we call the experience API.
Sometimes the adaptation of the API is technically motivated:
a particular security mechanism might be needed on one
channel; the types of channel may differ greatly as do mobile,
web and devices; a composition of multiple APIs might be
needed according to the backend for frontend pattern. In
other contexts, business differences must be catered to with
adaptations that consider the special requirements of groups
of users like employees, customers, and partners.

In all these cases, the API Gateway pattern is a good approach
because it is where API compositions and proxies are
deployed. API management facilitates the administrative
application of recurring logic, like security, rate limiting, auditing
and data filtering to the Experience APIs on the gateway. The
use of API management to apply policies that encapsulate the
tailored logic makes the adaptation of system and Process APIs
relatively quick and easy.

12

The “micro” of microservices

Scope of responsibility
The most obvious candidate microservice is the business
entity easily identifiable with a glance at a business process
or transaction. A customer is an example of such an entity.
It is a business entity that may be relevant in a number of
contexts both at the process layer and the experience layer.
The responsibility is not limited to mere data carrying. A
microservice should not be reduced to a simple CRUD service.
Each entity encapsulates within itself all responsibilities
relevant to the business domain for which it was designed.
All of this goes hand in hand with a deliberate limitation of
the scope of responsibility. “Discrete” is the best common
sense interpretation of “micro” with respect to scope of
responsibility. This helps in guaranteeing that the system level
microservice doesn’t take on any responsibility that more
appropriately pertains to a business process level microservice.
The system-level microservices are agnostic to any particular
business process and hence can be used in more than one
composition.

The scope of a business process must also be considered.
Some sub-domains have their own local business processes
(shipping, for example). A system level microservice can be
adapted for use in multiple processes within the shipping
domain. Whenever its capability is needed outside the domain,
it can be adapted for this with an experience level microservice.
There are of course business processes, typically customer
facing, which traverse multiple domains. The rule here is
to compose multiple microservices adapted for this use in
Experience APIs.

13

Team organization and responsibilities
Teams should be small enough to work locally together and
focus entirely on a single sub-domain of the business, and
include domain experts so that the language of that sub-
domain is modeled in the solution.

The ownership of the microservice includes everything from
design to deployment and management. The API is considered a
business product, an asset to be delivered to the business.
There is no handoff to other teams to manage the running
instance. The whole lifecycle belongs to the team who develop it.

Identification of candidate microservices
Identifying the microservices that you need to build and the scope
of their responsibility can be helped by considering the types of
information that are exchanged in the transactions they cater to. In
a healthcare setting, patient, encounter and claim are examples. In
an eCommerce setting there are: order, item, discount, or customer.
In a banking solution, you might have transfer, account, payee.
The responsibility ought to be lean and focused. The system level
microservices are not an abstraction over an entire back-end system,
but only that part of the system or systems responsible for the
storage of the business entity.

Business transactions and processes are often the focus of IT
efforts because it is the business process that effectively defines the
business. This may be order fulfillment in the eCommerce sector. A
visit that a patient makes to a hospital could be driven by the visit
administration microservice.

This microservice is implemented with the composition of
microservices in the system layer.

14

Scope of effort
Microservices that address the needs pertaining to a specific
sub-domain will recognize that certain business concepts are
perceived in a way that is particular to the sub-domain. No
attempt is made to model a universal solution unless the entity
is naturally shared across the entire organization.

Ease of deployment
The cost of delivery to production is greatly reduced by
the combination of small teams with complete ownership,
the discrete responsibility of the microservice, and the
infrastructure which facilitates continuous delivery.

15

Fundamental principles of
microservice design

Microservice capabilities are expressed formally with business-
oriented APIs. They encapsulate a core business capability and
as such are assets to the business. The implementation of the
service, which may involve integrations with systems of record,
is completely hidden as the interface is defined purely in
business terms.

The positioning of services as valuable assets to the business
implicitly promotes them as adaptable for use in multiple
contexts. The same service can deliver its capabilities to more
than one business process or over different business channels
or digital touchpoints.

Reuse
Reuse continues to be a principle of microservice design. However,
the scope of reuse has been reduced to specific domains within
the business. The effort of designing for this reuse, which in the
early days of SOA included wasted efforts in designing enterprise-
wide canonical models, was fruitless because it was too ambitious.
However, it must be noted that the canonical model in its restricted
scope can be of benefit. In line with the reuse it facilitates, its scope
has been reduced. With the ‘merit based reuse’ approach, an
emerging model is preferred over a predetermined one. Teams can
agree on communication models for deciding how microservices
must be adapted for use outside the contexts in which they were
designed. A collaboration hub like Anypoint Exchange encourages
Merit based reuse with reviews, ratings, etc. If an existing
microservice API does not suit your domain or ‘business group’, you
might be better off building another microservice that does it.

16

Dependencies between services and their consumers are
minimized with the application of the principle of loose coupling.
By standardizing on contracts as expressed through business
oriented APIs, consumers are not impacted by changes in the
implementation of the service. This allows the service owners to
change the implementation and switch out or modify the systems
of record or even service compositions which may lie behind the
interface and replace them without any downstream impact.

Autonomy is a measure of control that the implementation of
the service has over its runtime environment and database
schema. This enhances the performance and reliability of
the service and gives consumers more guarantees about
the quality of service they can expect from it. Coupled with
statelessness, autonomy also contributes to the overall
availability and scalability of the service.

Each service is necessarily fault tolerant so that failures on the
side of its collaborating services will have minimal impact on
its own SLA. Services, by virtue of being independent of each
other, have the opportunity to cut off communication to a
failed service. This technique, called a “circuit breaker” and
inspired by the electrical component of the same name, stops
individual service failures from propagating through the larger,
distributed system.

All of these design principles contribute to the principle of
composability which allows the service to deliver value to the
business in different contexts. Its composition together with
other services to form a new service aggregate is effectively the
new form of application development.

The aim of discoverability is to communicate to all interested
parties a clear understanding of the business purpose and
technical interface of the microservice. Thus, the service must
be published in a way that ensures that developers of client
software have everything they need to easily consume it.

17

Business domain orientation of
microservice architecture

It is important to approach service design for a particular
domain and not insist on doing so for every aspect of the
business. The failure of enterprise-wide canonical modeling
exercises of the last decade are evidence of this. The reality
of the business is that business entities can be perceived
in deeply different ways across the business units or
sub-domains.

No attempt should be made to design enterprise-wide
services if each domain has a very different perception of the
same concept. An example business entity with very different
perceptions is the Customer in the Customer Care, Orders,
Invoicing, and Shipping domains.

In Figure 2 you can see how each domain has its own
microservices which encapsulate core business capabilities for
that particular domain. This can result in apparent duplication
of microservices as is the case for the Customer API.

Self registration API

Customer Care

Systems of Record Systems of Record

Experience

APIs

Order
fulfilled

event

Process

APIs

System

APIs

Experience APIs

Experience APIs

Finances
Shipping

Orders

My Profile API My Shopping API

Order Fulfillment API

Customer API Orders API

Billing API

Tokenization API

Shipping

Catalog API

Shipping API

Order Tracking API

Registration API

User API Customer API
Recommendations

API

Message
Broker

Figure 2: Microservices designed for particular Business Domains

18

As microservices communicate with each other, especially
those designed for different domains, there may be a need
to negotiate a contract that suits the needs of the consuming
software. This particular adaptation will be manifest as an
experience API tailored specifically to that client. It could also
take the form of a domain event published to a queue.

19

Microservices and the monolith

Microservices are a fundamental shift in how IT approaches
software development. Traditional software development
processes (waterfall, agile, etc.) usually result in relatively large
teams working on a single, monolithic deployment artifact.
Project managers, developers, and operational staff can
reach varying degrees of success with these models, releasing
application candidates that can be verified by the business,
particularly as they gain experience using a particular software
and deployment stack. There are, however, some lurking issues
with the traditional approaches:

 › Monolithic applications can evolve into a “big ball of
mud”; a situation where no single developer (or group of
developers) understands the entirety of the application.
This problem is exacerbated as senior developers roll off a
project and are replaced by junior or offshore resources for
maintenance.

 › Limited reuse is realized across monolithic applications.
Monolithic applications, by definition, hide their internals.
While some reusability might be realized by APIs at the
“edge” of the monolith, chances for reuse of internal
components is limited. When reuse is achieved it’s usually
through shared libraries which foster tight coupling and are
limited to the development platform used to implement the
monolith.

 › Scaling monolithic applications can be challenging.
Identifying and tuning specific aspects of application
functionality for performance in isolation of other aspects
is usually impossible since all functionality is bundled in a

20

single deployment artifact. Scaling monolithic applications is
usually not in “real-time.”

 › Operational agility is rarely achieved in the repeated deploy-
ment of monolithic application artifacts. While operational
automation can alleviate most of the manual pain in de-
ploying these applications, for instance by automating the
provisioning of VM’s or automatically configuring network
devices, there’s still a point where developers are blocked
by operations staff waiting for these activities to occur. In
the worst cases, where automation is not in place, devel-
opers and operators are under great stress every time a
deployment fails or a production issue is hit.

 › By definition monolithic applications are implemented
using a single development stack (ie, JEE or.NET.) In
addition to limiting reuse for application not implemented
on the stack it also robs the opportunity to use “the right
tool for the job.” For instance, implementing a small part
of a JEE application with Golang would be difficult in a
monolithic application.

A microservice architecture, in concert with cloud deployment
technologies, API management, and integration technologies,
provide an alternate approach to software development which
avoids the delivery of monolithic applications. The monolith is
instead “broken up” into a set of independent services that are
developed, deployed and maintained separately. This has the
following advantages:

 › Services are encouraged to be small, ideally built by
a handful of developers that can be fed by “2 pizza
boxes.” This means that a small group, or perhaps a
single developer, can understand the entirety of a single
microservice.

 › If microservices expose their interfaces with a standard
protocol, such as a RESTful API or an AMQP exchange,
they can be consumed and reused by other services and

21

applications without direct coupling through language
bindings or shared libraries. Service registries can facilitate
the discovery of these services by other groups.

 › Services exist as independent deployment artifacts and can
be scaled independently of other services.

 › Developing services discretely allows developers to use the
appropriate development framework for the task at hand.
Services that compose other services into a composite API,
for example, might be quicker to implement with MuleSoft
than .NET or JEE.

Avoiding the distributed monolith
The danger that new architectural trends pose is that they are
perceived as a silver bullet for IT’s problems and should be used as
the “latest best thing” without due consideration for all pre-requisites
regarding IT operating model, infrastructure and developer skillsets.

A microservices strategy should take a careful, measured approach
as follows to reap maximum benefit: we strongly recommend
designing and building microservices that encapsulate capabilities
for particular business domains. The risk of not doing this is that
you will end up building a monolithic suite of microservices. In other
words: a distributed monolith with all the downfalls of the monolith,
the added complexity of distribution, and a reduction in the overall
return on your investment.

We also recommend that you establish the strict discipline of
continuous delivery and have the necessary tooling for the
automation of the release pipeline. A lack of Devops-style team
coordination and automation will mean that your microservices
initiative will bring more pain than benefits.

22

The tradeoff of this flexibility is complexity. Managing a
multitude of distributed services at scale is difficult:

 › Project teams need to easily discover services as
potential reuse candidates. These services should provide
documentation, test consoles, etc so reusing is significantly
easier than building from scratch.

 › Interdependencies between services need to be closely
monitored. Downtime of services, service outages, service
upgrades, etc can all have cascading downstream effects
and such impact should be proactively analyzed.

The SDLC lifecycle of services should be highly automated.
This requires technology, such as deployment automation
technologies and CI frameworks, but more importantly
discipline from developer and operations teams.

23

Microservice implementation patterns

Command query responsibility segregation
The classification of microservices into system, process, and
experience types can be further subdivided into consideration
of scalability requirements. Most requests to microservices
are to retrieve information for presentation purposes. A lesser
number of requests are to realize a state changing business
function, like a customer modifying their personal profile, or
submitting an order. We distinguish these types of requests as
queries for the retrieval of information and commands for the
state changing business function.

Some high traffic requirements may require a deliberate
separation of the deployment so that the one business
capability is split into two microservices: one for commands
and the other for queries in line with the emerging pattern
Command Query Responsibility Segregation (CQRS).

Event sourcing
The autonomy principle of microservice design stipulates
each microservice having its own data store. Database sharing
is avoided. This creates a problem when we consider our
approach to the automation of a business transaction. We
recommended business process type microservices whose
responsibility it is to compose system type microservices
through orchestration and choreography. Naturally, the
information exchange for any business transaction is related,
but each system microservice executes its part in the
collaboration independent from the rest. The end-state of the
whole composition must leave all data in a consistent state.

The industry is moving away from distributed transactions to
solve this problem. Hence, one can see that each microservice

24

having its own data store to represent what ultimately
is the same information at a higher level can result in an
inconsistency between them at any moment in time. This
reality is especially prevalent with a domain event driven
approach in which the microservices collaborating in a
choreography work asynchronously driven by domain events
published to a message broker. Eventual consistency is the key
here. When every microservice has completed its work, then
the whole system is in a consistent state.

This leads to an emerging pattern in which changes to state
are stored as journaled business events. The current state is
known not by retrieving data from a store, but by navigating
the history of business events and calculating it on the fly.

Continuous delivery of composed applications
Getting teams to continuously release software aligns with agile
development principles. Continuous delivery of software lets
business stakeholders verify, in real-time, that an application is
meeting the ultimate business objective. Continuous delivery
also means, in terms of composed microservice applications,
continuous integration. In applications that are composed
of many services, it is critical to ensure that the composition
actually works when the software is built.

Having short release cycles, fast feedback on build failures, and
automated deployment facilities are critical in implementing
continuous delivery.

Self-service consumption of microservices
Every corner of an enterprise needs technology to build new
applications for their specific function or customer. IT needs to
transform from its traditional function as the sole technology
provider to become an adaptive, responsive and nimble
organization that can keep up with the pace of the digital era
as well as embrace the opportunities provided by a change

25

driven environment. This transformation can occur only if IT
transforms itself into an strategic business enabler rather than
a centralized technology function.

Being an enabler means that IT has to decentralize and
democratize application development and data access to the
different Lines of Business (LoBs) and functional business
partners. This way, IT can concentrate on a partnership with
the business—i.e. providing a set of strategic and consistent
assets and technology.

Service proliferation, however, is a trade off incurred by such
an approach. Managing these services at scale raises a number
of challenges:

 › Service discovery and documentation

 › Fault tolerance

 › Quality of service

 › Security

 › Request traceability

 › Failure triage

It is imperative that you can easily manage your microservices
in a way that facilitates self-service access to them across all
the lines of business in your enterprise. API Management
represents the evolution of service governance that allows you
to do the following:

 › Publish your APIs so that developers of consuming software
have everything they need to self-serve their needs and
understand clearly the purpose, scope and interface of
your microservice.

 › Adapt your APIs through injectable policies of logic
covering security, quality-of-service, auditing, dynamic data
filtering, etc.

26

 › Watch your APIs so that you can strategize scalability
according to traffic levels and take a temperature gauge on
the impact of your assets.

 › Tailor your APIs to the specific needs of different lines of
business so that API management becomes a decentralized
or federated exercise in collaboration between LoBs and
central IT.

27

Microservices on Anypoint Platform

Mule runtime engine

Anypoint connectors

Runtime services

Hybrid cloud • CloudHub™

 Anypoint Design Center

• Studio™
• API Designer™
• Connector DevKit™

• High availability
• Enterprise security

• Virtual Private Cloud
• Load balancer

• MQ
• Object Store

Anypoint Exchange
• API portal

Anypoint Management Center

• Runtime Manager™
• API Manager™
• Analytics™
• Access Management™

Anypoint Platform solves the most challenging connectivity
problems. It’s a unified, highly productive, hybrid integration
platform that creates a seamless application network of apps,
data, and devices with API-led connectivity.

Unlike alternatives, Anypoint Platform can be accessed as a
cloud solution or deployed on- premises allowing developers
to rapidly connect, orchestrate and enable any internal or
external application. Anypoint Platform lifts the weight of
custom code and delivers the speed and agility to unlock the
potential of this connected era.

28

End-to-end microservice lifecycle
MuleSoft takes a holistic view of microservices. Unlike
traditional apps, the ideal microservice development starts
with a top-down API-first approach. Which means there
are additional steps compared to traditional Software
Development Lifecycles (SDLC).

For instance, the design aspect is usually an iterative process
that includes:

 › Modelling your API using standard specs like RAML.

 › You typically want to simulate your spec with a mock API
endpoint with which you can Solicit feedback from your API
consumers.

 › You also want to validate with real code so you can touch
and feel the API and provide feedback.

 › Once the API design is ratified, you would build it using your
favorite language, with code that includes business logic
and connectivity to appropriate back-end systems.

 › Then create test scripts if following the recommended Test
Driven Design approach.

 › Once the microservice is deployed, you typically want to
publish the documentation for your API using a portal
that becomes your engagement tier with users of your
microservice.

 › Finally, when operationalized, you want to manage the
microservice runtime, as well as its APIs (for instance,
apply security and throttling policies) and get usage
analytics for your microservice. Analytics could be used
for management/monitoring purposes or for metering
and chargeback.

29

MANAGE DEPLOY

TEST

 GET FEEDBACK SIM
ULATE

 VA

LI
DA

TE

 M
ODEL

DESIGN BUILD

 P

UB
LI

SH

 O

PERATE

Anypoint Studio

MUnitAPI Manager

Anypoint Exchange

Anypoint Analytics

API Notebook API Console

Anypoint Exchange
API Portal

Anypoint Exchange

Mocking Service

API Designer

Figure 3: End-to-end lifecycle of microservices

Now let’s go into each phase of the ideal microservice
lifecycle in detail, and see how it can be accomplished with
Anypoint Platform.

Design and implementation with
Anypoint Design Center
The design of a microservice should begin with its API
definition. The API may be REST_based or event-driven in line
with the two modes of consumption. API Designer allows you
to define a REST API using RAML. RAML is a standard which has
achieved rapid adoption as the light-weight language of choice
to define APIs. As you define the resources and operations
for the API in RAML, API Designer auto-generates a console
which centralizes documentation and testability. It also auto-
generates a mocking service, deployed to CloudHub. This
affords you the luxury of allowing the team responsible for the
development of consuming software to write their code against
the mocked implementation in parallel with the team who
must implement the actual microservice. The team responsible

30

for building the consuming software can showcase their work
before the microservice is even developed.

If your team chooses to implement the microservice as a Mule
application, then Anypoint Studio will allow them to do so
rapidly with its scaffolding of RAML based APIs as a set of flows
which implement all the operations. This is done with a
graphical drag-and-drop of message processors. Anypoint
Studio also allows the developer to build a true unit test of the
application using MUnit, the unit testing framework for

Anypoint Platform, with the same
graphical approach. Anypoint Connectors
encapsulate connectivity to many public
APIs, like Salesforce and SAP. The suite of
connectors is extensible with Anypoint
DevKit, which allows you to turn a simple

Java POJO into a reusable connector available for use within
Anypoint Studio’s palette.

Continuous delivery with Anypoint Studio,
Maven, and Docker
A Mule application can be built in Anypoint Studio with Maven
or Gradle and committed to an SCM like Github. From there a
CI/CD framework like Jenkins can pull down the latest version,
build it, execute all relevant tests and deploy it to the next
environment in the build pipeline.

Differences in physical endpoints
like databases that correspond to
each environment are addressed by
exploiting external properties files.
Thus, the same Mule application
progresses without change from dev
through test and into production.

Traditional, monolithic applications are typically deployed using
the operation convention for the given development platform.

31

Monolithic Java applications, for instance, are usually deployed
to multi-tenant application servers like JBoss AS or Tomcat.

IaaS frameworks, such as Chef and Puppet and virtualization
technology such as VMWare or Zen can greatly accelerate
the deployment of monolithic application stacks. Recent
advances in container technology, particularly frameworks
such as Docker and Rocket, provide the foundation for almost
immediate deployment and undeployment of applications
without necessarily provisioning new physical or virtual
hardware. Numerous benefits arise from this deployment
paradigm, including increased compute density within a single
operating system, trivial horizontal and, in some cases vertical
autoscaling as well as container packaging and distribution.

Development

Component

Release

Production

Developer

Anypoint
Studio

GitHub

Development

Create and run tests

Run unit
tests

Run mocked
tests

+

Run build
tests

Run tests

+

Release Mule
app

Production Mule
app

Jenkins

GitHub Gradle

+

+ +

Create
unit tests

Create
mocked tests

Functional
tests

32

These advantages make containers the ideal choice for
microservice distribution and deployment. Container
technologies follow the microservice philosophy of
encapsulating any single piece of functionality and doing it well.
They also give microservices the ability to expand elastically to
respond to dynamic request demand.

There is no such thing as a free lunch, however, and managing
a container ecosystem comes with its own challenges. For
instance, containers running on the same host will be bound to
ephemeral ports to avoid conflicts, container failure must be
addressed separately, containers need to integrate with front
end networking infrastructure such as load-balancers, firewalls
or perhaps software- defined networking stacks, etc. Platform-
as-a-service technologies, such as Pivotal Cloud Foundry and
Mesosphere DCOS, are emerging to address these needs.

Hexagonal architecture of
a mule application
A Mule application is shaped by the ports and adapters
(hexagonal) architecture. Thus a microservice implemented in a
Mule application can be invoked over multiple transports (HTTP,
JMS, AMQP, etc.), transform the various payloads that arrive over
those transports and process the data in a way that is agnostic to
any of the transports. Likewise, its outbound communication to
datastores, other microservices, and systems of record can be over
any standard protocol. In contrast to legacy heavyweight ESBs,
which advocated centralization of all the “smarts,” all logic related
to connectivity, routing decisions, transformation, error handling
and security, is contained within the Mule application. Thus, a
microservices oriented runtime like Mule represents a lightweight
option to host a microservice.

33

Deployment as a microservice container
Anypoint Platform’s runtime components support a variety of
deployment mechanisms, ranging from traditional multi- tenant
cluster based deployment to a Mule worker packaged and
deployed as a container in CloudHub, MuleSoft’s fully hosted
and fully managed PaaS.

Prod

Stage

Test

Dev

Anypoint Platform
On-Premise

Runtime
Manager

API
Manager

Exchange

Third Party Tools

Runtime PlatformBuild

Development Operations

Deploy, Manage, Scale

Commit

Ship

Image
Mgmt Agent

Mule runtime can support a microservice architecture
in an orthogonal manner using two complementary
deployment approaches:

1. Mule as an API Gateway
When deployed in this manner the Mule runtime acts as an
API Gateway to proxy HTTP traffic back and forth between
microservices. This allows Mule to transparently apply cross-
cutting policies, to enforce concerns like governance and
security, to all API calls traversing a microservice architecture.
It additionally allows Mule to asynchronously collect analytics

34

about microservice traffic and consumption patterns, providing
valuable insight back to the business.

Managed
API Proxy

Microservice BMicroservice A Microservice C

2. Mule as a microservice container
One of the benefits of microservice architecture is the freedom
to “choose the right tool for the job” to implement a given
service. For certain services, a development language like
NodeJS or Java might be appropriate.

Microservices that are focused on connectivity, orchestration
or transformation however are usually easier to implement
with an integration framework like Mule. Microservices
implemented in Mule can present a managed API since it runs
in the same runtime as the API management layer.

Logic and connectivity

Managed API

This provides a unified runtime for API management and
integration unique to MuleSoft. Anypoint Platform can be
used for the composition and connectivity logic for your
microservice, exposed as a managed API endpoint. It eliminates

35

the need for a separate API gateway process by providing both
capabilities on the same runtime. This simplifies the container
creation scripts and the number of moving parts to maintain,
which benefits large scale microservice deployments.

Both options can be configured on-premise or in MuleSoft’s
hosted CloudHub. Hosting your microservices on CloudHub
simplifies the microservices DevOps complexity since MuleSoft
automates most of the operations aspects and allows
deployments in a self-serve, PaaS model.

However, if you choose to set up your own PaaS for
microservices the Mule runtime has the following attributes
that make it a perfect fit for on-premise containerization:

 › Mule runtime is distributed as a standalone zip file–a JVM is
the only dependency.

 › It runs as a single low-resource process. For instance, it can
even be embedded in a resource constrained device like a
Raspberry Pi.

 › Mule runtime doesn’t require any external, persistent
storage to share state. This means external resources like
databases or messaging systems aren’t required by default.

 › The Mule application can be layered on top of a Mule
runtime container (e.g. Docker) image.

36

API Contract

Runtime engine

Connectivity

Logic

1 RAML specification
• Traits
• ResourceTypes
• SecuritySchemes
• Reusable properties
• ...

2 Business logic flows

• Routing
• Enrichment
• Transformation
• Aggregation
• Parallel execution
• Splitting
• ...

3 Connectivity

• MQ, Database, SOAP, HTTP,
SaaS, OTS software

• Protocol implementation
• Connections/resources

management
• Pooling

Mule
deployable

archive
(.zip)

Deployment on CloudHub
We saw how a containerized on-premise deployment can be
achieved with MuleSoft. One disadvantage of this approach is
that it puts the onus of maintaining the containerization and
PaaS on the customer.

Microservice A

API Contract

Mule Runtime

Microservice B

Connectivity

Logic

API Contract

Mule Runtime

Connectivity

Logic

Figure 4: MuleSoft’s PaaS (CloudHub)

If you chose to host it on MuleSoft’s PaaS (CloudHub) instead,
the self serve aspect is handled by Anypoint Platform and the
runtime is a fully hosted and managed service. Each microser-
vice has it’s own autonomous runtime. CloudHub is designed

37

to be secure and fully scalable with built-in High Availability and
Disaster Recovery. CloudHub also provides a single-click Global
deployment of your microservice. Which guarantees your
microservice runtime is compliant to local regulatory require-
ments, keeping traffic within geographical boundaries.

CloudHub drastically reduces barriers to adoption of a micro-
services architecture by avoiding the so called Microservices
Premium required to set up and maintain your own container-
ization and PaaS framework. Which means, you can get started
with microservices in minutes without having to worry about
the infrastructure to support it.

Event-driven microservices with Anypoint MQ
Anypoint MQ is an enterprise-class cloud messaging service,
fully integrated with Anypoint Platform and which can act as
the means to invoke event-driven microservices. Process level
microservices can publish domain events to queues. Those
system level microservices which subscribe to the same queues
will be invoked as soon as the event is published. In line with
reliability requirements, even if they are down in the moment
of publication, they will receive the message as soon as they
come back up.

For scenarios where multiple microservices are interested in a
particular business event, the process level microservice can
publish the event to an exchange. Queues bound to the ex-
change will each receive a copy of the event and as described
the microservices subscribed to them will be invoked.

Operational management with Anypoint
Runtime Manager
Anypoint Runtime Manager provides a single operational plane
to manage both microservice applications built with Anypoint
Platform as well as the Mule runtimes that host them.
Anypoint Runtime Manager can manage your Mule runtimes

38

on-premises and/or hosted on CloudHub. Anypoint Runtime
Manager allows you to start and stop these and cluster them.
You can monitor memory and CPU usage and set alerts for
when thresholds of their usage are exceeded.

Logs and business data can be viewed and analyzed from the
console and can also be pushed out to Splunk, ELK or any DB
(for analysis with tools like Tableau).

API management with Anypoint Platform’s API solution
Anypoint Platform provides a number of features to manage
microservices at scale in a large enterprise:

 › API portals provide self-service documentation, test
consoles, SDK client generation and programmable
notebooks to allow developers to discover and learn how to
consume the API for a microservice.

 › Mule runtimes, deployed as API gateways, can proxy
communication between microservices. This ensures
policies, like security and throttling, are correctly applied
across all microservices.

 › For microservices built and deployed to CloudHub, you
can leverage CloudHub Insight to get in-depth visibility into
business transactions and events on your Mule applications
deployed to CloudHub. Insight makes information
searchable and helps you find and recover from any
errors that occurred during processing and replay your
transactions instantly if necessary. CloudHub Insight helps
you answer questions about your integrated apps, such as:

 y What happened with a particular request or
synchronization?

 y When did the request occur? How long did it take?

 y What was the result of a request?

 y If something went wrong during processing, at what
point did the failure occur?

39

As the dependency graph between services grows, issues
that were previously isolated, such as transient performance
problems, can cascade across multiple services. API gateways
can potentially act as a “circuit breaker” to quickly detect and
isolate services from such failure.

Repeatedly implementing security and other cross-cutting
concerns in microservices represents duplicated, potentially
difficult, effort for developers. There is also the risk that
developers will forget or incorrectly implement each concern.
Consider the example of implementing security with OAuth 2.0.
The API Management module of the Anypoint Platform includes
an OAuth 2.0 Policy out-of-the-box. All you need to do is apply

this policy to the microservice and you
have OAuth 2.0 security. Leveraging
shared policies ensures the correct
security policy implementation is applied
to all APIs. If you have a cross-cutting
policy (for instance, to selectively mask

specified business data in a request), you can quickly and easily
build a custom policy to reuse across other microservices, and
non-microservices for that matter.

Publication and engagement with Anypoint Exchange
As digital assets with the potential to bring business capabilities
to multiple contexts within or outside of your business domain,
microservices ought to have their APIs published. This should be
done in a way that minimizes the friction of informing and
enabling developers of consuming software to understand
everything they need to adapt and/or consume the microservice.

Anypoint Exchange allows you to publish
and catalog RAML definitions as well
as human-readable documentation for
your microservice, which includes rich
text, images, videos and attachments.

Each API that is cataloged in Anypoint Exchange can have it’s

40

own private or public API Portal that is the landing page to
learn everything about the microservice. The Anypoint API
Portal contains all of the documentation as well as the access
control mechanism to request/grant key- based access to
the consuming app, this includes requesting tiered access via
service level agreements (SLA).

Anypoint Exchange acts as a public / private library of API
portals whose scope can embark any one or all of your
business domains. An engagement model of this sort acts
as the enabling mechanism to realize the ideal of having
IT partner with LOBs in your business resulting in the
democratization of application development and data access.

On the consuming side, Anypoint Exchange can be leveraged
during multiple points in the Microservice lifecycle. It helps
with discovery of existing assets that can include best practice
templates, RAML snippets, APIs (for instance, System APIs from
the same team/domain). The ability to provide user ratings,
user forums and other collaboration tools encourage “Merit
based reuse” in the context of microservices.

Contributing and cataloging all assets in one central repository
takes the friction out of discovery, drives adoption and
accelerates innovation. Note that Exchange can be a central
microservice catalog used outside of the context of MuleSoft.
Any IT developer, app developer, or UI developer can login
to Exchange with their corporate SSO, browse and discover
microservices, play around with it in the sandbox, request
access, and start writing code against it in their language
of choice. For instance, a Microsoft Visual Studio plugin is
available for Anypoint Exchange that allows a .NET developer to
browse microservice APIs directly from Visual Studio IDE, pull it
down and embed in .NET code.

41

Analysis with Anypoint Analytics
Real-time visibility of the consumption of your microservices is
provided with Anypoint Analytics. You can see the frequency of
calls, time to completion, policy violations, origin of calls across
apps and geographies and much more. The data is visualized
in customizable dashboards, available as reports for metering
and chargeback as well as ingestible into external analytical
tools like Splunk, ELK, tableau, Qlikview, and more.

Decentralized platform for microservices
In traditional enterprises, the reality is that there will be a
mixed mode for architecture. IT and lines of business could
be operating in their own domains. There will be traditional
global shared backend systems like ERP’s, CRM’s, FTP servers,
mainframes, etc that are shared by multiple domains. And with
microservices architecture on the other hand, certain lines of
business may have their own isolated back-end systems with
domain specific System, Process, and Experience APIs. The
key is for IT to enable the business that owns each domain,
irrespective of which architecture they choose.

The Business Groups capability in Anypoint Platform allows IT
to decentralize the platform and empower Lines of Businesses.
Business Groups can be setup to map to Organization
structure. Each Business Group can have its own administrator
and RBAC with full autonomy (manage own microservice
runtimes, MQ’s, APIs).

42

SaaS
apps

Mainframe FTPBiz apps Legacy ESB

Global system/backend

System APIs

Experience APIs

Process APIs

Global frontend

System APIs

Experience APIs

Process APIs

LoB 2LoB 1

Figure 5: Business Groups feature in Anypoint Platform allows decentralization by domain

Business groups allow intra-domain collaboration and
management of APIs and MQ’s within the domain. Whereas
the top-level master group allows cross-domain collaboration
and management. For instance, to leverage best practices
with Mule, share RAML snippets, Mule application templates,
custom connectors, custom API policies, etc. across the
entire company, you could contribute these assets to the
master group. Democratizing the platform so each business
has autonomy for management, is crucial to enterprise wide
microservices adoption. At the same time, IT can still take
ownership of overarching capabilities like Single Sign On,
shared services, overlay security policies configuration (e.g.
OAuth server, IP blacklists, threat protection), etc.

In this model, IT truly becomes an enabler for the business’s
successful microservice rollout. Hence adopting a C4E or Center
For Enablement model versus the legacy Center of Excellence
model where IT traditionally became the bottleneck for delivery.

Unified platform for microservices
Anypoint Platform ties together the entire lifecycle of your
microservices deployed across hybrid infrastructure with
a single, unified platform. This includes the designing,
discovering, deploying, running, documenting, managing, and
other aspects of the microservice. It also provides a ‘single

43

pane of glass’ management UI, from which you can manage the
microservice runtime, it’s APIs, and its messaging endpoints.

Figure 6: Unified platform with a single pane of glass

The benefits of having a unified platform for your microservice
architecture include:

 › End-to-end operational visibility. For instance, a slowdown
in response times observed in the API dashboard can be
correlated to individual transactions that may be erroring
out, with the ability to drill down into corresponding logs
for further troubleshooting. This reduces the Mean Time
To Resolution by providing a single, unified console for
operational visibility.

 › Tooling leverage. The same skillsets, SDLC tools, single sign
on, operation runbooks, engagement/collaboration portal,
etc can be used for API management, on-prem microservice
runtimes, cloud runtimes, MQ, etc.

 › TCO optimization. Integrating the integration stack
improves efficiency compared to swivel chair integration
when working with disparate tools in your microservice
ecosystem. With Anypoint Platform, not having to build your

44

own additional layer to tie all your tools together drastically
reduces the complexity, maintenance costs, and overall
total cost of ownership.

45

Summary

Microservices is clearly an important and welcome trend in the
software development industry, and has many advantages over
previous architectural approaches. However, there are various
concerns to be aware of when instituting a microservices
architecture in your organization. Businesses need to
implement microservices because of its ease of deployment
and agile nature, but if not managed properly, this architecture
can create disorganization and lack of governance.

Products developed with a microservices architecture will
also need to be integrated with legacy technology stacks,
and if this is done poorly, it can create technical debt and
more operational costs for the IT team. Therefore, instituting
microservices in a way that will create competitive advantage
and help your company innovate faster goes beyond a mere
selection of products and software. You must also consider the
people, process, and culture within the organization.

Instituting microservices in a way that will
create competitive advantage and help your

company innovate faster goes beyond a
mere selection of products and software.

This is why we recommend a holistic, platform approach to
microservices, centered around API-led connectivity. Not only
does API-led connectivity create the integration component
so crucial to the proper function of your technology stack, it
will allow developers inside and outside the central IT team to
create new solutions in a manageable, reusable, and governed
way, eliminating concerns of too many applications that the
business cannot control. In addition, MuleSoft’s platform
approach provides a unique operating model to allow both LoB

46

and IT to build, innovate, and deliver new solutions wherever
needed throughout the organization. Take a look at more
resources on API-led connectivity and our vision for changing
the organization’s culture and process to enable IT to deliver
faster at a lower cost.

In today’s hyper-competitive business environment, it’s
important to stand out and provide a delightful experience for
customers, employees, and partners. Microservices are a key
way for a business to do that. Done in a holistic, manageable
fashion, microservices will become a technological standard for
the enterprise.

47

About MuleSoft

MuleSoft, a Salesforce company
MuleSoft’s mission is to help organizations change and
innovate faster by making it easy to connect the world’s
applications, data, and devices. With its API-led approach to
connectivity, MuleSoft’s market-leading Anypoint Platform™
empowers over 1,600 organizations in approximately 60
countries to build application networks. By unlocking data
across the enterprise with application networks, organizations
can easily deliver new revenue channels, increase operational
efficiency, and create differentiated customer experiences.

For more information, visit mulesoft.com

MuleSoft is a registered trademark of MuleSoft, LLC, a Salesforce company.
All other marks are those of respective owners.

