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About the book

This book gives a perspective on machine learning that treats fair-
ness as a central concern rather than an afterthought. We’ll review
the practice of machine learning in a way that highlights ethical chal-
lenges. We’ll then discuss approaches to mitigate these problems.

We’ve aimed to make the book as broadly accessible as we could,
while preserving technical rigor and confronting difficult moral ques-
tions that arise in algorithmic decision making.

This book won’t have an all-encompassing formal definition of
fairness or a quick technical fix to society’s concerns with automated
decisions. Addressing issues of fairness requires carefully under-
standing the scope and limitations of machine learning tools. This
book offers a critical take on current practice of machine learning
as well as proposed technical fixes for achieving fairness. It doesn’t
offer any easy answers. Nonetheless, we hope you’ll find the book
enjoyable and useful in developing a deeper understanding of how to
practice machine learning responsibly.

Why now?

Machine learning has made rapid headway into socio-technical sys-
tems ranging from video surveillance to automated resume screen-
ing. Simultaneously, there has been heightened public concern about
the impact of digital technology on society.

These two trends have led to the rapid emergence of Fairness,
Accountability, and Transparency in socio-technical systems (FAT*)
as a research field. While exciting, this has led to a proliferation
of terminology, rediscovery and simultaneous discovery, conflicts
between disciplinary perspectives, and other types of confusion.

This book aims to move the conversation forward by synthesizing
long-standing bodies of knowledge, such as causal inference, with re-
cent work in the FAT* community, sprinkled with a few observations
of our own.
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How did the book come about?

In the fall semester of 2017, the three authors each taught courses on
fairness and ethics in machine learning: Barocas at Cornell, Hardt
at Berkeley, and Narayanan at Princeton. We each approached the
topic from a different perspective. We also presented two tutorials:
Barocas and Hardt at NIPS 2017, and Narayanan at FAT* 2018. This
book emerged from the notes we created for these three courses, and
is the result of an ongoing dialog between us.

Who is this book for?

We’ve written this book to be useful for multiple audiences. You
might be a student or practitioner of machine learning facing ethi-
cal concerns in your daily work. You might also be an ethics scholar
looking to apply your expertise to the study of emerging technolo-
gies. Or you might be a citizen concerned about how automated
systems will shape society, and wanting a deeper understanding than
you can get from press coverage.

We’ll assume you’re familiar with introductory computer science
and algorithms. Knowing how to code isn’t strictly necessary to read
the book, but will let you get the most out of it. We’ll also assume
you’re familiar with basic statistics and probability. Throughout the
book, we’ll include pointers to introductory material on these topics.

On the other hand, you don’t need any knowledge of machine
learning to read this book: we’ve included an appendix that intro-
duces basic machine learning concepts. We’ve also provided a basic
discussion of the philosophical and legal concepts underlying fair-
ness.1 1 These haven’t yet been released.

What’s in this book?

This book is intentionally narrow in scope: you can see an outline
here. Most of the book is about fairness, but we include a chapter2 2 This chapter hasn’t yet been released.

that touches upon a few related concepts: privacy, interpretability,
explainability, transparency, and accountability. We omit vast swaths
of ethical concerns about machine learning and artificial intelligence,
including labor displacement due to automation, adversarial machine
learning, and AI safety.

Similarly, we discuss fairness interventions in the narrow sense of
fair decision-making. We acknowledge that interventions may take
many other forms: setting better policies, reforming institutions, or
upending the basic structures of society.

A narrow framing of machine learning ethics might be tempting

appendix.html
legal-normative.html
legal-normative.html
index.html
related.html
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to technologists and businesses as a way to focus on technical in-
terventions while sidestepping deeper questions about power and
accountability. We caution against this temptation. For example, mit-
igating racial disparities in the accuracy of face recognition systems,
while valuable, is no substitute for a debate about whether such sys-
tems should be deployed in public spaces and what sort of oversight
we should put into place.

About the authors

Solon Barocas is an Assistant Professor in the Department of Infor-
mation Science at Cornell University. His research explores ethical
and policy issues in artificial intelligence, particularly fairness in ma-
chine learning, methods for bringing accountability to automated
decision-making, and the privacy implications of inference. He was
previously a Postdoctoral Researcher at Microsoft Research, where he
worked with the Fairness, Accountability, Transparency, and Ethics in
AI group, as well as a Postdoctoral Research Associate at the Center
for Information Technology Policy at Princeton University. Barocas
completed his doctorate at New York University, where he remains a
visiting scholar at the Center for Urban Science + Progress.

Moritz Hardt is an Assistant Professor in the Department of Elec-
trical Engineering and Computer Sciences at the University of Cali-
fornia, Berkeley. His research aims to make the practice of machine
learning more robust, reliable, and aligned with societal values. After
obtaining a PhD in Computer Science from Princeton University in
2011, Hardt was a postdoctoral scholar and research staff member at
IBM Research Almaden, followed by two years as a research scientist
at Google Research and Google Brain. Together with Solon Barocas,
Hardt co-founded the workshop on Fairness, Accountability, and
Transparency in Machine Learning (FAT/ML) in 2014.

Arvind Narayanan is an Associate Professor of Computer Science
at Princeton. He studies the risks associated with large datasets about
people: anonymity, privacy, and bias. He leads the Princeton Web
Transparency and Accountability Project to uncover how compa-
nies collect and use our personal information. His doctoral research
showed the fundamental limits of de-identification. He co-created
a Massive Open Online Course as well as a textbook on Bitcoin and
cryptocurrency technologies. Narayanan is a recipient of the Presi-
dential Early Career Award for Scientists and Engineers.
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Introduction

Our success, happiness, and wellbeing are never fully of our own
making. Others’ decisions can profoundly affect the course of our
lives: whether to admit us to a particular school, offer us a job, or
grant us a mortgage. Arbitrary, inconsistent, or faulty decision-
making thus raises serious concerns because it risks limiting our
ability to achieve the goals that we have set for ourselves and access
the opportunities for which we are qualified.

So how do we ensure that these decisions are made the right way
and for the right reasons? While there’s much to value in fixed rules,
applied consistently, good decisions take available evidence into ac-
count. We expect admissions, employment, and lending decisions to
rest on factors that are relevant to the outcome of interest.

Identifying details that are relevant to a decision might happen
informally and without much thought: employers might observe
that people who study math seem to perform particularly well in the
financial industry. But they could test these observations against
historical evidence by examining the degree to which one’s ma-
jor correlates with success on the job. This is the traditional work
of statistics—and it promises to provide a more reliable basis for
decision-making by quantifying how much weight to assign certain
details in our determinations.

Decades of research have compared the accuracy of statistical
models to the judgments of humans, even experts with years of ex-
perience, and found that in many situations data-driven decisions
trounce those based on intuition or expertise.3 These results have 3 R.M. Dawes, D. Faust, and P.E. Meehl,

“Clinical Versus Actuarial Judgment,”
Science 243, no. 4899 (1989): 1668–74.

been welcomed as a way to ensure that the high-stakes decisions that
shape our life chances are both accurate and fair.

Machine learning promises to bring greater discipline to decision-
making because it offers to uncover factors that are relevant to
decision-making that humans might overlook, given the complex-
ity or subtlety of the relationships in historical evidence. Rather than
starting with some intuition about the relationship between certain
factors and an outcome of interest, machine learning lets us defer the
question of relevance to the data themselves: which factors—among
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all that we have observed—bear a statistical relationship to the out-
come.

Uncovering patterns in historical evidence can be even more pow-
erful than this might seem to suggest. Recent breakthroughs in com-
puter vision—specifically object recognition—reveal just how much
pattern-discovery can achieve. In this domain, machine learning
has helped to overcome a strange fact of human cognition: while
we may be able to effortlessly identify objects in a scene, we are un-
able to specify the full set of rules that we rely upon to make these
determinations. We cannot hand code a program that exhaustively
enumerates all the relevant factors that allow us to recognize objects
from every possible perspective or in all their potential visual config-
urations. Machine learning aims to solve this problem by abandoning
the attempt to teach a computer through explicit instruction in favor
of a process of learning by example. By exposing the computer to
many examples of images containing pre-identified objects, we hope
the computer will learn the patterns that reliably distinguish different
objects from one another and from the environments in which they
appear.

This can feel like a remarkable achievement, not only because
computers can now execute complex tasks but also because the rules
for deciding what appears in an image seem to emerge from the data
themselves.

But there are serious risks in learning from examples. Learning is
not a process of simply committing examples to memory. Instead, it
involves generalizing from examples: honing in on those details that
are characteristic of (say) cats in general, not just the specific cats that
happen to appear in the examples. This is the process of induction:
drawing general rules from specific examples—rules that effectively
account for past cases, but also apply to future, as yet unseen cases,
too. The hope is that we’ll figure out how future cases are likely to be
similar to past cases, even if they are not exactly the same.

This means that reliably generalizing from historical examples
to future cases requires that we provide the computer with good
examples: a sufficiently large number of examples to uncover subtle
patterns; a sufficiently diverse set of examples to showcase the many
different types of appearances that objects might take; a sufficiently
well-annotated set of examples to furnish machine learning with
reliable ground truth; and so on. Thus, evidence-based decision-
making is only as reliable as the evidence on which it is based, and
high quality examples are critically important to machine learning.
The fact that machine learning is “evidence-based” by no means
ensures that it will lead to accurate, reliable, or fair decisions.

This is especially true when using machine learning to model
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human behavior and characteristics. Our historical examples of the
relevant outcomes will almost always reflect historical prejudices
against certain social groups, prevailing cultural stereotypes, and
existing demographic inequalities. And finding patterns in these data
will often mean replicating these very same dynamics.

We write this book as machine learning begins to play a role in
especially consequential decision-making. In the criminal justice
system, defendants are assigned statistical scores that are intended
to predict the risk of committing future crimes, and these scores in-
form decisions about bail, sentencing, and parole. In the commercial
sphere, firms use machine learning to analyze and filter resumes of
job applicants. And statistical methods are of course the bread and
butter of lending, credit, and insurance underwriting.

At the same time, machine learning powers everyday applica-
tions that might seem frivolous in comparison but collectively have a
powerful effect on shaping our culture: search engines, news recom-
menders, and ad targeting algorithms influence our information diet
and our worldviews; chatbots and social recommendation engines
mediate our interactions with the world.

This book is an attempt to survey the risks in these and many
other applications of machine learning, and to provide a critical re-
view of an emerging set of proposed solutions. It will show how even
well-intentioned applications of machine learning might give rise to
objectionable results. And it will introduce formal methods for char-
acterizing these problems and assess various computational methods
for addressing them.

Demographic disparities

Amazon uses a data-driven system to determine the neighborhoods
in which to offer free same-day delivery.4 A 2016 study found stark 4 We don’t know the details of how

Amazon’s system works, and in par-
ticular we don’t know to what extent
it uses machine learning. The same is
true of many other systems reported
on in the press. Nonetheless, we’ll use
these as motivating examples when a
machine learning system for the task at
hand would plausibly show the same
behavior.

disparities in the demographic makeup of these neighborhoods: in
many U.S. cities, white residents were more than twice as likely as
black residents to live in one of the qualifying neighborhoods.5

5 D. Ingold and S. Soper, “Ama-
zon Doesn’t Consider the Race
of Its Customers. Should It?”
(https://www.bloomberg.com/
graphics/2016-amazon-same-day/,
2016).

In Chapter 2 we’ll see how to make our intuition about demo-
graphic disparities mathematically precise, and we’ll see that there
are many possible ways of measuring these inequalities. The perva-
siveness of such disparities in machine learning applications is a key
concern of this book.

When we observe disparities, it doesn’t imply that the designer of
the system intended for such inequalities to arise. Looking beyond
intent, it’s important to understand when observed disparities can
be considered to be discrimination. In turn, two key questions to ask
are whether the disparities are justified and whether they are harm-

https://www.bloomberg.com/graphics/2016-amazon-same-day/
https://www.bloomberg.com/graphics/2016-amazon-same-day/
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ful. These questions rarely have simple answers, but the extensive
literature on discrimination in philosophy and sociology can help us
reason about them.

To understand why the racial disparities in Amazon’s system
might be harmful, we must keep in mind the history of racial preju-
dice in the United States, its relationship to geographic segregation
and disparities, and the perpetuation of those inequalities over time.
Amazon argued that its system was justified because it was designed
based on efficiency and cost considerations and that race wasn’t an
explicit factor. Nonetheless, it has the effect of providing different
opportunities to consumers at racially disparate rates. The concern is
that this might contribute to the perpetuation of long-lasting cycles of
inequality. If, instead, the system had been found to be partial to ZIP
codes ending in an odd digit, it would not have triggered a similar
outcry.

The term bias is often used to refer to demographic disparities
in algorithmic systems that are objectionable for societal reasons.
We’ll avoid using this sense of the word bias in this book, since it
means different things to different people. There’s a more traditional
use of the term bias in statistics and machine learning. Suppose
that Amazon’s estimates of delivery dates/times were consistently
too early by a few hours. This would be a case of statistical bias. A
statistical estimator is said to be biased if its expected or average
value differs from the true value that it aims to estimate. Statistical
bias is a fundamental concept in statistics, and there is a rich set of
established techniques for analyzing and avoiding it.

There are many other measures that quantify desirable statistical
properties of a predictor or an estimator, such as precision, recall,
and calibration. These are similarly well understood; none of them
require any knowledge of social groups and are relatively straightfor-
ward to measure. The attention to demographic criteria in statistics
and machine learning is a relatively new direction. This reflects a
change in how we conceptualize machine learning systems and the
responsibilities of those building them. Is our goal to faithfully reflect
the data? Or do we have an obligation to question the data, and to
design our systems to conform to some notion of equitable behavior,
regardless of whether or not that’s supported by the data currently
available to us? These perspectives are often in tension, and the dif-
ference between them will become clearer when we delve into stages
of machine learning.
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The machine learning loop

Let’s study the pipeline of machine learning and understand how
demographic disparities propagate through it. This approach lets us
glimpse into the black box of machine learning and will prepare us
for the more detailed analyses in later chapters. Studying the stages
of machine learning is crucial if we want to intervene to minimize
disparities.

The figure below shows the stages of a typical system that pro-
duces outputs using machine learning. Like any such diagram, it is a
simplification, but it is useful for our purposes.

Figure 1: The machine learning loop

The first stage is measurement, which is the process by which the
state of the world is reduced to a set of rows, columns, and values in
a dataset. It’s a messy process, because the real world is messy. The
term measurement is misleading, evoking an image of a dispassion-
ate scientist recording what she observes, whereas we’ll see that it
requires subjective human decisions.

The ‘learning’ in machine learning refers to the next stage, which
is to turn that data into a model. A model summarizes the patterns
in the training data; it makes generalizations. A model could be
trained using supervised learning via an algorithm such as Support
Vector Machines, or using unsupervised learning via an algorithm
such as k-means clustering. It could take many forms: a hyperplane
or a set of regions in n-dimensional space, or a set of distributions. It
is typically represented as a set of weights or parameters.

The next stage is the action we take based on the model’s predic-
tions, which are applications of the model to new, unseen inputs.
‘Prediction’ is another misleading term—while it does sometimes
involve trying to predict the future (“is this patient at high risk for
cancer?”), usually it doesn’t. It can take the form of classification (de-
termine whether a piece of email is spam), regression (assigning risk
scores to defendants), or information retrieval (finding documents
that best match a search query).

The corresponding actions in these three applications might be:
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depositing the email in the user’s inbox or spam folder, deciding
whether to set bail for the defendant’s pre-trial release, and display-
ing the retrieved search results to the user. They may differ greatly in
their significance to the individual, but they have in common that the
collective responses of individuals to these decisions alter the state of
the world—that is, the underlying patterns that the system aims to
model.

Some machine learning systems record feedback from users (how
users react to actions) and use them to refine the model. For exam-
ple, search engines track what users click on as an implicit signal of
relevance or quality. Feedback can also occur unintentionally, or even
adversarially; these are more problematic, as we’ll explore later in
this chapter.

The state of society

In this book, we’re concerned with applications of machine learning
that involve data about people. In these applications, the available
training data will likely encode the demographic disparities that
exist in our society. For example, the figure shows the gender break-
down of a sample of occupations in the United States, based on data
released by the Bureau of Labor Statistics for the year 2017.6 6 The percentage of women in a sample

of occupations in the United States.
The area of the bubble represents the
number of workers.

Unsurprisingly, many occupations have stark gender imbalances.
If we’re building a machine learning system that screens job can-
didates, we should be keenly aware that this is the baseline we’re
starting from. It doesn’t necessarily mean that the outputs of our sys-
tem will be inaccurate or discriminatory, but throughout this chapter
we’ll see how it complicates things.

Why do these disparities exist? There are many potentially con-
tributing factors, including a history of explicit discrimination, im-
plicit attitudes and stereotypes about gender, and differences in the
distribution of certain characteristics by gender. We’ll see that even
in the absence of explicit discrimination, stereotypes can be self-
fulfilling and persist for a long time in society. As we integrate ma-
chine learning into decision-making, we should be careful to ensure
that ML doesn’t become a part of this feedback loop.

What about applications that aren’t about people? Consider
“Street Bump,” a project by the city of Boston to crowdsource data
on potholes. The smartphone app automatically detects pot holes
using data from the smartphone’s sensors and sends the data to the
city. Infrastructure seems like a comfortably boring application of
data-driven decision-making, far removed from the ethical quan-
daries we’ve been discussing.

And yet! Kate Crawford points out that the data reflect the pat-
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terns of smartphone ownership, which are higher in wealthier parts
of the city compared to lower-income areas and areas with large
elderly populations.7 7 K. Crawford, “The Hidden Biases in

Big Data,” Harvard Business Review 1

(2013).
The lesson here is that it’s rare for machine learning applications

to not be about people. In the case of Street Bump, the data is col-
lected by people, and hence reflects demographic disparities; besides,
the reason we’re interested in improving infrastructure in the first
place is its effect on people’s lives.

To drive home the point that most machine learning applications
involve people, we analyzed Kaggle, a well-known platform for data
science competitions. We focused on the top 30 competitions sorted
by prize amount. In 14 of these competitions, we observed that the
task is to make decisions about individuals. In most of these cases,
there exist societal stereotypes or disparities that may be perpetuated
by the application of machine learning. For example, the Automated
Essay Scoring8 task seeks algorithms that attempt to match the scores 8 Kaggle, “The Hewlett Foundation:

Automated Essay Scoring” (https:
//www.kaggle.com/c/asap-aes, 2012).

of human graders of student essays. Students’ linguistic choices are
signifiers of social group membership, and human graders are known
to sometimes have prejudices based on such factors.9 Thus, because 9 R.N. Hanna and L.L. Linden, “Dis-

crimination in Grading,” American
Economic Journal: Economic Policy 4,
no. 4 (2012): 146–68; M. Sprietsma,
“Discrimination in Grading: Experi-
mental Evidence from Primary School
Teachers,” Empirical Economics 45, no. 1

(2013): 523–38.

human graders must provide the original labels, automated grading
systems risk enshrining any such biases that are captured in the
training data.

In a further 5 of the 30 competitions, the task did not call for mak-
ing decisions about people, but decisions made using the model
would nevertheless directly impact people. For example, one compe-
tition sponsored by real-estate company Zillow calls for improving
the company’s “Zestimate” algorithm for predicting home sale prices.
Any system that predicts a home’s future sale price (and publicizes
these predictions) is likely to create a self-fulfilling feedback loop in
which homes predicted to have lower sale prices deter future buyers,
suppressing demand and lowering the final sale price.

In 9 of the 30 competitions, we did not find an obvious, direct
impact on people, such as a competition on predicting ocean health
(of course, even such competitions have indirect impacts on people,
due to actions that we might take on the basis of the knowledge
gained). In two cases, we didn’t have enough information to make a
determination.

To summarize, human society is full of demographic disparities,
and training data will likely reflect these. We’ll now turn to the pro-
cess by which training data is constructed, and see that things are
even trickier.

https://www.kaggle.com/c/asap-aes
https://www.kaggle.com/c/asap-aes


18 solon barocas, moritz hardt, arvind narayanan

The trouble with measurement

The term measurement suggests a straightforward process, calling to
mind a camera objectively recording a scene. In fact, measurement is
fraught with subjective decisions and technical difficulties.

Consider a seemingly straightforward task: measuring the de-
mographic diversity of college campuses. A recent New York Times
article aimed to do just this, and was titled “Even With Affirma-
tive Action, Blacks and Hispanics Are More Underrepresented at
Top Colleges Than 35 Years Ago.”10 The authors argue that the gap 10 J. Ashkenas, H. Park, and A.

Pearce, “Even with Affirmative
Action, Blacks and Hispanics Are
More Underrepresented at Top Col-
leges Than 35 Years Ago” (https:
//www.nytimes.com/interactive/2017/

08/24/us/affirmative-action.html,
2017).

between enrolled black and Hispanic freshmen and the black and
Hispanic college-age population has grown over the past 35 years. To
support their claim, they present demographic information for more
than 100 American universities and colleges from the year 1980 to
2015, and show how the percentages of black, Hispanic, Asian, white,
and multiracial students have changed over the years. Interestingly,
the multiracial category was only recently introduced in 2008, but
the comparisons in the article ignore the introduction of this new
category. How many students who might have checked the “white”
or “black” box checked the “multiracial” box instead? How might
this have affected the percentages of “white” and “black” students at
these universities? Furthermore, individuals’ and society’s conception
of race changes over time. Would a person with black and Latino
parents be more inclined to self-identify as black in 2015 than in
the 1980s? The point is that even a seemingly straightforward ques-
tion about trends in demographic diversity is impossible to answer
without making some assumptions, and illustrates the difficulties
of measurement in a world that resists falling neatly into a set of
checkboxes. Race is not a stable category; how we measure race often
changes how we conceive of it, and changing conceptions of race may
force us to alter what we measure.

To be clear, this situation is typical: measuring almost any attribute
about people is similarly subjective and challenging. If anything,
things are more chaotic when machine learning researchers have to
create categories, as is often the case.

One area where machine learning practitioners often have to de-
fine new categories is in defining the target variable.11 This is the 11 S. Barocas and A.D. Selbst, “Big

Data’s Disparate Impact,” California Law
Review 104 (2016).

outcome that we’re trying to predict – will the defendant recidivate
if released on bail? Will the candidate be a good employee if hired?
And so on.

Biases in the training set’s target variable are especially critical, be-
cause they are guaranteed to bias the predictions (not necessarily so
with other attributes). But the target variable is arguably the hardest
from a measurement standpoint, because it is often a construct that

https://www.nytimes.com/interactive/2017/08/24/us/affirmative-action.html
https://www.nytimes.com/interactive/2017/08/24/us/affirmative-action.html
https://www.nytimes.com/interactive/2017/08/24/us/affirmative-action.html
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is made up for the purposes of the problem at hand rather than one
that is widely understood and measured. For example, “creditworthi-
ness” is a construct that was created in the context of the problem of
how to successfully extend credit to consumers;12 it is not an intrinsic 12 Barocas and Selbst.

property that people either possess or lack.
If our target variable is the idea of a “good employee”, we might

use performance review scores to quantify it. This means that our
data inherits any biases present in managers’ evaluations of their re-
ports. Another example: the use of computer vision to automatically
rank people’s physical attractiveness.13 The training data consists 13 L. Plaugic, “FaceApp’s Creator Apol-

ogizes for the App’s Skin-Lightening
’Hot’ Filter” (The Verge. https://www.
theverge.com/2017/4/25/15419522/

faceapp-hot-filter-racist-apology,
2017); R. Manthorpe, “The
Beauty.ai Robot Beauty Con-
test Is Back” (Wired UK. https:
//www.wired.co.uk/article/

robot-beauty-contest-beauty-ai,
2017).

of human evaluation of attractiveness, and, unsurprisingly, all these
classifiers showed a preference for lighter skin.

In some cases we might be able to get closer to a more objective
definition for a target variable, at least in principle. For example, in
criminal risk assessment, the training data is not judges’ decisions
on who should get bail, but rather based on who actually went on to
commit a crime. But there’s at least one big caveat—we can’t really
measure who committed a crime, so we use arrests as a proxy. This
replaces the biases of judges with the biases of policing. On the other
hand, if our target variable is whether the defendant appears or fails
to appear in court for trial, we would be able to measure it directly
with perfect accuracy. That said, we may still have concerns about a
system that treats defendants differently based on predicted proba-
bility of appearance, given that some reasons for failing to appear are
less objectionable than others (trying to hold down a job that would
not allow for time off versus trying to avoid prosecution).

In hiring, instead of relying on performance reviews for (say) a
sales job, we might rely on the number of sales closed. But is that an
objective measurement or is it subject to the biases of the potential
customers (who might respond more positively to certain salespeople
than others) and workplace conditions (which might be a hostile
environment for some, but not others)?

In some applications, researchers repurpose an existing scheme
of classification to define the target variable rather than creating
one from scratch. For example, an object recognition system can be
created by training a classifier on ImageNet, a database of images
organized in a hierarchy of concepts.14 ImageNet’s hierarchy comes 14 J. Deng, W. Dong, R. Socher, L.-J.

Li, K. Li, and L. Fei-Fei, “ImageNet:
A Large-Scale Hierarchical Image
Database,” in Proc. CVPR, 2009.

from Wordnet, a database of words, categories, and the relationships
among them.15 Wordnet’s authors in turn imported the word lists

15 G.A. Miller, “WordNet: A Lexical
Database for English,” Communications
of the ACM 38, no. 11 (1995): 39–41.

from a number of older sources, such as thesauri. As a result, Word-
Net (and ImageNet) categories contain numerous outmoded words
and associations, such as occupations that no longer exist and stereo-
typed gender associations. Thus, ImageNet-trained object recognition
systems assume a categorization of the world that is mismatched

https://www.theverge.com/2017/4/25/15419522/faceapp-hot-filter-racist-apology
https://www.theverge.com/2017/4/25/15419522/faceapp-hot-filter-racist-apology
https://www.theverge.com/2017/4/25/15419522/faceapp-hot-filter-racist-apology
https://www.wired.co.uk/article/robot-beauty-contest-beauty-ai
https://www.wired.co.uk/article/robot-beauty-contest-beauty-ai
https://www.wired.co.uk/article/robot-beauty-contest-beauty-ai
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with the world in which they operate.
We think of technology changing rapidly and society being slow

to adapt, but at least in this instance, the categorization scheme at
the heart of much of today’s machine learning technology has been
frozen in time while social norms have changed rapidly.

Our favorite example of measurement bias has to do with cameras,
which we referenced at the beginning of the section as the exemplar
of dispassionate observation and recording. But are they?

The visual world has an essentially infinite bandwidth compared
to what can be captured by cameras, whether film or digital, which
means that photography technology involves a series of choices about
what is relevant and what isn’t, and transformations of the captured
data based on those choices. Both film and digital cameras have his-
torically been more adept at photographing lighter-skinned individ-
uals.16 One reason is the default settings such as color balance which 16 L. Roth, “Looking at Shirley, the

Ultimate Norm: Colour Balance, Image
Technologies, and Cognitive Equity,”
Canadian Journal of Communication 34,
no. 1 (2009): 111.

were optimized for lighter skin tones. Another, deeper reason is the
limited “dynamic range” of cameras, which makes it hard to capture
brighter and darker tones in the same image. This started changing
in the 1970s, in part due to complaints from furniture companies and
chocolate companies about the difficulty of photographically cap-
turing the details of furniture and chocolate respectively! Another
impetus came from the increasing diversity of television subjects at
this time.

When we go from individual images to datasets of images, we in-
troduce another layer of potential biases. Consider the image datasets
that are used to train today’s computer vision systems for tasks such
as object recognition. If these datasets were representative samples
of an underlying visual world, we might expect that a computer vi-
sion system trained on one such dataset would do well on another
dataset. But in reality, we observe a big drop in accuracy when we
train and test on different datasets.17 This shows that these datasets 17 A. Torralba and A.A. Efros, “Un-

biased Look at Dataset Bias,” in
Proc. CVPR (IEEE, 2011), 1521–8.

are biased relative to each other in a statistical sense, and is a good
starting point for investigating whether these biases include cultural
stereotypes.

It’s not all bad news: machine learning can in fact help mitigate
measurement biases. Returning to the issue of dynamic range in
cameras, computational techniques, including machine learning, are
making it possible to improve the representation of tones in images.18 18 Z. Liu, C. Zhang, and Z. Zhang,

“Learning-Based Perceptual Image
Quality Improvement for Video Confer-
encing,” in Multimedia and Expo, 2007
Ieee International Conference on (IEEE,
2007), 1035–8; L. Kaufman, D. Lischin-
ski, and M. Werman, “Content-Aware
Automatic Photo Enhancement,” in
Computer Graphics Forum, vol. 31, 8

(Wiley Online Library, 2012), 2528–40;
N.K. Kalantari and R. Ramamoorthi,
“Deep High Dynamic Range Imaging of
Dynamic Scenes,” ACM Trans. Graph 36,
no. 4 (2017): 144.

Another example comes from medicine: diagnoses and treatments
are sometimes personalized by race. But it turns out that race is
used as a crude proxy for ancestry and genetics, and sometimes
environmental and behavioral factors.19 If we can measure these

19 V.L. Bonham, S.L. Callier, and C.D.
Royal, “Will Precision Medicine Move
Us Beyond Race?” The New England
Journal of Medicine 374, no. 21 (2016):
2003; J.F. Wilson et al., “Population
Genetic Structure of Variable Drug
Response,” Nature Genetics 29, no. 3

(2001): 265.

genetic and lifestyle factors and incorporate them—instead of race—
into statistical models of disease and drug response, we can increase
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the accuracy of diagnoses and treatments while mitigating racial
biases.

To summarize, measurement involves defining your variables of
interest, the process for interacting with the real world and turning
your observations into numbers, and then actually collecting the
data. Usually machine learning practitioners don’t think about these
steps, because someone else has already done those things. And yet
it is crucial to understand the provenance of the data. Even if some-
one else has collected the data for you, it’s almost always too messy
for your algorithms to handle, hence the dreaded “data cleaning”
step. But the messiness of the real world isn’t just an annoyance to be
dealt with by cleaning, it is instead a manifestation of the limitations
of data-driven techniques.

From data to models

We’ve seen that training data reflects the disparities, distortions, and
biases from the real world and the measurement process. This leads
to an obvious question: when we learn a model from such data, are
these disparities preserved, mitigated, or exacerbated?

Predictive models trained with supervised learning methods are
often good at calibration: ensuring that the model’s prediction sub-
sumes all features in the data for the purpose of predicting the out-
come. By contrast, human intuition is notoriously poor at accounting
for priors, and this is a major reason that statistical predictions per-
form better in a wide variety of settings. But calibration also means
that by default, we should expect our models to faithfully reflect
disparities found in the input data.

Here’s another way to think about it. Some patterns in the training
data (smoking is associated with cancer) represent knowledge that
we wish to mine using machine learning, while other patterns (girls
like pink and boys like blue) represent stereotypes that we might
wish to avoid learning. But learning algorithms have no general way
to distinguish between these two types of patterns, because they are
the result of social norms and moral judgments. Absent specific inter-
vention, machine learning will extract stereotypes, including incorrect
and harmful ones, in the same way that it extracts knowledge.

A telling example of this comes from machine translation. The
screenshot on the right shows the result of translating sentences from
English to Turkish and back.20 The same stereotyped translations 20 Translating from English to Turkish,

then back to English injects gender
stereotypes.**

result for many pairs of languages and other occupation words in
all translation engines we’ve tested. It’s easy to see why. Turkish has
gender neutral pronouns, and when translating such a pronoun to
English, the system picks the sentence that best matches the statistics
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of the training set (which is typically a large, minimally curated
corpus of historical text and text found on the web).

When we build a statistical model of language from such text,
we should expect the gender associations of occupation words to
roughly mirror real-world labor statistics. In addition, because of the
male-as-norm bias21 (the use of male pronouns when the gender is 21 M. Danesi, Dictionary of Media and

Communications (Routledge, 2014).unknown) we should expect translations to favor male pronouns. It
turns out that when we repeat the experiment with dozens of oc-
cupation words, these two factors—labor statistics and the male-as-
norm bias—together almost perfectly predict which pronoun will be
returned.22 22 A. Caliskan, J.J. Bryson, and A.

Narayanan, “Semantics Derived Au-
tomatically from Language Corpora
Contain Human-Like Biases,” Science
356, no. 6334 (2017): 183–86.

Here’s a tempting response to the observation that models reflect
data biases. Suppose we’re building a model for scoring resumes for
a programming job. What if we simply withhold gender from the
data? Surely the resulting model can’t be gender biased? Unfortu-
nately, it’s not that simple, because of the problem of proxies23 or 23 Barocas and Selbst, “Big Data’s

Disparate Impact.”redundant encodings,24 as we’ll discuss in the next chapter. There are
24 M. Hardt, “How Big Data Is
Unfair” (https://medium.com/@mrtz/
how-big-data-is-unfair-9aa544d739de,
2014).

any number of other attributes in the data that might correlate with
gender. In our culture, the age at which someone starts programming
is well known to be correlated with gender. This illustrates another
problem with proxies: they may be genuinely relevant to the decision
at hand. How long someone has been programming is a factor that
gives us valuable information about their suitability for a program-
ming job, but it also reflects the reality of gender stereotyping.

Finally, it’s also possible for the learning step to introduce demo-
graphic disparities that aren’t in the training data. The most com-
mon reason for this is the sample size disparity. If we construct our
training set by sampling uniformly from the training data, then by
definition we’ll have fewer data points about minorities. Of course,
machine learning works better when there’s more data, so it will
work less well for members of minority groups, assuming that mem-
bers of the majority and minority groups are systematically different
in terms of the prediction task.25 25 Hardt.

Worse, in many settings minority groups are underrepresented
relative to population statistics. For example, minority groups are
underrepresented in the tech industry. Different groups might also
adopt technology at different rates, which might skew datasets as-
sembled form social media. If training sets are drawn from these
unrepresentative contexts, there will be even fewer training points
from minority individuals. For example, many products that incor-
porate face-detection technology have been reported to have trouble
with non-Caucasian faces, and it’s easy to guess why.26 26 Hardt.

When we develop machine-learning models, we typically only
test their overall accuracy; so a “5% error” statistic might hide the

https://medium.com/@mrtz/how-big-data-is-unfair-9aa544d739de
https://medium.com/@mrtz/how-big-data-is-unfair-9aa544d739de


fairness in machine learning 23

fact that a model performs terribly for a minority group. Reporting
accuracy rates by group will help alert us to problems like the above
example. In the next chapter, we’ll look at metrics that quantify the
error-rate disparity between groups.

There’s one application of machine learning where we find espe-
cially high error rates for minority groups: anomaly detection. This
is the idea of detecting behavior that deviates from the norm as ev-
idence of abuse against a system. A good example is the Nymwars
controversy, where Google, Facebook, and other tech companies
aimed to block users who used uncommon (hence, presumably fake)
names.

Further, suppose that in some cultures, most people receive names
from a small set of names, whereas in other cultures, names might be
more diverse, and it might be common for names to be unique. For
users in the latter culture, a popular name would be more likely to
be fake. In other words, the same feature that constitutes evidence
towards a prediction in one group might constitute evidence against
the prediction for another group.27 27 Hardt.

If we’re not careful, learning algorithms will generalize based on
the majority culture, leading to a high error rate for minority groups.
This is because of the desire to avoid overfitting, that is, picking up
patterns that arise due to random noise rather than true differences.
One way to avoid this is to explicitly model the differences between
groups, although there are both technical and ethical challenges
associated with this, as we’ll show in later chapters.

The pitfalls of action

Any real machine-learning system seeks to make some change in the
world. To understand its effects, then, we have to consider it in the
context of the larger socio-technical system in which it is embedded.

In Chapter 2, we’ll see that if a model is calibrated—it faithfully
captures the patterns in the underlying data—predictions made
using that model will inevitably have disparate error rates for dif-
ferent groups, if those groups have different base rates, that is, rates
of positive or negative outcomes. In other words, understanding the
properties of a prediction requires understanding not just the model,
but also the population differences between the groups on which the
predictions are applied.

Further, population characteristics can shift over time; this is a
well-known machine learning phenomenon known as drift. If sub-
populations change differently over time, that can introduce dispari-
ties. An additional wrinkle: whether or not disparities are objection-
able may differ between cultures, and may change over time as social
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norms evolve.
When people are subject to automated decisions, their perception

of those decisions depends not only on the outcomes but also the
process of decision-making. An ethical decision-making process
might require, among other things, the ability to explain a prediction
or decision, which might not be feasible with black-box models.

A major limitation of machine learning is that it only reveals cor-
relations, but we often use its predictions as if they reveal causation.
This is a persistent source of problems. For example, an early ma-
chine learning system in healthcare famously learned the seemingly
nonsensical rule that patients with asthma had lower risk of de-
veloping pneumonia. This was a true pattern in the data, but the
likely reason was that asthmatic patients were more likely to receive
in-patient care.28 So it’s not valid to use the prediction to decide 28 R. Caruana, Y. Lou, J. Gehrke, P.

Koch, M. Sturm, and N. Elhadad,
“Intelligible Models for Healthcare:
Predicting Pneumonia Risk and Hospi-
tal 30-Day Readmission,” in Proc. 21st
ACM SIGKDD, 2015, 1721–30.

whether or not to admit a patient. We’ll discuss causality in Chapter
4.

Another way to view this example is that the prediction affects the
outcome (because of the actions taken on the basis of the prediction),
and thus invalidates itself. The same principle is also seen in the use
of machine learning for predicting traffic congestion: if sufficiently
many people choose their routes based on the prediction, then the
route predicted to be clear will in fact be congested. The effect can
also work in the opposite direction: the prediction might reinforce
the outcome, resulting in feedback loops. To better understand how,
let’s talk about the final stage in our loop: feedback.

Feedback and feedback loops

Many systems receive feedback when they make predictions. When
a search engine serves results, it typically records the links that the
user clicks on and how long the user spends on those pages, and
treats these as implicit signals about which results were found to be
most relevant. When a video sharing website recommends a video,
it uses the thumbs up/down feedback as an explicit signal. Such
feedback is used to refine the model.

But feedback is tricky to interpret correctly. If a user clicked on
the first link on a page of search results, is that simply because it was
first, or because it was in fact the most relevant? This is again a case
of the action (the ordering of search results) affecting the outcome
(the link(s) the user clicks on). This is an active area of research; there
are techniques that aim to learn accurately from this kind of biased
feedback.29 29 T. Joachims, A. Swaminathan, and T.

Schnabel, “Unbiased Learning-to-Rank
with Biased Feedback,” in Proc. 10th
International Conference on Web Search
and Data Mining (ACM, 2017), 781–89.

Bias in feedback might also reflect cultural prejudices, which is
of course much harder to characterize than the effects of the order-
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ing of search results. For example, the clicks on the targeted ads
that appear alongside search results might reflect gender and racial
stereotypes. There’s a well-known study that hints at this: Google
searches for black-sounding names such as “Latanya Farrell” were
much more likely to results in ads for arrest records (“Latanya Far-
rell, Arrested?”) than searches for white-sounding names (“Kristen
Haring”).30 One potential explanation is that users are more likely to 30 L. Sweeney, “Discrimination in Online

Ad Delivery,” Queue 11, no. 3 (March
2013): 10:10–10:29.

click on ads that conform to stereotypes, and the advertising system
is optimized for maximizing clicks.

In other words, even feedback that’s designed into systems can
lead to unexpected or undesirable biases. But there are many un-
intended ways in which feedback might arise, and these are more
pernicious and harder to control. Let’s look at three.

Self-fulfilling predictions. Suppose a predictive policing system
determines certain areas of a city to be at high risk for crime. More
police officers might be deployed to such areas. Alternatively, officers
in areas predicted to be high risk might be subtly lowering their
threshold for stopping, searching, or arresting people—perhaps even
unconsciously. Either way, the prediction will appear to be validated,
even if it had been made purely based on data biases.

Here’s another example of how acting on a prediction can change
the outcome. In the United States, some criminal defendants are
released prior to trial, whereas for others, a bail amount is set as a
precondition of release. Many defendants are unable to post bail.
Does the release or detention affect the outcome of the case? Perhaps
defendants who are detained face greater pressure to plead guilty. At
any rate, how could one possibly test the causal impact of detention
without doing an experiment? Intriguingly, we can take advantage
of a pseudo-experiment, namely that defendants are assigned bail
judges quasi-randomly, and some judges are stricter than others.
Thus, pre-trial detention is partially random, in a quantifiable way.
Studies using this technique have confirmed that detention indeed
causes an increase in the likelihood of a conviction.31 If bail were set 31 W. Dobbie, J. Goldin, and C. Yang,

“The Effects of Pre-Trial Detention
on Conviction, Future Crime, and
Employment: Evidence from Randomly
Assigned Judges” (National Bureau of
Economic Research, 2016).

based on risk predictions, whether human or algorithmic, and we
evaluated its efficacy by examining case outcomes, we would see a
self-fulfilling effect.

Predictions that affect the training set. Continuing this example,
predictive policing activity will leads to arrests, records of which
might be added to the algorithm’s training set. These areas might
then continue to appear to be at high risk of crime, and perhaps also
other areas with a similar demographic composition, depending on
the feature set used for predictions. The biases might even compound
over time.

A 2016 paper analyzed a predictive policing algorithm by Pred-
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Pol, one of the few to be published in a peer-reviewed journal.32 32 PredPol deserves praise for publicly
releasing their algorithm, without
which this research would not even
have been possible.

By applying it to data derived from Oakland police records, they
found that black people would be targeted for predictive policing
of drug crimes at roughly twice the rate of whites, even though the
two groups have roughly equal rates of drug use.33 Their simulation 33 K. Lum and W. Isaac, “To Predict and

Serve?” Significance 13, no. 5 (2016):
14–19.

showed that this initial bias would be amplified by a feedback loop,
with policing increasingly concentrated on targeted areas. This is
despite the fact that the PredPol algorithm does not explicitly take
demographics into account.

A more recent paper built on this idea and showed mathemati-
cally how feedback loops occur when data discovered on the basis
of predictions are used to update the model.34 The paper also shows 34 D. Ensign, S.A. Friedler, S. Neville,

C. Scheidegger, and S. Venkatasubra-
manian, “Runaway Feedback Loops
in Predictive Policing,” arXiv Preprint
arXiv:1706.09847, 2017.

how to tweak the model to avoid feedback loops: by quantifying how
surprising an observation of crime is given the predictions, and only
updating the model in response to surprising events.

Predictions that affect the phenomenon and society at large. Prejudicial
policing on a large scale, algorithmic or not, will affect society over
time, contributing to the cycle of poverty and crime. This is an ex-
tremely well-trodden thesis, and we’ll briefly review the sociological
literature on durable inequality and the persistence of stereotypes in
Chapter 3.

Let us remind ourselves that we deploy machine learning so that
we can act on its predictions. It is hard to even conceptually elimi-
nate the effects of predictions on outcomes, future training sets, the
phenomena themselves, or society at large. The more central machine
learning becomes in our lives, the stronger this effect.

Returning to the example of a search engine, in the short term it
might be possible to extract an unbiased signal from user clicks, but
in the long run, results that are returned more often will be linked to
and thus rank more highly. As a side effect of fulfilling its purpose
of retrieving relevant information, a search engine will necessarily
change the very thing that it aims to measure, sort, and rank. Simi-
larly, most machine learning systems will affect the phenomena that
they predict. This is why we’ve depicted the machine learning pro-
cess as a loop.

Throughout this book we’ll learn methods for mitigating societal
biases in machine learning, but let us pause to consider that there
are fundamental limits to what we can achieve, especially when we
consider machine learning as a socio-technical system instead of a
mathematical abstraction. The textbook model of training and test
data being independent and identically distributed is a simplification,
and might be unachievable in practice.
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Getting concrete with a toy example

Now let’s look at a concrete setting, albeit a toy problem, to illustrate
many of the ideas discussed so far, and some new ones.

Let’s say you’re on a hiring committee, making decisions based
on just two attributes of each applicant: their college GPA and their
interview score (we did say it’s a toy problem!). We formulate this as
a machine-learning problem: the task is to use these two variables to
predict some measure of the “quality” of an applicant. For example,
it could be based on the average performance review score after
two years at the company. We’ll assume we have data from past
candidates that allows us to train a model to predict performance
scores based on GPA and interview score.

Figure 2: Toy example: a hiring classi-
fier that predicts job performance (not
shown) based on GPA and interview
score, and then applies a cutoff.

Obviously, this is a reductive formulation—we’re assuming that
an applicant’s worth can be reduced to a single number, and that we
know how to measure that number. This is a valid criticism, and ap-
plies to most applications of data-driven decision-making today. But
it has one big advantage: once we do formulate the decision as a pre-
diction problem, statistical methods tend to do better than humans,



28 solon barocas, moritz hardt, arvind narayanan

even domain experts with years of training, in making decisions
based on noisy predictors. The subject has been well researched, and
we’ll study it in Chapter 3.

Given this formulation, the simplest thing we can do is to use lin-
ear regression to predict the average job performance rating from the
two observed variables, and then use a cutoff based on the number of
candidates we want to hire. The figure above shows what this might
look like. In reality, the variables under consideration need not satisfy
a linear relationship, thus suggesting the use of a non-linear model,
which we avoid for simplicity.

As you can see in the figure, our candidates fall into two demo-
graphic groups, represented by triangles and squares.35 Note that the 35 This binary categorization is a simpli-

fication for the purposes of our thought
experiment. Such simplifications are
also common in the research litera-
ture. Indeed, most proposed fairness
interventions themselves start by as-
suming such a categorization. But when
building real systems, enforcing rigid
categories of people can be ethically
questionable. This is not specific to
machine learning, and a similar tension
arises in many data-driven settings,
such as the checkboxes for race on cen-
sus forms or employment applications.

classifier didn’t take into account which group a candidate belonged
to. Does this mean that the classifier is fair? We might hope that it
is, based on the fairness-as-blindness idea, symbolized by the icon of
Lady Justice wearing a blindfold. In this view, an impartial model—
one that doesn’t use the group membership in the regression—is fair;
a model that gives different scores to otherwise-identical members of
different groups is discriminatory.

We’ll defer a richer understanding of what fairness means to
Chapter 3, so let’s ask a simpler question: are candidates from the
two groups equally likely to be positively classified? The answer
is no: the triangles are more likely to be selected than the squares.
That’s because data is a social mirror; the “ground truth” labels that
we’re predicting—job performance ratings—are systematically lower
for the squares than the triangles.

There are many possible reasons for this disparity. First, the man-
agers who score the employees’ performance might have a bias
against one group. Or the overall workplace might be biased against
one group, preventing them from reaching their potential and lead-
ing to lower performance. Alternately, the disparity might originate
before the candidates were hired. For example, it might arise from
disparities in educational institutions attended by the two groups.
Or there might be intrinsic differences between them. Of course, it
might be a combination of these factors. We can’t tell from our data
how much of the disparity is attributable to these different factors. In
general, such a determination is methodologically hard, and requires
causal reasoning.36 36 J. Zhang and E. Bareinboim, “Fairness

in Decision-Making — the Causal
Explanation Formula,” in Proc. 32nd
AAAI, 2018.

For now, let’s assume that we have evidence that the level of de-
mographic disparity produced by our selection procedure is unjus-
tified, and we’re interested in intervening to decrease it. How could
we do it? We observe that GPA is correlated with the demographic
attribute—it’s a proxy. Perhaps we could simply omit that variable
as a predictor? Unfortunately, we’d also cripple the accuracy of our
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model. In real datasets, most attributes tend to be proxies for de-
mographic variables, and dropping them may not be a reasonable
option.

Another crude approach is to pick different cutoffs so that candi-
dates from both groups have the same probability of being hired. Or
we could mitigate the demographic disparity instead of eliminating
it, by decreasing the difference in the cutoffs.

Given the available data, there is no mathematically principled
way to know which cutoffs to pick. In some situations there is a legal
baseline: for example, guidelines from the U.S. Equal Employment
Opportunity Commission state that if the probability of selection for
two groups differs by more than 20%, it might constitute a sufficient
disparate impact to initiate a lawsuit. But a disparate impact alone
is not illegal; the disparity needs to be unjustified or avoidable for
courts to find liability. Even these quantitative guidelines do not
provide easy answers or bright lines.

At any rate, the pick-different-thresholds approach to mitigating
disparities seems unsatisfying. It is no longer blind, and two can-
didates with the same observable attributes may receive different
decisions depending on which group they are in.

But there are other possible interventions, and we’ll discuss one.
To motivate it, let’s take a step back and ask why the company wants
to decrease the demographic disparity in hiring.

One answer is rooted in justice to individuals and the specific
social groups to which they belong. But a different answer comes
from the firm’s selfish interests: diverse teams work better.37 From 37 D. Rock and H. Grant, “Why Diverse

Teams Are Smarter” (Harvard Business
Review. https://hbr.org/2016/11/
why-diverse-teams-are-smarter,
2016).

this perspective, increasing the diversity of the cohort that is hired
would benefit the firm and everyone in the cohort.

How do we operationalize diversity in a selection task? If we had
a distance function between pairs of candidates, we could measure
the average distance between selected candidates. As a strawman,
let’s say we use the Euclidean distance based on the GPA and in-
terview score. If we incorporated such a diversity criterion into
the objective function, it would result in a model where the GPA is
weighted less. This technique has the advantage of being blind: we
didn’t explicitly consider the group membership, but as a side-effect
of insisting on diversity of the other observable attributes, we have
also improved demographic diversity. However, a careless application
of such an intervention can easily go wrong: for example, the model
might give weight to attributes that are completely irrelevant to the
task.

More generally, there are many possible algorithmic interventions
beyond picking different thresholds for different groups. In partic-
ular, the idea of a similarity function between pairs of individuals is

https://hbr.org/2016/11/why-diverse-teams-are-smarter
https://hbr.org/2016/11/why-diverse-teams-are-smarter
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a powerful one, and we’ll see other interventions that make use of
it. But coming up with a suitable similarity function in practice isn’t
easy: it may not be clear which attributes are relevant, how to weight
them, and how to deal with correlations between attributes.

Other ethical considerations

So far we’ve been mostly concerned with ethical concerns that arise
from demographic disparities in the outputs of machine learning
systems. But a few other types of concerns are worth highlighting.

Predictions versus interventions

Fairly rendered decisions under unfair circumstances may do little
to improve people’s lives. In many cases, we cannot achieve any
reasonable notion of fairness through changes to decision-making
alone; we need to change the conditions under which these decisions
are made.

Let’s return to the hiring example above. When using machine
learning to make predictions about how someone might fare in a spe-
cific workplace or occupation, we tend to treat the environment that
people will confront in these roles as a constant and ask how people’s
performance will vary according to their observable characteristics.
In other words, we treat the current state of the world as a given,
leaving us to select the person who will do best under these circum-
stances. This approach risks overlooking more fundamental changes
that we could make to the workplace (culture, family friendly poli-
cies, on-the-job training) that might make it a more welcoming and
productive environment for people that have not flourished under
previous conditions.38 38 S. Barocas, “Putting Data to Work,” in

Data and Discrimination: Collected Essays,
ed. Seeta Peña Gangadharan Virginia
Eubanks and S. Barocas (New America
Foundation, 2014), 59–62.

The tendency with work on fairness in machine learning is to ask
whether an employer is using a fair selection process, even though
we might have the opportunity to intervene in the workplace dynam-
ics that actually account for differences in predicted outcomes along
the lines of race, gender, disability, and other characteristics.39 39 J.W. Jackson and T.J. VanderWeele,

“Decomposition Analysis to Identify
Intervention Targets for Reducing
Disparities,” Epidemiology, 2018, 825–35.

We can learn a lot from the so-called social model of disability,
which views a predicted difference in a disabled person’s ability to
excel on the job as the result of a lack of appropriate accommodations
(an accessible workplace, necessary equipment, flexible working ar-
rangements) rather than any inherent capacity of the person himself.
A person is only disabled in the sense that we have not built physical
environments or adopted appropriate policies to ensure their equal
participation.

The same might be true of people with other characteristics, and
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changes to the selection process alone will not help us address the
fundamental injustice of conditions that keep certain people from
contributing as effectively as others.

Accuracy

Accuracy is an underappreciated ethical issue. The reason that it
doesn’t get much attention in the technical literature is that we as-
sume a setting where a decision maker has some notion of utility,
which is almost always directly connected to maximizing accuracy.
For example, a bank deciding who should receive a loan might use
data to predict whether the recipient will pay it back; they would
like to minimize both types of errors—false positives and false
negatives—as they would lose money with false positives and forego
potential profits with false negatives. Thus, machine learning prob-
lems are already framed in terms of maximizing accuracy, and the
literature often talks about the accuracy-fairness trade-off.

Yet there are two reasons to separately consider accuracy as a cri-
terion for responsible machine learning. We’ve already discussed one
of these: errors might be unequally distributed between demographic
groups, and a utility-maximizing decision maker might not take this
into account.

The other, related reason is that whether to deploy the automated
decision-making system at all is often a debate to be had, and one
that we’re not comfortable leaving to the logic (and whims) of the
marketplace. Two such debates recently: should police use of facial
recognition technology be regulated, and now?40,41 What can go 40 C. Garvie, A. Bedoya, and J. Frankle,

“The Perpetual Line-up,” Georgetown
Law: Center on Privacy and Technology.,
2016.
41 This is not to say that accuracy is
the sole criterion in determining the
acceptability of police use of facial
recognition. Rather, the primary con-
cerns are about civil liberties and the
unaccountability of police power.

wrong with the use of DNA testing as a forensic tool? Understanding
the error rate as well as the nature of errors of these technologies is
critical to an informed debate.

At the same time, debating the merits of these technologies on
the basis of their likely accuracy for different groups may distract
from a more fundamental question: should we ever deploy such
systems, even if they perform equally well for everyone? We may
want to regulate the police’s access to such tools, even if the tools
are perfectly accurate. Our civil rights—freedom or movement and
association—are equally threatened by these technologies when they
fail and when they work well.

Diversity

Diversity is a bit of a catch-all term. It is a criterion in selection
systems, such as in the hiring example above. Another context in
which we might care about diversity is in the construction of training
datasets for machine learning that are representative of the world.
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Let’s discuss two more.
In information systems, low diversity can lead to a narrowing

of opportunity. For example, one reason that students from poor
backgrounds don’t go to selective colleges is that they are simply
unaware that the opportunity is available to them.42 Online search 42 E.W. Dillon and J.A. Smith, “The

Determinants of Mismatch Between
Students and Colleges” (National Bu-
reau of Economic Research, 2013);
O. Jaquette and K. Salazar, “Opin-
ion | Colleges Recruit at Richer,
Whiter High Schools - the New York
Times” (https://www.nytimes.com/
interactive/2018/04/13/opinion/

college-recruitment-rich-white.

html, 2018).

and ads are valuable avenues for mitigating this problem; yet, doing
so requires swimming against the current of targeting of ads (and
sometimes searches) based on algorithmic profiling of users. There is
evidence that ad targeting sometimes narrows opportunities in this
way.43

43 A. Datta, M.C. Tschantz, and A.
Datta, “Automated Experiments on
Ad Privacy Settings,” Proc. Privacy
Enhancing Technologies (PET) 2015, no. 1

(2015): 92–112.

A related concern arises in personalization systems: the infamous
filter bubble.44 This is the idea that when algorithmic systems learn

44 E. Pariser, The Filter Bubble: What the
Internet Is Hiding from You (Penguin UK,
2011).

our past activities to predict what we might click on, they feed us
information that conforms to our existing views. Note that individ-
ual users may like the filter bubble—indeed, research suggests that
our own choices result in a narrowing of what we consume online,
compared to algorithmic recommendations45—but the worry is that

45 E. Bakshy, S. Messing, and L.A.
Adamic, “Exposure to Ideologically Di-
verse News and Opinion on Facebook,”
Science 348, no. 6239 (2015): 1130–2.

an ideologically segregated populace may not be conducive to a func-
tioning democracy. The filter bubble is a concern for search engines,
news websites, and social media; the relevant machine learning tech-
niques include information retrieval and collaborative filtering.

Stereotype perpetuation and cultural denigration

Image search results for occupation terms such as CEO or software
developer reflect (and arguably exaggerate) the prevailing gender
composition and stereotypes about those occupations.46 Should 46 M. Kay, C. Matuszek, and S.A. Mun-

son, “Unequal Representation and
Gender Stereotypes in Image Search
Results for Occupations,” in Proc. 33rd
Conference on Human Factors in Comput-
ing Systems (ACM, 2015), 3819–28.

we care about such disparities in image search results? After all,
these results don’t affect hiring or any other consequential decisions.
And what are the harms from gender stereotypes in online trans-
lation? These and other examples that are disturbing to varying
degrees—such as Google’s app labeling photos of black Americans
as “gorillas”, or offensive results in autocomplete—seem to fall into
a different moral category than, say, a discriminatory system used in
criminal justice, which has immediate and tangible consequences.

A recent talk lays out the differences.47 When decision-making 47 K. Crawford, “The Trouble with Bias”
(NIPS Keynote https://www.youtube.

com/watch?v=fMym_BKWQzk, 2017).
systems in criminal justice, health care, etc. are discriminatory, they
create allocative harms, which are caused when a system withholds
certain groups an opportunity or a resource. In contrast, the other
examples—stereotype perpetuation and cultural denigration—are ex-
amples of representational harms, which occur when systems reinforce
the subordination of some groups along the lines of identity—race,
class, gender, etc.

Allocative harms have received much attention both because their

https://www.nytimes.com/interactive/2018/04/13/opinion/college-recruitment-rich-white.html
https://www.nytimes.com/interactive/2018/04/13/opinion/college-recruitment-rich-white.html
https://www.nytimes.com/interactive/2018/04/13/opinion/college-recruitment-rich-white.html
https://www.nytimes.com/interactive/2018/04/13/opinion/college-recruitment-rich-white.html
https://www.youtube.com/watch?v=fMym_BKWQzk
https://www.youtube.com/watch?v=fMym_BKWQzk
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effects are immediate, and because they are easier to formalize and
study in computer science and in economics. Representational harms
have long-term effects, and resist formal characterization. But as
machine learning becomes a bigger part of how we make sense of
the world—through technologies such as search, translation, voice
assistants, and image labeling—representational harms will leave
an imprint on our culture, and influence identity formation and
stereotype perpetuation. Thus, these are critical concerns for the
fields of natural language processing and computer vision.

Our outlook: limitations and opportunities

We’ve seen how machine learning propagates inequalities in the state
of the world through the stages of measurement, learning, action,
and feedback. Machine learning systems that affect people are best
thought of as closed loops, since the actions we take based on pre-
dictions in turn affect the state of the world. One major goal of fair
machine learning is to develop an understanding of when these dis-
parities are harmful, unjustified, or otherwise unacceptable, and to
develop interventions to mitigate such disparities.

There are fundamental challenges and limitations to this goal. Un-
biased measurement might be infeasible even in principle, as we’ve
seen through examples. There are additional practical limitations
arising from the fact that the decision maker is typically not involved
in the measurement stage. Further, observational data can be insuf-
ficient to identify the causes of disparities, which is needed in the
design of meaningful interventions and in order to understand the
effects of intervention. Most attempts to “debias” machine learning
in the current research literature assume simplistic mathematical
systems, often ignoring the effect of algorithmic interventions on
individuals and on the long-term state of society.

Despite these important limitations, there are reasons to be cau-
tiously optimistic about fairness and machine learning. First, data-
driven decision-making has the potential to be more transparent
compared to human decision-making. It forces us to articulate our
decision-making objectives and enables us to clearly understand
the tradeoffs between desiderata. However, there are challenges to
overcome to achieve this potential for transparency. One challenge is
improving the interpretability and explainability of modern machine
learning methods, which is a topic of vigorous ongoing research.
Another challenge is the proprietary nature of datasets and systems
that are crucial to an informed public debate on this topic. Many
commentators have called for a change in the status quo.48 48 D. Reisman, J. Schultz, K. Craw-

ford, and M. Whittaker, “Algorithmic
Impact Assessments: A Practical Frame-
work for Public Agency Accountabil-
ity” (https://ainowinstitute.org/
aiareport2018.pdf, 2018).

Second, effective interventions do exist in many machine learning

https://ainowinstitute.org/aiareport2018.pdf
https://ainowinstitute.org/aiareport2018.pdf
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applications, especially in natural-language processing and com-
puter vision. Tasks in these domains (say, transcribing speech) are
subject to less inherent uncertainty than traditional decision-making
(say, predicting if a loan applicant will repay), removing some of the
statistical constraints that we’ll study in Chapter 2.

Our final and most important reason for optimism is that the
turn to automated decision-making and machine learning offers an
opportunity to reconnect with the moral foundations of fairness. Al-
gorithms force us to be explicit about what we want to achieve with
decision-making. And it’s far more difficult to paper over our poorly
specified or true intentions when we have to state these objectives
formally. In this way, machine learning has the potential to help us
debate the fairness of different policies and decision-making proce-
dures more effectively.

We should not expect work on fairness in machine learning to de-
liver easy answers. And we should be suspicious of efforts that treat
fairness as something that can be reduced to an algorithmic stamp of
approval. At its best, this work will make it far more difficult to avoid
the hard questions when it comes to debating and defining fairness,
not easier. It may even force us to confront the meaningfulness and
enforceability of existing approaches to discrimination in law and
policy,49 expanding the tools at our disposal to reason about fairness 49 Barocas and Selbst, “Big Data’s

Disparate Impact.”and seek out justice.
We hope that this book can play a small role in stimulating this

nascent interdisciplinary inquiry.

Bibliographic notes and further reading

For an introduction to statistical learning, we recommend the text-
book by Hastie, Tibshirani, and Friedman.50 It is available for down- 50 T. Hastie, R. Tibshirani, and J. Fried-

man, The Elements of Statistical Learning
(Springer, 2009).

load online. An excellent textbook by Wasserman51 also provides

51 L. Wasserman, All of Statistics: A
Concise Course in Statistical Inference
(Springer, 2010).

much useful technical background.
This chapter draws from several taxonomies of biases in machine

learning and data-driven decision-making: a blog post by Moritz
Hardt,52 a paper by Barocas and Selbst,53 and a 2016 report by the 52 Hardt, “How Big Data Is Unfair.”

53 Barocas and Selbst, “Big Data’s
Disparate Impact.”

White House Office of Science and Technology Policy.54 For a broad

54 C. Munoz, M. Smith, and D. Patil,
“Big Data: A Report on Algorith-
mic Systems, Opportunity, and Civil
Rights,” Executive Office of the President.
The White House, 2016.

survey of challenges raised by AI, machine learning, and algorithmic
systems, see the AI Now report.55

55 A. Campolo, M. Sanfilippo, M.
Whittaker, and K. Crawford, “AI Now
2017 Report,” AI Now Institute at New
York University, 2017.

An early work that investigated fairness in algorithmic systems
is by Friedman and Nissenbaum in 1996.56 Papers studying de-

56 B. Friedman and H. Nissenbaum,
“Bias in Computer Systems,” ACM
Transactions on Information Systems
(TOIS) 14, no. 3 (1996): 330–47.

mographic disparities in classification began appearing regularly
starting in 2008;57 the locus of this research was in Europe, and in

57 D. Pedreshi, S. Ruggieri, and F. Turini,
“Discrimination-Aware Data Mining,”
in Proc. 14th SIGKDD (ACM, 2008).

the data mining research community. With the establishment of the
FAT/ML workshop in 2014, a new community emerged, and the

https://web.stanford.edu/~hastie/ElemStatLearn/
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topic has since grown in popularity. Several popular-audience books
have delivered critiques of algorithmic systems in modern society.58 58 F. Pasquale, The Black Box Society: The

Secret Algorithms That Control Money
and Information (Harvard University
Press, 2015); C. O’Neil, Weapons of Math
Destruction: How Big Data Increases
Inequality and Threatens Democracy
(Broadway Books, 2016); V. Eubanks,
Automating Inequality: How High-Tech
Tools Profile, Police, and Punish the Poor
(St. Martin’s Press, 2018); S.U. Noble,
Algorithms of Oppression: How Search
Engines Reinforce Racism (NYU Press,
2018).





Classification

Simply put, the goal of classification is to determine a plausible value
for an unknown variable Y given an observed variable X. For exam-
ple, we might try to predict whether a loan applicant will pay back
her loan by looking at various characteristics such as credit history,
income, and net worth. Classification also applies in situations where
the variable Y does not refer to an event that lies in the future. For
example, we can try to determine if an image contains a cat by look-
ing at the set of pixels encoding the image. This practice is also called
object recognition or image classification. Object recognition might not
even seem like a statistical problem, yet statistical methods came to
be the method of choice for many important pattern recognition tasks
in computer vision.

Supervised learning

A classifier is a mapping from the space of possible values for X
to the space of values that the target variable Y can assume. Su-
pervised learning is the prevalent method for constructing classi-
fiers from observed data. The essential idea is very simple. Sup-
pose we have labeled data, also called training examples, of the form
(x1, y1), ..., (xn, yn), where each example is a pair (xi, yi) of an instance
xi and a label yi.

Instances are usually arranged as vectors of some dimension. You
can think of them as arrays with numbers in them. In a classification
problem, labels typically come from a discrete set such as {−1, 1}
in the case of binary classification. We interpret these labels as par-
titioning the set of instances into positive and negative instances
depending on their label.59 We can interpret such a classifier as a de- 59 Multi-class prediction is the general-

ization to label sets with more than two
values.

cision rule by equating a positive label with acceptance and a negative
label with rejection.

In a regression problem, the label y is typically a real number. The
goal is no longer to predict the exact value of y but rather to be close
to it. The tools to solve classification and regression problems in prac-
tice are very similar. In both cases, roughly the same optimization
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approach is used to find a classifier f that maps an instance x to a
label ŷ = f (x) that we hope agrees with the correct label. This opti-
mization process is often called training; its specifics are irrelevant for
this chapter.

To turn supervised learning into a statistical problem, we assume
that there is an underlying distribution from which the data were
drawn. The distribution is fixed and each example is drawn indepen-
dently of the others. We can express this underlying distribution as a
pair of random variables (X, Y). For example, our training examples
might be responses from a survey. Each survey participant is chosen
independently at random from a fixed sampling frame that repre-
sents an underlying population. As we discussed in the introduction,
the goal of supervised learning is to identify meaningful patterns in
the population that aren’t just artifacts of the sample.

At the population level, we can interpret our classifier as a ran-
dom variable by considering Ŷ = f (X). In doing so, we overload
our terminology slightly by using the word classifier for both the ran-
dom variable Ŷ and mapping f . The distinction is mostly irrelevant
for this chapter as we will focus on the statistical properties of the
joint distribution of the data and the classifier, which we denote as
a tuple of three random variables (X, Y, Ŷ). For now, we ignore how
Ŷ was learned from a finite sample, what the functional form of the
classifier is, and how we estimate various statistical quantities from
finite samples. While finite sample considerations are fundamental
to machine learning, they are often not specific to the conceptual and
technical questions around fairness that we will discuss.

Statistical classification criteria

What makes a classifier good for an application and how do we
choose one out of many possible classifiers? This question often does
not have a fully satisfying answer, but some formal criteria can help
highlight different qualities of a classifier that can inform our choice.

Perhaps the most well known property of a classifier Ŷ is its ac-
curacy defined as P{Y = Ŷ}, the probability of correctly predicting
the target variable. It is common practice to apply the classifier that
achieves highest accuracy among those available to us.60 60 We typically don’t know the classifier

that maximizes accuracy among all
possible classifiers, but rather we only
have access to those that we can find
with effective training procedures.

Accuracy is easy to define, but misses some important aspects. A
classifier that always predicts no traffic fatality in the next year might
have high accuracy, simply because individual accidents are highly
unlikely. However, it’s a constant function that has no value in assess-
ing the risk that an individual experiences a fatal traffic accident.

Many other formal classification criteria highlight different aspects
of a classifier. In a binary classification setting, we can consider the
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conditional probability P{event | condition} for various different
settings.

Table 1: Common classification criteria

Event Condition Resulting notion (P{event | condition})

Ŷ = 1 Y = 1 True positive rate, recall
Ŷ = 0 Y = 1 False negative rate
Ŷ = 1 Y = 0 False positive rate
Ŷ = 0 Y = 0 True negative rate

To be clear, the true positive rate corresponds to the frequency
with which the classifier correctly assigns a positive label to a posi-
tive instance. We call this a true positive. The other terms false positive,
false negative, and true negative derive analogously from the respective
definitions.

It is not important to memorize all these terms. They do, however,
come up regularly in the classification setting so the table might
come in handy.

Another family of classification criteria arises from swapping event
and condition. We’ll only highlight two of the four possible notions.

Table 2: Additional classification criteria

Event Condition Resulting notion (P{event | condition})

Y = 1 Ŷ = 1 Positive predictive value, precision
Y = 0 Ŷ = 0 Negative predictive value

We’ll return to these criteria later on when we explore some of
their properties and relationships.

Score functions

Classification is often attacked by first solving a regression problem
to summarize the data in a single real-valued variable. We will refer
to such a variable as score. We can turn a score into a classifier by
thresholding it somewhere on the real line.

For an illustrative example consider the well-known body mass in-
dex which summarizes weight and height of a person into a single real
number. In our formal notation, the features are X = (H, W) where
H denotes height in meters and W denotes weight in kilograms. The
body mass index corresponds to the score function R = W/H2.

We could interpret the body mass index as measuring risk of heart
disease. Thresholding it at the value 27, we might decide that indi-

https://en.wikipedia.org/wiki/Body_mass_index
https://en.wikipedia.org/wiki/Body_mass_index
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Figure 3: Plot of the body mass index.

viduals with a body mass index above this value are at risk of devel-
oping heart disease while others are not. It does not take a medical
degree to suspect that the resulting classifier may not be very accu-
rate61. The body mass index has a number of known issues leading 61 In fact, it seems to be quite poor.

to errors when used for classification. We won’t go into detail, but
it’s worth noting that these classification errors can systematically
align with certain demographic groups. For instance, the body mass
index tends to be inflated as a risk measure for taller people (due to
its scaling issues).

Score functions need not follow simple algebraic formulas such
as the body mass index. In most cases, score functions are built by
fitting regression models against historical data. Think of a credit
score, as is common in some countries, which can be used to accept
or deny loan applicants based on the score value. We will revisit this
example in detail later.

The conditional expectation

A natural score function is the expectation of the target variable Y
conditional on the features X we have observed. We can write this
score as R = r(X) where r(x) = E[Y | X = x], or more succinctly,
R = E[Y | X]. In a sense, this score function gives us the best guess
for the target variable given the observations we have. We can think
of the conditional expectation as a lookup table that gives us for each
setting of features the frequency of positive outcomes given these
features.62 62 We can make this statement more

precise. This score is sometimes called
the Bayes optimal score or Bayes optimal
score as it minimizes the squared error
E(g(X)− R)2 among all functions g(X).

https://www.thelancet.com/article/S0140-6736(06)69251-9/abstract
https://en.wikipedia.org/wiki/Body_mass_index#Scaling
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Such lookup tables have a long and fascinating history in appli-
cations of risk assessment such as insurance pricing.63 One of the 63 D. Bouk, How Our Days Became Num-

bered: Risk and the Rise of the Statistical
Individual (University of Chicago Press,
2015).

earliest examples is Halley’s life table from 1693 that was used to es-
timate the life expectancy an individual in order to accurately price
certain annuities.

Figure 4: Halley’s life table (1693)

The conditional expectation also makes sense for our example of
scoring risk of heart disease. What it would do here is to tell us for
every setting of weight (say, rounded to the nearest kg unit) and ev-
ery physical height (rounded to the nearest cm unit), the incidence
rate of heart disease among individuals with these values of weight
and height. The target variable in this case is a binary indicator of
heart disease. So, r((176, 68)) would be the incidence rate of heart
disease among individuals who are 1.76m tall and weigh 68kg. In-
tuitively, we can think of the conditional expectation as a big lookup
table of incidence rates given some setting of characteristics.

The conditional expectation is likely more useful as a risk measure
of heart disease than the body mass index we saw earlier. After all,
the conditional expectation directly reflects the incidence rate of heart
disease given the observed characteristics, while the body mass index
is a general-purpose summary statistic.

That said, we can still spot a few issues with this score function.
First, our definition of target variable was a bit fuzzy, lumping to-
gether all sorts of different kinds of heart disease with different char-
acteristics. Second, in order to actually compute the conditional ex-
pectation in practice, we would have to collect incidence rate statistics
by height and weight. These data points would only tell us about
historical incidence rates. The extent to which they can tell us about
future cases of heart disease is somewhat unclear. If our data comes
from a time where people generally smoked more cigarettes, our
statistics might overestimate future incidence rates. There are nu-
merous other features that are relevant for the prediction of heart
disease, including age and gender, but they are neglected in our data.
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We could include these additional features in our data; but as we in-
crease the number of features, estimating the conditional expectation
becomes increasingly difficult. Any feature set partitions the popula-
tion into demographics. The more features we include, the fewer data
points we can collect in each subgroup. As a result, the conditional
expectation is generally hard to estimate in high-dimensional settings,
where we have many attributes.

From scores to classifiers

We just saw how we can turn a score function into a discrete clas-
sifier by discretizing its values into buckets. In the case of a binary
classifier, this corresponds to choosing a threshold t so that when
the score is above t our classifier outputs 1 (accept) and otherwise -1
(reject).64 Each choice of the threshold defines one binary classifier. 64 The choice of the values 1 and -1 is

arbitrary. Any two distinct values will
do.

Which threshold should we choose?
The answer to this question is surprisingly subtle. Roughly speak-

ing, which threshold we choose depends on our notion of utility for
the resulting classifier and the problem we’re trying to solve. Our
notion of utility could be complex and depend on many different
considerations.

In classification, it is common to oversimplify the problem quite a
bit by summarizing all considerations of utility with just two num-
bers: a cost for accepting a negative instance (false positive) and a
cost for rejecting a positive instance (false negative). If in our problem
we face a high cost for false positives, we want to choose a higher
threshold than in other applications where false negatives are costly.

The choice of a threshold and its resulting trade-off between true
positive rate and false positive rate can be neatly visualized with the
help of an ROC curve65. Note that true positive rate equals 1 - false 65 ROC stands for receiver operating

characteristic.negative rate.
The ROC curve serves another purpose. It can be used to eye-

ball how predictive our score is of the target variable. A common
measure of predictiveness is the area under the curve, which is the
probability that a random positive instance gets a score higher than
a random negative instance. An area of 1/2 corresponds to random
guessing, and an area of 1 corresponds to perfect classification, or
more formally, the score equals the target. Known disadvantages66 66 S. Halligan, D.G. Altman, and S.

Mallett, “Disadvantages of Using the
Area Under the Receiver Operating
Characteristic Curve to Assess Imaging
Tests: A Discussion and Proposal for
an Alternative Approach,” European
Radiology 25, no. 4 (April 2015): 932–39.

make area under the curve a tool that must be interpreted with caution.

Sensitive characteristics

In many classification tasks, the features X contain or implicitly en-
code sensitive characteristics of an individual. We will set aside the

https://en.wikipedia.org/wiki/Receiver_operating_characteristic
https://en.wikipedia.org/wiki/Receiver_operating_characteristic
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Figure 5: Example of an ROC curve.
Each point on the solid curve is realized
by thresholding the score function at
some value. The dashed line shows
the trade-offs achieved by randomly
accepting an instance irrespective of
its features with some probability
p ∈ [0, 1].

letter A to designate a discrete random variable that captures one or
multiple sensitive characteristics67. Different settings of A correspond 67 Note that formally we can always

represent any number of discrete
sensitive attributes as a single discrete
attribute whose support corresponds
to each of the possible settings of the
original attributes.

to different groups of the population. This notational choice is not
meant to suggest that we can cleanly partition the set of features into
two independent categories such as “neutral” and “sensitive”. In fact,
we will see shortly that sufficiently many seemingly neutral features
can often give high accuracy predictions of sensitive characteristics.
This should not be surprising. After all, if we think of A as the target
variable in a classification problem, there is reason to believe that the
remaining features would give a non-trivial classifier for A.

The choice of sensitive attributes will generally have profound con-
sequences as it decides which groups of the population we highlight,
and what conclusions we draw from our investigation. The taxonomy
induced by discretization can on its own be a source of harm if it is
too coarse, too granular, misleading, or inaccurate. Even the act of
introducing a sensitive attribute on its own can be problematic. We
will revisit this important discussion in the next chapter.

No fairness through unawareness

Some have hoped that removing or ignoring sensitive attributes
would somehow ensure the impartiality of the resulting classifier.
Unfortunately, this practice is usually somewhere on the spectrum
between ineffective and harmful.

In a typical data set, we have many features that are slightly corre-
lated with the sensitive attribute. Visiting the website pinterest.com,
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for example, has a small statistical correlation with being female.68 68 As of August 2017, 58.9% of Pinter-
est’s users in the United States were
female. See here (Retrieved 3-27-2018)

The correlation on its own is too small to predict someone’s gen-
der with high accuracy. However, if numerous such features are
available, as is the case in a typical browsing history, the task of pre-
dicting gender becomes feasible at high accuracy levels.

In other words, several features that are slightly predictive of the
sensitive attribute can be used to build high accuracy classifiers for
that attribute.

Figure 6: On the left, we see the distri-
bution of a single feature that differs
only very slightly between the two
groups. In both groups the feature
follows a normal distribution. Only
the means are slightly different in each
group. Multiple features like this can
be used to build a high accuracy group
membership classifier. On the right, we
see how the accuracy grows as more
and more features become available.

In large feature spaces sensitive attributes are generally redundant
given the other features. If a classifier trained on the original data
uses the sensitive attribute and we remove the attribute, the classifier
will then find a redundant encoding in terms of the other features.
This results in an essentially equivalent classifier, in the sense of
implementing the same function.

To further illustrate the issue, consider a fictitious start-up that
sets out to predict your income from your genome. At first, this task
might seem impossible. How could someone’s DNA reveal their
income? However, we know that DNA encodes information about
ancestry, which in turn correlates with income in some countries
such as the United States. Hence, DNA can likely be used to predict
income better than random guessing. The resulting classifier uses
ancestry in an entirely implicit manner. Removing redundant encod-
ings of ancestry from the genome is a difficult task that cannot be
accomplished by removing a few individual genetic markers. What
we learn from this is that machine learning can wind up building
classifiers for sensitive attributes without explicitly being asked to,
simply because it is an available route to improving accuracy.

Redundant encodings typically abound in large feature spaces.
What about small hand-curated feature spaces? In some studies,
features are chosen carefully so as to be roughly statistically indepen-

https://www.statista.com/statistics/277759/pinterest-gender-usa/
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dent of each other. In such cases, the sensitive attribute may not have
good redundant encodings. That does not mean that removing it is
a good idea. Medication, for example, sometimes depends on race
in legitimate ways if these correlate with underlying causal factors.69 69 Bonham, Callier, and Royal, “Will

Precision Medicine Move Us Beyond
Race?”

Forcing medications to be uncorrelated with race in such cases can
harm the individual.

Formal non-discrimination criteria

Many fairness criteria have been proposed over the years, each aiming
to formalize different desiderata. We’ll start by jumping directly into
the formal definitions of three representative fairness criteria that
relate to many of the proposals that have been made.

Once we have acquired familiarity with the technical matter, we’ll
have a broader debate around the purpose, scope, and meaning of
these fairness criteria in Chapter 3.

Most of the proposed fairness criteria are properties of the joint
distribution of the sensitive attribute A, the target variable Y, and the
classifier or score R.70 This means that we can write them as some 70 If all variables are binary, then the

joint distribution is specified by 8 non-
negative parameters that sum to 1.
A non-trivial property of the joint
distribution would restrict the way in
which we can choose these parameters.

statement involving properties of these three random variables.
To a first approximation, most of these criteria fall into one of three

different categories defined along the lines of different (conditional)
independence71 statements between the involved random variables.

71 Learn more about conditional inde-
pendence here.

Table 3: Non-discrimination criteria

Independence Separation Sufficiency

R ⊥ A R ⊥ A | Y Y ⊥ A | R

Below we will introduce and discuss each of these conditions in
detail. Variants of these criteria arise from different ways of relaxing
them.

As an exercise, think about why we omitted the conditional inde-
pendence statement R ⊥ Y | A from our discussion here.

Independence

Our first formal criterion simply requires the sensitive characteristic
to be statistically independent of the score.

Definition 1. The random variables (A, R) satisfy independence if A ⊥
R.

Independence has been explored through many equivalent terms
or variants, referred to as demographic parity, statistical parity, group

https://en.wikipedia.org/wiki/Conditional_independence
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fairness, disparate impact and others. In the case of binary classifica-
tion, independence simplifies to the condition

P{R = 1 | A = a} = P{R = 1 | A = b} ,

for all groups a, b. Thinking of the event R = 1 as “acceptance”, the
condition requires the acceptance rate to be the same in all groups.
A relaxation of the constraint introduces a positive amount of slack
ε > 0 and requires that

P{R = 1 | A = a} ≥ P{R = 1 | A = b} − ε .

Note that we can swap a and b to get an inequality in the other
direction. An alternative relaxation is to consider a ratio condition,
such as,

P{R = 1 | A = a}
P{R = 1 | A = b} ≥ 1− ε .

Some have argued72 that, for ε = 0.2, this condition relates to the 80 72 M. Feldman, S.A. Friedler, J. Moeller,
C. Scheidegger, and S. Venkatasubra-
manian, “Certifying and Removing Dis-
parate Impact,” in Proc. 21st SIGKDD
(ACM, 2015).

percent rule in disparate impact law.
Yet another way to state the independence condition in full gener-

ality is to require that A and R must have zero mutual information73

73 Mutual information is defined as
I(A; R) = H(A) + H(R) − H(A, R),
where H denotes the entropy.

I(A; R) = 0. The characterization in terms of mutual information
leads to useful relaxations of the constraint. For example, we could
require I(A; R) ≤ ε.

Limitations of independence

Independence is pursued as a criterion in many papers, for several
reasons. For example, it may be an expression of a belief about hu-
man nature, namely that traits relevant for a job are independent of
certain attributes. It also has convenient technical properties.

However, decisions based on a classifier that satisfies indepen-
dence can have undesirable properties (and similar arguments ap-
ply to other statistical critiera). Here is one way in which this can
happen, which is easiest to illustrate if we imagine a callous or ill-
intentioned decision maker. Imagine a company that in group a hires
diligently selected applicants at some rate p > 0. In group b, the
company hires carelessly selected applicants at the same rate p. Even
though the acceptance rates in both groups are identical, it is far
more likely that unqualified applicants are selected in one group than
in the other. As a result, it will appear in hindsight that members of
group b performed worse than members of group a, thus establishing
a negative track record for group b.74 74 This problem was identified and

called self-fulfilling prophecy in, C.
Dwork, M. Hardt, T. Pitassi, O. Rein-
gold, and R. Zemel, “Fairness Through
Awareness,” in Proc. 3rd ITCS, 2012,
214–26. One might object that enforcing
demographic parity in this scenario
might still create valuable additional
training data which could then im-
prove predictions in the future after
re-training the classifier on these addi-
tional data points.

This situation might arise without positing malice: the company
might have historically hired employees primarily from group a, giv-
ing them a better understanding of this group. As a technical matter,
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the company might have substantially more training data in group a,
thus potentially leading to lower error rates of a learned classifier
within that group. The last point is a bit subtle. After all, if both
groups were entirely homogenous in all ways relevant to the classi-
fication task, more training data in one group would equally benefit
both. Then again, the mere fact that we chose to distinguish these
two groups indicates that we believe they might be heterogeneous in
relevant aspects.

Interlude: How to satisfy fairness criteria

A later chapter devoted to algorithmic interventions will go into
detail, but we pause for a moment to think about how we can achieve
the independence criterion when we actually build a classifier. We
distinguish between three different techniques. While they generally
apply to all the criteria and their relaxations that we review in this
chapter, our discussion here focuses on independence.

• Pre-processing: Adjust the feature space to be uncorrelated with
the sensitive attribute.

• At training time: Work the constraint into the optimization process
that constructs a classifier from training data.

• Post-processing: Adjust a learned classifier so as to be uncorre-
lated with the sensitive attribute.

The three approaches have different strengths and weaknesses.
Pre-processing is a family of techniques to transform a feature

space into a representation that as a whole is independent of the
sensitive attribute. This approach is generally agnostic to what we
do with the new feature space in downstream applications. After
the pre-processing transformation ensures independence, any deter-
ministic training process on the new space will also satisfy indepen-
dence75. 75 Formally, this is a consequence of

the data processing inequality from
information theory.

Achieving independence at training time can lead to the highest
utility since we get to optimize the classifier with this criterion in
mind. The disadvantage is that we need access to the raw data and
training pipeline. We also give up a fair bit of generality as this ap-
proach typically applies to specific model classes or optimization
problems.

Post-processing refers to the process of taking a trained classifier
and adjusting it possibly depending on the sensitive attribute and
additional randomness in such a way that independence is achieved.
Formally, we say a derived classifier Ŷ = F(R, A) is a possibly random-
ized function of a given score R and the sensitive attribute. Given a
cost for false negatives and false positives, we can find the derived

https://en.wikipedia.org/wiki/Data_processing_inequality
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classifier that minimizes the expected cost of false positive and false
negatives subject to the fairness constraint at hand. Post-processing
has the advantage that it works for any black-box classifier regardless
of its inner workings. There’s no need for re-training, which is useful
in cases where the training pipeline is complex. It’s often also the
only available option when we have access only to a trained model
with no control over the training process. These advantages of post-
processing are simultaneously also a weakness as it often leads to a
significant loss in utility.

Separation

Our next criterion acknowledges that in many scenarios, the sen-
sitive characteristic may be correlated with the target variable. For
example, one group might have a higher default rate on loans than
another. A bank might argue that it is a matter of business necessity
to therefore have different lending rates for these groups.

Roughly speaking, the separation criterion allows correlation be-
tween the score and the sensitive attribute to the extent that it is
justified by the target variable. This intuition can be made precise with a
simple conditional independence statement.

Definition 2. Random variables (R, A, Y) satisfy separation if R ⊥ A |
Y.76 76 We can display separation as a graph-

ical model in which R is separated from
A by the target variable Y:

If you haven’t seen graphical models
before, don’t worry. All this says is that
R is conditionally independent of A
given Y.

In the case where R is a binary classifier, separation is equivalent
to requiring for all groups a, b the two constraints

P{R = 1 | Y = 1, A = a} = P{R = 1 | Y = 1, A = b}
P{R = 1 | Y = 0, A = a} = P{R = 1 | Y = 0, A = b} .

Recall that P{R = 1 | Y = 1} is called the true positive rate of
the classifier. It is the rate at which the classifier correctly recognizes
positive instances. The false positive rate P{R = 1 | Y = 0} highlights
the rate at which the classifier mistakenly assigns positive outcomes
to negative instances. What separation therefore requires is that all
groups experience the same false negative rate and the same false
positive rate.

This interpretation in terms of equality of error rates leads to nat-
ural relaxations. For example, we could only require equality of false
negative rates. A false negative, intuitively speaking, corresponds to
denied opportunity in scenarios where acceptance is desirable, such
as in hiring.77 77 In contrast, when the task is to

identify high-risk individuals, as in
the case of recidivism prediction, it
is common to denote the undesirable
outcome as the “positive” class. This
inverts the meaning of false positives
and false negatives, and is a frequent
source of terminological confusion.
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Achieving separation

As was the case with independence, we can achieve separation by
post-processing a given score function without the need for retrain-
ing.78 78 Recall, a derived classifier is a possi-

ble randomized mapping Ŷ = F(R, A).The post-processing step uses the ROC curve that we saw earlier
and it’s illustrative to go into a bit more detail. A binary classifier
that satisfies separation must achieve the same true positive rates and
the same false positive rates in all groups. This condition corresponds
to taking the intersection of all group-level ROC curves. Within this
constraint region, we can then choose the classifier that minimizes the
given cost.

Figure 7: ROC curve by group.

We see the ROC curves of a score displayed for each group sep-
arately. The two groups have different curves indicating that not
all trade-offs between true and false positive rate are achievable in
both groups. The trade-offs that are achievable in both groups are
precisely those that lie under both curves, corresponding to the inter-
section of the regions enclosed by the curves.

The highlighted region is the feasible region of trade-offs that we
can achieve in all groups. There is a subtlety though. Points that are
not exactly on the curves, but rather in the interior of the region, re-
quire randomization. To understand this point, consider a classifier
that accepts everyone corresponding to true and false positive rate
1, the upper right corner of the plot. Consider another classifier that
accepts no one, resulting in true and false positive rate 0, the lower
left corner of the plot. Now, consider a third classifier that given an
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Figure 8: Intersection of area under the
curves.

instance randomly picks and applies the first classifier with probabil-
ity 1− p, and the second with probability p. This classifier achieves
true and false positive rate p thus giving us one point on the dashed
line in the plot. In the same manner, we could have picked any other
pair of classifiers and randomized between them. We can fill out the
entire shaded region in this way, because it is convex, meaning that
every point in it lies on a line segment between two classifiers on the
boundary.

Sufficiency

Our third criterion formalizes that the score already subsumes the
sensitive characteristic for the purpose of predicting the target. This
idea again boils down to a conditional independence statement.

Definition 3. We say the random variables (R, A, Y) satisfy sufficiency if
Y ⊥ A | R.79 79 We can again display sufficiency

as a graphical model as we did with
separation before:

If you haven’t seen graphical models
before, feel free to ignore this interpre-
tation.

We will often just say that R satisfies sufficiency when the sensitive
attribute A and target variable Y are clear from the context.

Let us write out the definition more explicitly in the binary case
where Y ∈ {0, 1}. In this case, a random variable R is sufficient for A
if and only if for all groups a, b and all values r in the support of R,
we have

P{Y = 1 | R = r, A = a} = P{Y = 1 | R = r, A = b} .

When R has only two values we recognize this condition as requiring
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a parity of positive/negative predictive values across all groups.
While it is often useful to think of sufficiency in terms of positive

and negative predictive values, there’s a useful alternative. Indeed,
sufficiency turns out to be closely related to an important notion
called calibration, as we will discuss next.

Calibration and sufficiency

In some applications it is desirable to be able to interpret the values
of the score functions as probabilities. Formally, we say that a score R
is calibrated if for all score values r in the support of R, we have

P{Y = 1 | R = r} = r .

This condition means that the set of all instances assigned a score
value r has an r fraction of positive instances among them. The con-
dition refers to the group of all individuals receiving a particular
score value. It does not mean that at the level of a single individual
a score of r corresponds to a probability r of a positive outcome. The
latter is a much stronger property that is satisfied by the conditional
expectation R = E[Y | X].80 80 Formally, we have for every set S,

P{Y = 1 | R = r, X ∈ S} = r.In practice, there are various heuristics to achieve calibration. For
example, Platt scaling is a popular method that works as follows.
Platt scaling takes a possibly uncalibrated score, treats it as a single
feature, and fits a one variable regression model against the target
variable based on this feature. More formally, given an uncalibrated
score R, Platt scaling aims to find scalar parameters a, b such that the
sigmoid function81 81 A plot of the sigmoid function 1/(1 +

exp(−x)).
S =

1
1 + exp(aR + b)

fits the target variable Y with respect to the so-called log loss

−E[Y log S + (1−Y) log(1− S)].

This objective can be minimized given labeled examples drawn from
(R, Y) as is standard in supervised learning.

Calibration by group

From the definition, we can see that sufficiency is closely related to
the idea of calibration. To formalize the connection we say that the
score R satisfies calibration by group if it satisfies

P{Y = 1 | R = r, A = a} = r ,

for all score values r and groups a. Recall that calibration is the same
requirement at the population level without the conditioning on A.
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Fact 1. Calibration by group implies sufficiency.

Conversely, sufficiency is only slightly weaker than calibration by
group in the sense that a simple renaming of score values goes from
one property to the other.

Proposition 1. If a score R satisfies sufficiency, then there exists a func-
tion ` : [0, 1]→ [0, 1] so that `(R) satisfies calibration by group.

Proof. Fix any group a and put `(r) = P{Y = 1 | R = r, A = a}. Since
R satisfies sufficiency, this probability is the same for all groups a and
hence this map ` is the same regardless of what value a we chose.

Now, consider any two groups a, b. We have,

r = P{Y = 1 | `(R) = r, A = a}
= P{Y = 1 | R ∈ `−1(r), A = a}
= P{Y = 1 | R ∈ `−1(r), A = b}
= P{Y = 1 | `(R) = r, A = b} ,

thus showing that `(R) is calibrated by group.

We conclude that sufficiency and calibration by group are essen-
tially equivalent notions. In particular, this gives us a large repertoire
of methods for achieving sufficiency. We could, for example, apply
Platt scaling for each of the groups defined by the sensitive attribute.

Calibration by group as a consequence of unconstrained learning

Sufficiency is often satisfied by default without the need for any
explicit intervention. Indeed, we generally expect a learned score
to satisfy sufficiency in cases where the sensitive attribute can be
predicted from the other attributes.

To illustrate this point we look at the calibration values of a stan-
dard logistic regression model on the standard UCI adult data set.82 82 Source

We fit a logistic regression model using Python’s sklearn library
on the UCI training data. The model is then applied to the UCI test
data83. We make no effort to either tune or calibrate the model. 83 Number of test samples in the UCI

data set by group: 1561 Black, 13946

White; 5421 Female, 10860 Male
As we can see from the figure below, the model turns out to be

fairly well calibrated by gender on its own without any explicit correc-
tion.

We see some deviation when we look at calibration by race.
The deviation we see in the mid deciles may be due to the scarcity

of the test data in the corresponding group and deciles. For example,
the 6th decile, corresponding to the score range (0.5, 0.6], on the test
data has only 34 instances with the ‘Race’ attribute set to ‘Black’. As a
result, the error bars84 in this region are rather large. 84 The shaded region in the plot indi-

cates a 95% confidence interval for a
binomial model.

https://archive.ics.uci.edu/ml/datasets/adult
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Figure 9: Calibration by gender on UCI
adult data. A straight diagonal line
would correspond to perfect calibration.

Figure 10: Calibration by race on UCI
adult data.



54 solon barocas, moritz hardt, arvind narayanan

Continue to explore the UCI Adult data in this code example.
The lesson is that sufficiency often comes for free (at least approxi-

mately) as a consequence of standard machine learning practices. The
flip side is that imposing sufficiency as a constraint on a classification
system may not be much of an intervention. In particular, it would
not effect a substantial change in current practices.

Relationships between criteria

The criteria we reviewed constrain the joint distribution in non-trivial
ways. We should therefore suspect that imposing any two of them
simultaneously over-constrains the space to the point where only
degenerate solutions remain. We will now see that this intuition is
largely correct.

What this shows is that we cannot impose multiple criteria as hard
constraints. This leaves open the possibility that meaningful trade-
offs between these different criteria exist.

Independence versus Sufficiency

We begin with a simple proposition that shows how in general in-
dependence and sufficiency are mutually exclusive. The only as-
sumption needed here is that the sensitive attribute A and the target
variable Y are not independent. This is a different way of saying that
group membership has an effect on the statistics of the target vari-
able. In the binary case, this means one group has a higher rate of
positive outcomes than another. Think of this as the typical case.

Proposition 2. Assume that A and Y are not independent. Then suffi-
ciency and independence cannot both hold.

Proof. By the contraction rule for conditional independence,

A ⊥ R and A ⊥ Y | R =⇒ A ⊥ (Y, R) =⇒ A ⊥ Y .

To be clear, A ⊥ (Y, R) means that A is independent of the pair of
random variables (Y, R). Dropping R cannot introduce a dependence
between A and Y.

In the contrapositive,

A 6⊥ Y =⇒ A 6⊥ R or A 6⊥ R | Y .

code/adult.html
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Independence versus Separation

An analogous result of mutual exclusion holds for independence
and separation. The statement in this case is a bit more contrived
and requires the additional assumption that the target variable Y is
binary. We also additionally need that the score is not independent
of the target. This is a rather mild assumption, since any useful score
function should have correlation with the target variable.

Proposition 3. Assume Y is binary, A is not independent of Y, and R is
not independent of Y. Then, independence and separation cannot both hold.

Proof. Assume Y ∈ {0, 1}. In its contrapositive form, the statement
we need to show is

A ⊥ R and A ⊥ R | Y =⇒ A ⊥ Y or R ⊥ Y

By the law of total probability,

P{R = r | A = a} = ∑
y

P{R = r | A = a, Y = y}P{Y = y | A = a}

Applying the assumption A ⊥ R and A ⊥ R | Y, this equation
simplifies to

P{R = r} = ∑
y

P{R = r | Y = y}P{Y = y | A = a}

Applied differently, the law of total probability also gives

P{R = r} = ∑
y

P{R = r | Y = y}P{Y = y}

Combining this with the previous equation, we have

∑
y

P{R = r | Y = y}P{Y = y} = ∑
y

P{R = r | Y = y}P{Y = y | A = a}

Careful inspection reveals that when y ranges over only two val-
ues, this equation can only be satisfied if A ⊥ Y or R ⊥ Y.

Indeed, we can rewrite the equation more compactly using the
symbols p = P{Y = 0}, pa = P{Y = 0 | A = a}, ry = P{R = r | Y =

y}, as:

pr0 + (1− p)r1 = par0 + (1− pa)r1.

Equivalently, p(r0 − r1) = pa(r0 − r1).
This equation can only be satisfied if r0 = r1, in which case R ⊥ Y,

or if p = pa for all a, in which case Y ⊥ A.
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The claim is not true when the target variable can assume more
than two values, which is a natural case to consider.

Exercise 1. Give a counterexample to the claim in the previous proposition
where the target variable Y assumes three distinct values.

Separation versus Sufficiency

Finally, we turn to the relationship between separation and suffi-
ciency. Both ask for a non-trivial conditional independence relation-
ship between the three variables A, R, Y. Imposing both simultane-
ously leads to a degenerate solution space, as our next proposition
confirms.

Proposition 4. Assume that all events in the joint distribution of (A, R, Y)
have positive probability, and assume A 6⊥ Y. Then, separation and suffi-
ciency cannot both hold.

Proof. A standard fact85 about conditional independence shows 85 See Theorem 17.2 in Wasserman, All
of Statistics

A ⊥ R | Y and A ⊥ Y | R =⇒ A ⊥ (R, Y) .

Moreover,

A ⊥ (R, Y) =⇒ A ⊥ R and A ⊥ Y .

Taking the contrapositive completes the proof.

For a binary target, the non-degeneracy assumption in the previ-
ous proposition states that in all groups, at all score values, we have
both positive and negative instances. In other words, the score value
never fully resolves uncertainty regarding the outcome.

In case the classifier is also binary, we can weaken the assumption
to require only that the classifier is imperfect in the sense of making
at least one false positive prediction. What’s appealing about the
resulting claim is that its proof essentially only uses a well-known
relationship between true positive rate (recall) and positive predictive
value (precision). This trade-off is often called precision-recall trade-off.

Proposition 5. Assume Y is not independent of A and assume Ŷ is a
binary classifier with nonzero false positive rate. Then, separation and suffi-
ciency cannot both hold.

Proof. Since Y is not independent of A there must be two groups, call
them 0 and 1, such that

p0 = P{Y = 1 | A = 0} 6= P{Y = 1 | A = 1} = p1 .
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Now suppose that separation holds. Since the classifier is imperfect
this means that all groups have the same non-zero false positive rate
FPR > 0, and the same positive true positive rate TPR > 0. We will
show that sufficiency does not hold.

Recall that in the binary case, sufficiency implies that all groups
have the same positive predictive value. The positive predictive value
in group a, denoted PPVa satisfies

PPVa =
TPRpa

TPRpa + FPR(1− pa)
.

From the expression we can see that PPV0 = PPV1 only if TPR = 0
or FPR = 0. The latter is ruled out by assumption. So it must be
that TPR = 0. However, in this case, we can verify that the negative
predictive value NPV0 in group 0 must be different from the negative
predictive value NPV1 in group 1. This follows from the expression

NPVa =
(1− FPR)(1− pa)

(1− TPR)pa + (1− FPR)(1− pa)
.

Hence, sufficiency does not hold.

A good exercise is to derive variants of these trade-offs such as the
following.

Exercise 2. Prove the following result: Assume Y is not independent of A
and assume Ŷ is a binary classifier with nonzero false positive rate and
nonzero true positive rate. Then, if separation holds, there must be two
groups with different positive predictive values.

Inherent limitations of observational criteria

All criteria we’ve seen so far have one important aspect in common.
They are properties of the joint distribution of the score, sensitive
attribute, and the target variable. In other words, if we know the
joint distribution of the random variables (R, A, Y), we can without
ambiguity determine whether this joint distribution satisfies one of
these criteria or not.86 86 For example, if all variables are bi-

nary, there are eight numbers specifying
the joint distributions. We can verify the
property by looking only at these eight
numbers.

We can broaden this notion a bit and also include all other fea-
tures, not just the sensitive attribute. So, let’s call a criterion obser-
vational if it is a property of the joint distribution of the features X,
the sensitive attribute A, a score function R and an outcome vari-
able Y.87 Informally, a criterion is observational if we can express it 87 Formally, this means an observa-

tional property is defined by set of
joint distributions over a given set of
variables.

using probability statements involving the random variables at hand.

Exercise 3. Convince yourself that independence, separation, and suffi-
ciency are all observational definitions. Come up with a criterion that is not
observational.
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Observational definitions have many appealing aspects. They’re
often easy to state and require only a lightweight formalism. They
make no reference to the inner workings of the classifier, the decision
maker’s intent, the impact of the decisions on the population, or any
notion of whether and how a feature actually influences the outcome.
We can reason about them fairly conveniently as we saw earlier.
In principle, observational definitions can always be verified given
samples from the joint distribution—subject to statistical sampling
error.

At the same time, all observational definitions share inherent limi-
tations that we will explore now. Our starting point are two fictitious
worlds with substantively different characteristics. We will see that
despite their differences these two worlds can map to identical joint
distributions. What follows is that all observational criteria will look
the same in either world, thus glossing over whatever differences
there are.

To develop these two worlds, we’ll use the case of a fictitious ad-
vertising campaign that targets a hiring ad to software engineers. A
score function estimates the likelihood that an individual is a soft-
ware engineer given some available features.

Scenario I

Imagine we introduce the following random variables in our classifi-
cation problem.

• A indicates gender
• X1 indicates whether the user visited pinterest.com

• X2 indicates whether the user visited github.com

• R∗ is the optimal unconstrained score
• R̃ is the optimal score satisfying separation
• Y indicates whether the user is a software engineer

We can summarize the conditional independence relationships
between the variables in a directed graphical model.88 The main fact we 88 Learn more about graphical models

here.need is that a node is conditionally independent of any node that is
not a direct ancestor given its parents.

Figure 11: Directed graphical model for
the variables in Scenario I

https://en.wikipedia.org/wiki/Graphical_model
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Let’s imagine a situation that corresponds to this kind of graphical
model. We could argue that gender influences the target variable,
since currently software engineers are predominantly male. Gender
also influences the first feature, since Pinterest’s user base skews
female.89 We assume github.com has a male bias. However, this 89 As of August 2017, 58.9% of Pinter-

est’s users in the United States were
female. See here (Retrieved 3-27-2018)

bias is explained by the target variable in the sense that conditional
on being a software engineer, all genders are equally likely to visit
github.com.

Once we make these assumptions, we can work out what the op-
timal unconstrained classifier will do. Both features correlate with
the target variable and are therefore useful for prediction. The
first feature is predictive since (absent other information) visiting
pinterest.com suggests female gender, which in turns makes “soft-
ware engineer” less likely. The second feature is predictive in a more
direct sense, as the website is specifically designed for software engi-
neers.

The optimal classifier satisfying separation will refrain from using
the first feature (visiting pinterest.com). After all, we can see from
the graphical model that this feature is not conditionally independent
of the sensitive attribute given the target. This score will only use the
directly predictive feature github.com, which is indeed conditionally
independent of gender given the target.

Scenario II

Our two features are different in Scenario II, but all other variables
have the same interpretation.

• X1 indicates whether the user studied computer science
• X2 indicates whether the user visited the Grace Hopper conference

Although the other variables have the same names and interpreta-
tions, we now imagine a very different graphical model.

Figure 12: Directed graphical model for
the variables in Scenario II

As before, we assume that gender influences the target variable,
but now we assume that the target variable is conditionally inde-
pendent from gender given the first feature. That is, conditional on
having studied computer science, all genders are equally likely to go
on to become software engineers.90 90 This may not be true in reality. It’s an

assumption we make in this example.

https://www.statista.com/statistics/277759/pinterest-gender-usa/
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With these assumptions, we can again work out the optimal un-
constrained classifier. This time, the optimal unconstrained classifier
will only use one feature, namely the first. The reason is that, given
the first feature, all remaining features (including the sensitive at-
tribute) become conditionally independent of the target. Therefore,
knowing the second feature does not help in predicting the target,
once we have the first.

The optimal classifier under separation turns out to be a bit subtle
in Scenario II. The issue is that neither of the two features is condi-
tionally independent from the sensitive attribute given the target.
The classifier will therefore actively take the sensitive attribute into
account in order to subtract its influence on the other features.

Different interpretations

Interpreted in the concrete advertising context, the two scenarios
don’t seem very similar. In particular, the inner workings of the opti-
mal unconstrained classifier in each scenario are rather different. In
the first scenario it uses pinterest.com as a weak proxy for being fe-
male, which it then uses as a proxy for not being a software engineer.
Software engineers who visit pinterest.com might be concerned about
this kind of stereotyping, as they might miss out on seeing the ad,
and hence the job opportunity. In the second scenario, unconstrained
score leads to a classifier that is natural in the sense that it only con-
siders the directly predictive educational information. Absent other
features, this would seem agreeable.

Similarly, the optimal classifier satisfying separation behaves dif-
ferently in the two scenarios. In the first, it corresponds to the natural
classifier that only uses github.com when predicting software engineer.
Since github.com is primarily a website for software engineers, this
seems reasonable. In the second scenario, however, the optimal con-
strained score performs a subtle adjustment procedure that explicitly
takes the sensitive attribute into account. These score functions are
also not equivalent from a legal standpoint. One uses the sensitive
attribute explicitly for an adjustment step, while the other does not.

Indistinguishability

Despite all their apparent differences, we can instantiate the random
variables in each scenario in such a manner that the two scenarios
map to identical joint distributions. This means that no property of
the joint distribution will be able to distinguish the two scenarios.
Whatever property holds for one scenario, it will inevitably also hold
for the other. If by some observational criterion we call one scenario
unfair, we will also have to call the other unfair.
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Proposition 6. The random variables in Scenario I and II admit identical
joint distributions. In particular, no observational criterion distinguishes
between the two scenarios.

The indistinguishability result has nothing to do with sample sizes
or sampling errors. No matter how many data points we have, the
size of our data does not resolve the indistinguishability.

There’s another interesting consequence of this result. Observa-
tional criteria cannot even determine if the sensitive attribute was
fed into the classifier or not. To see this, recall that the optimal con-
strained score in one scenario directly uses gender, in the other it does
not.

A forced perspective problem

To understand the indistinguishability result, it’s useful to draw an
analogy with a forced perspective problem. Two different objects can
appear identical when looked at from a certain fixed perspective.

A data set always forces a particular perspective on reality. There
is a possibility that this perspective makes it difficult to identify cer-
tain properties of the real world. Even if we have plenty of data, so
long as this data comes from the same distribution, it still represents
the same perspective. Having additional data is a bit like increasing
the resolution of our camera. It helps with some problems, but it
doesn’t change the angle or the position of the camera.

The limitations of observational criteria are fundamentally the lim-
itations of a single perspective. When analyzing a data set through
the lens of observational criteria we do not evaluate alternatives to
the data we have. Observational criteria do not tell us what is miss-
ing from our perspective.

What then is not observational and how do we go beyond obser-
vational criteria? This is a profound question that will be the focus
of later chapters. In particular, we will introduce the technical reper-
toire of measurement and causality to augment the classification
paradigm. Both measurement and causality give us mechanisms to
interrogate, question, and change the perspective suggested by our
data.

Case study: Credit scoring

We now apply some of the notions we saw to credit scoring. Credit
scores support lending decisions by giving an estimate of the risk
that a loan applicant will default on a loan. Credit scores are widely
used in the United States and other countries when allocating credit,
ranging from micro loans to jumbo mortgages. In the United States,
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there are three major credit-reporting agencies that collect data on
various lendees. These agencies are for-profit organizations that each
offer risk scores based on the data they collected. FICO scores are a
well-known family of proprietary scores developed by FICO and sold
by the three credit reporting agencies.

Regulation of credit agencies in the United States started with
the Fair Credit Reporting Act, first passed in 1970, that aims to pro-
mote the accuracy, fairness, and privacy of consumer of information
collected by the reporting agencies. The Equal Credit Opportunity
Act, a United States law enacted in 1974, makes it unlawful for any
creditor to discriminate against any applicant the basis of race, color,
religion, national origin, sex, marital status, or age.

Score distribution

Our analysis relies on data published by the Federal Reserve91. The 91 The Federal Reserve Board, “Report
to the Congress on Credit Scoring
and Its Effects on the Availability
and Affordability of Credit” (https:
//www.federalreserve.gov/boarddocs/

rptcongress/creditscore/, 2007).

data set provides aggregate statistics from 2003 about a credit score,
demographic information (race or ethnicity, gender, marital status),
and outcomes (to be defined shortly). We’ll focus on the joint statis-
tics of score, race, and outcome, where the race attributes assume
four values detailed below.92 92 These numbers come from the “Esti-

mation sample” column of Table 9 on
this web page.Table 4: Credit score distribution by ethnicity

Race or ethnicity Samples with both score and outcome

White 133,165

Black 18,274

Hispanic 14,702

Asian 7,906

Total 174,047

The score used in the study is based on the TransUnion TransRisk
score. TransUnion is a US credit-reporting agency. The TransRisk
score is in turn based on a proprietary model created by FICO, hence
often referred to as FICO scores. The Federal Reserve renormalized
the scores for the study to vary from 0 to 100, with 0 being least cred-
itworthy.

The information on race was provided by the Social Security Ad-
ministration, thus relying on self-reported values.

The cumulative distribution of these credit scores strongly de-
pends on the group as the next figure reveals.

For an extensive documentation of the data set see the Federal
Reserve report.

https://www.federalreserve.gov/boarddocs/rptcongress/creditscore/
https://www.federalreserve.gov/boarddocs/rptcongress/creditscore/
https://www.federalreserve.gov/boarddocs/rptcongress/creditscore/
https://www.federalreserve.gov/boarddocs/rptcongress/creditscore/datamodel_tables.htm
https://www.federalreserve.gov/boarddocs/rptcongress/creditscore/
https://www.federalreserve.gov/boarddocs/rptcongress/creditscore/
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Figure 13: Cumulative density of scores
by group.

Performance variables and ROC curves

As is often the case, the outcome variable is a subtle aspect of this
data set. Its definition is worth emphasizing. Since the score model is
proprietary, it is not clear what target variable was used during the
training process. What is it then that the score is trying to predict? In
a first reaction, we might say that the goal of a credit score is to pre-
dict a default outcome. However, that’s not a clearly defined notion.
Defaults vary in the amount of debt recovered, and the amount of
time given for recovery. Any single binary performance indicator is
typically an oversimplification.

What is available in the Federal Reserve data is a so-called perfor-
mance variable that measures a serious delinquency in at least one credit
line of a certain time period. More specifically,

(the) measure is based on the performance of new or existing accounts
and measures whether individuals have been late 90 days or more on
one or more of their accounts or had a public record item or a new
collection agency account during the performance period.93 93 Quote from the Federal Reserve

report.

With this performance variable at hand, we can look at the ROC
curve to get a sense of how predictive the score is in different demo-
graphics.

The meaning of true positive rate is the rate of predicted positive
performance given positive performance. Similarly, false positive rate is
the rate of predicted negative performance given a positive performance.

We see that the shapes appear roughly visually similar in the
groups, although the ‘White’ group encloses a noticeably larger area
under the curve than the ‘Black’ group. Also note that even two ROC
curves with the same shape can correspond to very different score

https://www.federalreserve.gov/boarddocs/rptcongress/creditscore/performance.htm#toc9.5
https://www.federalreserve.gov/boarddocs/rptcongress/creditscore/performance.htm#toc9.5
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Figure 14: ROC curve of credit score by
group.

Figure 15: ROC curve of credit score
by group zoomed in on region of large
differences.
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functions. A particular trade-off between true positive rate and false
positive rate achieved at a threshold t in one group could require a
different threshold t′ in the other group.

Comparison of different criteria

With the score data at hand, we compare four different classification
strategies:

• Maximum profit: Pick possibly group-dependent score thresholds in
a way that maximizes profit.

• Single threshold: Pick a single uniform score threshold for all
groups in a way that maximizes profit.

• Separation: Achieve an equal true/false positive rate in all groups.
Subject to this constraint, maximize profit.

• Independence: Achieve an equal acceptance rate in all groups. Sub-
ject to this constraint, maximize profit.

To make sense of maximizing profit, we need to assume a reward
for a true positive (correctly predicted positive performance), and a
cost for false positives (negative performance predicted as positive).
In lending, the cost of a false positive is typically many times greater
than the reward for a true positive. In other words, the interest pay-
ments resulting from a loan are relatively small compared with the
loan amount that could be lost. For illustrative purposes, we imagine
that the cost of a false positive is 6 times greater than the return on
a true positive. The absolute numbers don’t matter. Only the ratio
matters. This simple cost structure glosses over a number of details
that are likely relevant for the lender such as the terms of the loan.

There is another major caveat to the kind of analysis we’re about
to do. Since we’re only given aggregate statistics, we cannot retrain
the score with a particular classification strategy in mind. The only
thing we can do is to define a setting of thresholds that achieves a
particular criterion. This approach may be overly pessimistic with
regards to the profit achieved subject to each constraint. For this rea-
son and the fact that our choice of cost function was rather arbitrary,
we do not state the profit numbers. The numbers can be found in
the original analysis94, which reports that ‘single threshold’ achieves 94 M. Hardt, E. Price, and N. Srebro,

“Equality of Opportunity in Supervised
Learning,” in Proc. 29th NIPS, 2016,
3315–23.

higher profit than ‘separation’, which in turn achieves higher profit
than ‘independence’.

What we do instead is to look at the different trade-offs between
true and false positive rate that each criterion achieves in each group.

We can see that even though the ROC curves are somewhat sim-
ilar, the resulting trade-offs can differ widely by group for some
of the criteria. The true positive rate achieved by max profit for the
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Figure 16: ROC curves with thresholds
induced by different criteria.

Asian group is twice of what it is for the Black group. The separa-
tion criterion, of course, results in the same trade-off in all groups.
Independence equalizes acceptance rate, but leads to widely differ-
ent trade-offs. For instance, the Asian group has a false positive rate
more than three times the false positive rate within the Black group.

Calibration values

Finally, we consider the non-default rate by group. This corresponds
to the calibration plot by group.95 95 The error bars on the these plots were

omitted as they are generally small
except for very low score values (0-5)
where few samples are available.Figure 17: Calibration values of credit
score by group.

We see that the performance curves by group are reasonably well
aligned. This means that a monotonic transformation of the score
values would result in a score that is roughly calibrated by group
according to our earlier definition. Due to the differences in score dis-
tribution by group, it could nonetheless be the case that thresholding
the score leads to a classifier with different positive predictive values
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in each group.
Feel free to continue exploring the data in this code repository.

Problem set: Criminal justice case study

Risk assessment is an important component of the criminal justice
system. In the United States, judges set bail and decide pre-trial
detention based on their assessment of the risk that a released defen-
dant would fail to appear at trial or cause harm to the public. While
actuarial risk assessment is not new in this domain, there is increasing
support for the use of learned risk scores to guide human judges in
their decisions. Proponents argue that machine learning could lead
to greater efficiency and less biased decisions compared with human
judgment. Critical voices raise the concern that such scores can per-
petuate inequalities found in historical data, and systematically harm
historically disadvantaged groups.

In this problem set96, we’ll begin to scratch at the surface of the 96 Solutions to these problems are
available to course instructors on
request.

complex criminal justice domain. Our starting point is an investiga-
tion carried out by Propublica97 of a proprietary risk score, called

97 J. Angwin, J. Larson, S. Mattu,
and L. Kirchner, “Machine
Bias,” ProPublica, May 2016,
https://www.propublica.org/article/

machine-bias-risk-assessments-in-criminal-sentencing.

COMPAS score. These scores are intended to assess the risk that
a defendant will re-offend, a task often called recidivism prediction.
Within the academic community, the ProPublica article drew much
attention to the trade-off between separation and sufficiency that we
saw earlier.

We’ll use data obtained and released by ProPublica as a result of
a public records request in Broward Country, Florida, concerning
the COMPAS recidivism prediction system. The data is available
here. Following ProPublica’s analysis, we’ll filter out rows where
days_b_screening_arrest is over 30 or under -30, leaving us with
6,172 rows.

Calibration/sufficiency

• Plot the fraction of defendants recidivating within two years
(two_year_recid == 1) as a function of risk score (decile_score),
for black defendants (race == "African-American") and white
defendants (race == "Caucasian").

• Based on these plots, does the risk score satisfy sufficiency across
racial groups in this dataset? This is somewhat subjective, since
we want to allow for approximate equality between groups; justify
your answer in a sentence or two.

code/creditscore.html
https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
https://raw.githubusercontent.com/propublica/compas-analysis/master/compas-scores-two-years.csv
https://www.propublica.org/article/how-we-analyzed-the-compas-recidivism-algorithm
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Error rates/separation

• Plot the distribution of scores received by the positive class (recidi-
vists) and the distribution of scores received by the negative class
(non-recidivists) for black defendants and for white defendants.

• Based on these plots, does COMPAS achieve separation between
the risk score and race?

• Report the Positive Predictive Value, False Positive Rate, and
False Negative Rate for a risk threshold of 4 (i.e., defendants with
decile_score >= 4 are classified as high risk), for black defen-
dants and for white defendants.

• Can we pick two thresholds (one for black defendants, one for
white defendants) such that FPR and FNR are roughly equal for
the two groups (say, within 1% of each other)? What is the PPV
for the two groups in this case? Note: trivial thresholds of 0 or 11

don’t count.

Risk factors and interventions

• Report the recidivism rate of defendants aged 25 or lower, and
defendants aged 50 or higher. Note the stark difference between
the two: younger defendants are far more likely to recidivate.

The following questions are best viewed as prompts for a class
discussion.

• Suppose we are interested in taking a data-driven approach to
changing the criminal justice system. Under a theory of incarcer-
ation as incapacitation (prevention of future crimes by removal of
individuals from society), how might we act on the finding that
younger defendants are more likely to reoffend?

• How might we act on this finding under a rehabilitative approach
to justice, in which we seek to find interventions that minimize a
defendant’s risk of recidivism?

• Under a retributive theory of justice, punishment is based in part
on culpability, or blameworthiness; this in turn depends on how
much control the defendant had over their actions. Under such a
theory, how might we act on the finding that younger defendants
are more likely to reoffend (and, more generally, commit offenses
at all)?

Problem set: Data modeling of traffic stops

For this problem we’ll use data released by the Stanford Open Polic-
ing Project (SOPP) for the state of North Carolina, available here. It

https://stacks.stanford.edu/file/druid:py883nd2578/NC-clean.csv.gz
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contains records of 9.6 million police stops in the state between 2000

and 2015.
General notes and hints:

• The stop rates section of this problem requires linking SOPP data to
census data, whereas the rest is based only on SOPP data and no
external datasets. So you might want to work on post-stop outcomes
and the following sections first, so that you can get familiar with
the SOPP data before having to also deal with the census data.

• Throughout this problem, report any data cleaning steps (such as
dropping some rows) that you took. Also report any ambiguities
you encountered and how you resolved them.

Stop rates

Part A

• For each possible group defined by race, age, gender, location, and
year, where:

– race is one of “Asian”, “Black”, “Hispanic”, “White”
– age is one of the buckets 15–19, 20–29, 30–39, 40–49, and 50+.
– gender is one of “female”, “male”
– location is a state patrol troop district
– and year is between 2010 and 2015, inclusive

• report the following:

– the population of the group from census data, and
– the number of stops in that group from SOPP data.

The census data is available here and the fields are explained here.
Your data should look like the table below.

Table 5: Census data

Race Age Gender Location Year Population Count

Hispanic 30-39 F B5 2012 434 76

White 40-49 F C8 2011 2053 213

Asian 15-19 M A2 2012 2 0

White 20-29 M A6 2011 8323 1464

Hispanic 20-29 F D3 2010 393 56

Black 40-49 F D7 2011 1832 252

Asian 30-39 M E6 2013 503 34

Asian 15-19 F B5 2015 12 4

White 20-29 M A5 2012 12204 1852

Black 15-19 F H1 2011 1281 55

https://www2.census.gov/programs-surveys/popest/datasets/2010-2015/counties/asrh/cc-est2015-alldata.csv
https://www2.census.gov/programs-surveys/popest/datasets/2010-2015/counties/asrh/cc-est2015-alldata.pdf
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Notes and hints:

• The table is a small sample of rows from the actual answer. You
can use it to check your answers. There should be about 13,000

rows in the table in total.
• The relevant fields in the census data are AA_[FE]MALE, BA_[FE]MALE,

H_[FE]MALE, WA_[FE]MALE.
• The relevant fields in the SOPP data are driver_race, driver_age,

driver_gender, district, and stop_date.
• The census data is grouped by county, which is more granular

than district.The mapping from county to district is available from
SOPP here.

Part B

• Fit a negative binomial regression to your data from part (A) as
given in page 5 of the SOPP paper. Report the coefficients of race,
age, and gender, and the overdispersion parameter φ. Based on
these coefficients, what is the ratio of stop rates of Hispanic drivers
to White drivers, and Black drivers to White drivers, controlling
for age, gender, location, and year?

Notes and hints:

• This and the following tasks will be easier using a data modeling
framework such as R or statsmodels rather than an algorithmic
modeling framework such as scikit-learn.

• The “Population” column in your data corresponds to the “expo-
sure” variable in most frameworks. Equivalently, “offset” is the log
of the exposure.

• The coefficients of the different values of each variable (e.g. female
and male) are not interpretable individually; only the difference is
interpretable.

• Treat year as a categorical rather than a continuous variable.

Part C

• Give three distinct potential reasons for the racial disparity in stop
rate as measured in part B.

Post-stop outcomes

Part D

• Controlling for age (bucketed as in parts A & B), gender, year, and
location, use logistic regression to estimate impact of race on

– probability of a search (search_conducted)

https://github.com/5harad/openpolicing/blob/master/resources/dictionaries/districts.csv#L101
https://5harad.com/papers/traffic-stops.pdf
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– probability of arrest (is_arrested),
– probability of a citation (stop_outcome == "Citation")

• For each of the three outcomes, report the coefficients of race, age,
and gender along with standard errors of those coefficients. Feel
free to sample the data for performance reasons, but if you do,
make sure that all standard errors are < 0.1.

Part E

• Interpret the coefficients you reported in part D.

– What is the ratio of the probability of search of Hispanic drivers
to White drivers? Black drivers to White drivers?

– Repeat the above for the probability of arrest instead of search.
– What is the difference in citation probability between Hispanic

drivers and White drivers? Black drivers and White drivers?
– Comment on the age and gender coefficients in the regressions.

Notes and hints:

• Interpreting the coefficients is slightly subjective. Since the search
and arrest rates are low, in those regressions we can approximate
the 1/(1 + e−βx) formula in logistic regression as eβx, and thus we
can use differences in β between groups to calculate approximate
ratios of search/arrest probabilities.

• This trick doesn’t work for citation rates, since those are not low.
However, we can pick “typical” values for the control variables,
calculate citation rates, and find the difference in citation rate be-
tween groups. The results will have little sensitivity to the values
of the control variables that we pick.

Part F
Explain in a sentence or two why we control for variables such

as gender and location in the regression, and why the results might
not be what we want if we don’t control for them. (In other words,
explain the idea of a confound in this context.)

Part G
However, decisions about what to control are somewhat subjective.

What is one reason we might not want to control for location in test-
ing for discrimination? In other words, how might we underestimate
discrimination if we control for location? (Hint: broaden the idea
of discrimination from individual officers to the systemic aspects of
policing.)

Data quality

Part H
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The SOPP authors provide a README file in which they note the
incompleteness, errors, and missing values in the data on a state-by-
state level. Pick any two items from this list and briefly explain how
each could lead to errors or biases in the analyses you performed (or
in the other analyses performed in the paper).

Notes and hints:

• Here is one example: For North Carolina, stop time is not available
for a subset of rows. Suppose we throw out the rows with missing
stop time (which we might have to if that variable is one of the
controls in our regression). These rows might not be a random
subset of rows: they could be correlated with location, because of-
ficers in some districts don’t record the stop time. If so, we might
incorrectly estimate race coefficients, because officer behavior
might also be correlated with location.

What is the purpose of a fairness criterion?

There is an important question we have neglected so far. Although
we have seen several demographic classification criteria and explored
their formal properties and the relationships between them, we
haven’t yet clarified the purpose of these criteria. This is a difficult
normative question that will be a central concern of the next chapter.
Let us address it briefly here.

Take the independence criterion as an example. Some support this
criterion based on the belief that certain intrinsic human traits such
as intelligence are independent of, say, race or gender. Others argue
for independence based on their desire to live in a society where the
sensitive attribute is statistically independent of outcomes such as
financial well-being. In one case, independence serves as a proxy for
a belief about human nature. In the other case, it represents a long-
term societal goal. In either case, does it then make sense to impose
independence as a constraint on a classification system?

In a lending setting, for example, independence would result in
the same rate of lending in all demographic groups defined by the
sensitive attribute, regardless of the fact that individuals’ ability
to repay might be distributed differently in different groups. This
makes it hard to predict the long-term impact of an intervention that
imposes independence as a hard classification constraint. It is not
clear how to account for the impact of the fact that giving out loans
to individuals who cannot repay them impoverishes the individual
who defaults (in addition to diminishing profits for the bank).

Without an accurate model of long-term impact it is difficult to
foresee the effect that a fairness criterion would have if implemented

https://github.com/5harad/openpolicing/blob/master/DATA-README.md
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as a hard classification constraint. However, if such a model of long-
term impact model were available, directly optimizing for long-term
benefit may be a more effective intervention than to impose a general
and crude demographic criterion.98 98 L.T. Liu, S. Dean, E. Rolf, M. Sim-

chowitz, and M. Hardt, “Delayed
Impact of Fair Machine Learning,” in
Proc. 35th ICML, 2018, 3156–64.

If demographic criteria are not useful as direct guides to fairness
interventions, how should we use them then? An alternative view
is that classification criteria have diagnostic value in highlighting dif-
ferent social costs of the system. Disparities in true positive rates or
false positive rates, for example, indicate that two or more demo-
graphic groups experience different costs of classification that are
not necessarily reflected in the cost function that the decision maker
optimized.

At the same time, the diagnostic value of fairness criteria is subject
to the fundamental limitations that we saw. In particular, we cannot
base a conclusive argument of fairness or unfairness on the value of
any observational criterion alone. Furthermore, Corbett-Davies et
al.99 make the important point that statistics such as positive pre- 99 S. Corbett-Davies, E. Pierson, A.

Feller, S. Goel, and A. Huq, “Al-
gorithmic Decision Making and
the Cost of Fairness,” arXiv Preprint
arXiv:1701.08230, 2017.

dictive values or false positive rates can be manipulated through
external (and possibly harmful) changes to the real world processes
reflected in the data. In the context of recidivism prediction in crim-
inal justice, for example, we could artificially lower the false positive
rate in one group by arresting innocent people and correctly classi-
fying them as low risk. This external intervention will decrease the
false positive rate at the expense of a clearly objectionable practice.

Bibliographic notes and further reading

The fairness criteria reviewed in this chapter were already known in
the 1960s and 70s, primarily in the education testing and psychomet-
rics literature.100 An important fairness criterion is due to Cleary101 100 We are greatful to Ben Hutchinson

for bringing these to our attention.
101 T.A. Cleary, “Test Bias: Validity of the
Scholastic Aptitude Test for Negro and
White Students in Integrated Colleges,”
ETS Research Bulletin Series 1966, no.
2 (1966): i–23; T.A. Cleary, “Test Bias:
Prediction of Grades of Negro and
White Students in Integrated Colleges,”
Journal of Educational Measurement 5, no.
2 (1968): 115–24.

and compares regression lines between the test score and the out-
come in different groups. A test is considered fair by the Cleary crite-
rion if the slope of these regression lines is the same for each group.
This turns out to be equivalent to the sufficiency criterion, since it
means that at a given score value all groups have the same rate of
positive outcomes.

Einhorn and Bass102 considered equality of precision values,
102 H.J. Einhorn and A.R. Bass,
“Methodological Considerations Rele-
vant to Discrimination in Employment
Testing.” Psychological Bulletin 75, no. 4

(1971): 261.

which is a relaxation of sufficiency as we saw earlier. Thorndike103

103 R.L. Thorndike, “Concepts of
Culture-Fairness,” Journal of Educational
Measurement 8, no. 2 (1971): 63–70.

considered a weak variant of calibration by which the frequency of
positive predictions must equal the frequency of positive outcomes in
each group, and proposed achieving it via a post-processing step that
sets different thresholds in different groups. Thorndike’s criterion is
incomparable to sufficiency in general.

Darlington104 stated four different criteria in terms of succinct 104 R.B. Darlington, “Another Look at
‘Cultural Fairness’,” Journal of Edu-
cational Measurement 8, no. 2 (1971):
71–82.
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expressions involving the correlation coefficients between various
pairs of random variables. These criteria include independence, a
relaxation of sufficiency, a relaxation of separation, and Thorndike’s
criterion. Darlington included an intuitive visual argument showing
that the four criteria are incompatible except in degenerate cases.

Lewis105 reviewed three fairness criteria including equal precision 105 M.A. Lewis, “A Comparison of Three
Models for Determining Test Fairness”
(Federal Aviation Administration
Washington DC Office of Aviation
Medicine, 1978).

and equal true/false positive rates.
These important early works were re-discovered later in the ma-

chine learning and data mining community. Numerous works con-
sidered variants of independence as a fairness constraint.106 Feldman 106 T. Calders, F. Kamiran, and M.

Pechenizkiy, “Building Classifiers
with Independency Constraints,” in
In Proc. IEEE ICDMW, 2009, 13–18; F.
Kamiran and T. Calders, “Classifying
Without Discriminating,” in Proc. 2nd
International Conference on Computer,
Control and Communication, 2009.

et al.107 studied a relaxation of demographic parity in the context of

107 Feldman, Friedler, Moeller, Schei-
degger, and Venkatasubramanian,
“Certifying and Removing Disparate
Impact.”

disparate impact law. Zemel et al.108 adopted the mutual informa-

108 R.S. Zemel, Y. Wu, K. Swersky, T.
Pitassi, and C. Dwork, “Learning Fair
Representations,” in Proc. 30th ICML,
2013.

tion viewpoint and proposed a heuristic pre-processing approach
for minimizing mutual information. Dwork et al.109 argued that the

109 Dwork, Hardt, Pitassi, Reingold, and
Zemel, “Fairness Through Awareness.”

independence criterion was inadequate as a fairness constraint.
The separation criterion appeared under the name equalized odds110,

110 Hardt, Price, and Srebro, “Equality of
Opportunity in Supervised Learning.”

alongside the relaxation to equal false negative rates, called equality of
opportunity. These criteria also appeared in an independent work111

111 M.B. Zafar, I. Valera, M. Gómez Ro-
driguez, and K.P. Gummadi, “Fairness
Beyond Disparate Treatment & Dis-
parate Impact: Learning Classification
Without Disparate Mistreatment,” in
Proc. 26th WWW, 2017.

under different names. Woodworth et al.112 studied a relaxation of

112 B.E. Woodworth, S. Gunasekar, M.I.
Ohannessian, and N. Srebro, “Learning
Non-Discriminatory Predictors,” in
Proc. 30th COLT, 2017, 1920–53.

separation stated in terms of correlation coefficients. This relaxation
corresponds to the third criterion studied by Darlington.113

113 Darlington, “Another Look at ‘Cul-
tural Fairness’.”

ProPublica114 implicitly adopted equality of false positive rates as

114 Angwin, Larson, Mattu, and Kirch-
ner, “Machine Bias.”

a fairness criterion in their article on COMPAS scores. Northpointe,
the maker of the COMPAS software, emphasized the importance
of calibration by group in their rebuttal115 to ProPublica’s article.

115 W. Dieterich, C. Mendoza, and
T. Brennan, “COMPAS Risk Scales:
Demonstrating Accuracy Equity
and Predictive Parity,” 2016, https:
//www.documentcloud.org/documents/

2998391-ProPublica-Commentary-Final-070616.

html.

Similar arguments were made quickly after the publication of ProP-
ublica’s article by bloggers including Abe Gong.116 There has been

116 See this and subsequent posts.

extensive scholarship on the actuarial risk assessment in criminal jus-
tice that long predates the ProPublica debate; Berk et al.117 provide a

117 R. Berk, H. Heidari, S. Jabbari, M.
Kearns, and A. Roth, “Fairness in
Criminal Justice Risk Assessments:
The State of the Art,” ArXiv E-Prints
1703.09207 (2017).

survey with commentary.
Variants of the trade-off between separation and sufficiency were

shown by Chouldechova118 and Kleinberg et al.119 Each of them con-

118 A. Chouldechova, “Fair Prediction
with Disparate Impact: A Study of Bias
in Recidivism Prediction Instruments,”
in Proc. 3rd FATML, 2016.
119 J.M. Kleinberg, S. Mullainathan, and
M. Raghavan, “Inherent Trade-Offs in
the Fair Determination of Risk Scores,”
Proc. 8th ITCS, 2017.

sidered somewhat different criteria to trade off. Chouldechova’s
argument is very similar to the proof we presented that invokes
the relationship between positive predictive value and true posi-
tive rate. Subsequent work120 considers trade-offs between relaxed

120 G. Pleiss, M. Raghavan, F. Wu, J.
Kleinberg, and K.Q. Weinberger, “On
Fairness and Calibration,” in Proc. 30th
NIPS, 2017.

and approximate criteria. The other trade-off results presented in this
chapter are new to this book. The proof of the proposition relating
separation and independence for binary classifiers, as well as the
counterexample for ternary classifiers, is due to Shira Mitchell and
Jackie Shadlen, pointed out to us in personal communication.

The unidentifiability result for observational criteria is due to
Hardt, Price, and Srebro121, except for minor changes in the choice of

121 Hardt, Price, and Srebro, “Equality of
Opportunity in Supervised Learning.”

graphical models and their interpretation.

https://www.documentcloud.org/documents/2998391-ProPublica-Commentary-Final-070616.html
https://www.documentcloud.org/documents/2998391-ProPublica-Commentary-Final-070616.html
https://www.documentcloud.org/documents/2998391-ProPublica-Commentary-Final-070616.html
https://www.documentcloud.org/documents/2998391-ProPublica-Commentary-Final-070616.html
https://medium.com/@AbeGong/ethics-for-powerful-algorithms-1-of-3-a060054efd84
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A dictionary of criteria

For convenience we collect some demographic fairness criteria below
that have been proposed in the past (not necessarily including the
original reference). We’ll match them to their closest relative among
the three criteria independence, separation, and sufficiency. This table
is meant as a reference only and is not exhaustive. There is no need
to memorize these different names.

Table 6: List of demographic fairness criteria

Name Closest relative Note Reference

Statistical parity Independence Equivalent Dwork et al. (2011)
Group fairness Independence Equivalent

Demographic parity Independence Equivalent
Conditional statistical parity Independence Relaxation Corbett-Davies et al. (2017)

Darlington criterion (4) Independence Equivalent Darlington (1971)
Equal opportunity Separation Relaxation Hardt, Price, Srebro (2016)

Equalized odds Separation Equivalent Hardt, Price, Srebro (2016)
Conditional procedure accuracy Separation Equivalent Berk et al. (2017)
Avoiding disparate mistreatment Separation Equivalent Zafar et al. (2017)

Balance for the negative class Separation Relaxation Kleinberg, Mullainathan, Raghavan (2016)
Balance for the positive class Separation Relaxation Kleinberg, Mullainathan, Raghavan (2016)

Predictive equality Separation Relaxation Chouldechova (2016)
Equalized correlations Separation Relaxation Woodworth (2017)
Darlington criterion (3) Separation Relaxation Darlington (1971)

Cleary model Sufficiency Equivalent Cleary (1966)
Conditional use accuracy Sufficiency Equivalent Berk et al. (2017)

Predictive parity Sufficiency Relaxation Chouldechova (2016)
Calibration within groups Sufficiency Equivalent Chouldechova (2016)
Darlington criterion (1), (2) Sufficiency Relaxation Darlington (1971)





Legal background and normative questions

Coming up soon!





Causality

Our starting point is the difference between an observation and an
action. What we see in passive observation is how individuals follow
their routine behavior, habits, and natural inclination. Passive ob-
servation reflects the state of the world projected to a set of features
we chose to highlight. Data that we collect from passive observation
show a snapshot of our world as it is.

There are many questions we can answer from passive observation
alone: Do 16 year-old drivers have a higher incidence rate of traffic
accidents than 18 year-old drivers? Formally, the answer corresponds
to a difference of conditional probabilities assuming we model the
population as a distribution as we did in the last chapter. We can cal-
culate the conditional probability of a traffic accident given that the
driver’s age is 16 years and subtract from it the conditional proba-
bility of a traffic accident given the age is 18 years. Both conditional
probabilities can be estimated from a large enough sample drawn
from the distribution, assuming that there are both 16 year old and
18 year old drivers. The answer to the question we asked is solidly in
the realm of observational statistics.

But important questions often are not observational in nature.
Would traffic fatalities decrease if we raised the legal driving age
by two years? Although the question seems similar on the surface,
we quickly realize that it asks for a fundamentally different insight.
Rather than asking for the frequency of an event in our manifested
world, this question asks for the effect of a hypothetical action.

As a result, the answer is not so simple. Even if older drivers have
a lower incidence rate of traffic accidents, this might simply be a
consequence of additional driving experience. There is no obvious
reason why an 18 year old with two months on the road would be
any less likely to be involved in an accident than, say, a 16 year-old
with the same experience. We can try to address this problem by
holding the number of months of driving experience fixed, while
comparing individuals of different ages. But we quickly run into
subtleties. What if 18 year-olds with two months of driving experi-
ence correspond to individuals who are exceptionally cautious and
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hence—by their natural inclination—not only drive less, but also
more cautiously? What if such individuals predominantly live in re-
gions where traffic conditions differ significantly from those in areas
where people feel a greater need to drive at a younger age?

We can think of numerous other strategies to answer the original
question of whether raising the legal driving age reduces traffic acci-
dents. We could compare countries with different legal driving ages,
say, the United States and Germany. But again, these countries differ
in many other possibly relevant ways, such as, the legal drinking age.

At the outset, causal reasoning is a conceptual and technical
framework for addressing questions about the effect of hypotheti-
cal actions or interventions. Once we understand what the effect of an
action is, we can turn the question around and ask what action plau-
sibly caused an event. This gives us a formal language to talk about
cause and effect.

Not every question about cause is equally easy to address. Some
questions are overly broad, such as, “What is the cause of success?”
Other questions are too specific: “What caused your interest in 19th
century German philosophy?” Neither question might have a clear
answer. Causal inference gives us a formal language to ask these
questions, in principle, but it does not make it easy to choose the
right questions. Nor does it trivialize the task of finding and inter-
preting the answer to a question. Especially in the context of fairness,
the difficulty is often in deciding what the question is that causal
inference is the answer to.

In this chapter, we will develop sufficient technical understanding
of causality to support at least three different purposes.

The first is to conceptualize and address some limitations of the
observational techniques we saw in Chapter 2. The second is to
provide tools that help in the design of interventions that reliably
achieve a desired effect. The third is to engage with the important
normative debate about when and to which extent reasoning about
discrimination and fairness requires causal understanding. We will
also see that causality forces us to grapple with some difficult ques-
tions that we have not encountered so far.

The limitations of observation

Before we develop any new formalism, it is important to understand
why we need it in the first place.

To see why we turn to the venerable example of graduate admis-
sions at the University of California, Berkeley in 1973.122 Historical 122 P.J. Bickel, E.A. Hammel, J.W.

O’Connell, and others, “Sex Bias in
Graduate Admissions: Data from
Berkeley,” Science 187, no. 4175 (1975):
398–404.

data show that 12763 applicants were considered for admission to
one of 101 departments and inter-departmental majors. Of the 4321
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women who applied roughly 35 percent were admitted, while 44 per-
cent of the 8442 men who applied were admitted. Standard statistical
significance tests suggest hat the observed difference would be highly
unlikely to be the outcome of sample fluctuation if there were no
difference in underlying acceptance rates.

A similar pattern exists if we look at the aggregate admission
decisions of the six largest departments. The acceptance rate across
all six departments for men is about 44%, while it is only roughly
30% for women, again, a significant difference. Recognizing that
departments have autonomy over who to admit, we can look at the
gender bias of each department.123 123 Source (Note: There is some discrep-

ancy with a Wikipedia page. Retrieved:
Dec 27, 2018.)Table 7: UC Berkeley admissions data from 1973.

Men Women

Department Applied Admitted (%) Applied Admitted (%)
A 825 62 108 82
B 520 60 25 68
C 325 37 593 34

D 417 33 375 35
E 191 28 393 24

F 373 6 341 7

What we can see from the table is that four of the six largest de-
partments show a higher acceptance ratio among women, while two
show a higher acceptance rate for men. However, these two depart-
ments cannot account for the large difference in acceptance rates that
we observed in aggregate. So, it appears that the higher acceptance
rate for men that we observed in aggregate seems to have reversed at
the department level.

Such reversals are sometimes called Simpson’s paradox124, even 124 For clarifications regarding the
popular interpretation of Simpson’s
original article E.H. Simpson, “The
Interpretation of Interaction in Con-
tingency Tables,” Journal of the Royal
Statistical Society: Series B (Method-
ological) 13, no. 2 (1951): 238–41, see
M.A. Hernán, D. Clayton, and N.
Keiding, “The Simpson’s paradox un-
raveled,” International Journal of Epidemi-
ology 40, no. 3 (March 2011): 780–85,
https://doi.org/10.1093/ije/dyr041.
and J. Pearl, Causality (Cambridge
University Press, 2009).

though mathematically they are no surprise. It’s a fact of conditional
probability that there can be events Y (here, acceptance), A (here,
female gender taken to be a binary variable) and a random variable Z
(here, department choice) such that:

1. P{Y | A} < P{Y | ¬A}
2. P{Y | A, Z = z} > P{Y | ¬A, Z = z} for all values z that the

random variable Z assumes.

Simpson’s paradox nonetheless causes discomfort to some, be-
cause intuition suggests that a trend which holds for all subpopula-
tions should also hold at the population level.

The reason why Simpson’s paradox is relevant to our discussion
is that it’s a consequence of how we tend to misinterpret what in-

http://www.randomservices.org/random/data/Berkeley.html
https://en.wikipedia.org/wiki/Simpson%27s_paradox
https://doi.org/10.1093/ije/dyr041
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formation conditional probabilities encode. Recall that a statement
of conditional probability corresponds to passive observation. What
we see here is a snapshot of the normal behavior of women and men
applying to graduate school at UC Berkeley in 1973.

What is evident from the data is that gender influences depart-
ment choice. Women and men appear to have different preferences
for different fields of study. Moreover, different departments have
different admission criteria. Some have lower acceptance rates, some
higher. Therefore, one explanation for the data we see is that women
chose to apply to more competitive departments, hence getting re-
jected at a higher rate than men.

Indeed, this is the conclusion the original study drew:

The bias in the aggregated data stems not from any pattern of discrimination
on the part of admissions committees, which seems quite fair on the whole,
but apparently from prior screening at earlier levels of the educational system.
Women are shunted by their socialization and education toward fields of
graduate study that are generally more crowded, less productive of completed
degrees, and less well funded, and that frequently offer poorer professional
employment prospects.125 125 Bickel, Hammel, O’Connell, and oth-

ers, “Sex Bias in Graduate Admissions.”

In other words, the article concluded that the source of gender bias
in admissions was a pipeline problem: Without any wrongdoing by
the departments, women were “shunted by their socialization” that
happened at an earlier stage in their lives.

It is difficult to debate this conclusion on the basis of the avail-
able data alone. The question of discrimination, however, is far from
resolved.126 We can ask why women applied to more competitive 126 The example has been heavily

discussed in various other writings,
such as Pearl’s recent discussion J.
Pearl and D. Mackenzie, The Book of
Why: The New Science of Cause and
Effect (Basic Books, 2018). However, the
development throughout this chapter
will differ significantly in its arguments
and conclusions.

departments in the first place. There are several possible reasons.
Perhaps less competitive departments, such as engineering schools,
were unwelcoming of women at the time. This may have been a gen-
eral pattern at the time or specific to the university. Perhaps some
departments had a track record of poor treatment of women that
was known to the applicants. Perhaps the department advertised the
program in a manner that discouraged women from applying.

The data we have also shows no measurement of qualification of an
applicant. It’s possible that due to self-selection women applying to
engineering schools in 1973 were over-qualified relative to their peers.
In this case, an equal acceptance rate between men and women might
actually be a sign of discrimination.

There is no way of knowing what was the case from the data we
have. We see that at best the original analysis leads to a number of
follow-up questions.

What is encoded in the UC Berkeley admissions example is a
variant of the impossibility result we saw in Chapter 2. There are
multiple scenarios with fundamentally different interpretations and
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consequences that we cannot distinguish from the data at hand.
At this point, we have two choices. One is to design a new study

and collect more data in a manner that might lead to a more conclu-
sive outcome. The other is to argue over which scenario is more
likely based on our beliefs and plausible assumptions about the
world.

Causal inference is helpful in either case. On the one hand, it can
be used as a guide in the design of new studies. It can help us choose
which variables to include, which to exclude, and which to hold
constant. On the other hand, causal models can serve as a mechanism
to incorporate scientific domain knowledge and exchange plausible
assumptions for plausible conclusions.

Causal models

We will develop just enough formal concepts to engage with the
technical and normative debate around causality and discrimination.
The topic is much deeper than what we can explore in this chapter.

We choose structural causal models as the basis of our formal dis-
cussion as they have the advantage of giving a sound foundation for
various causal notions we will encounter. The easiest way to con-
ceptualize a structural causal model is as a program for generating
a distribution from independent noise variables through a sequence
of formal instructions. Let’s unpack this statement. Imagine instead
of samples from a distribution, somebody gave you a step-by-step
computer program to generate samples on your own starting from a
random seed. The process is not unlike how you would write code.
You start from a simple random seed and build up increasingly more
complex constructs. That is basically what a structural causal model
is, except that each assignment uses the language of mathematics
rather than any concrete programming syntax.

A first example

Let’s start with a toy example not intended to capture the real world.
Imagine a hypothetical population in which an individual exercises
regularly with probability 1/2. With probability 1/3, the individual
has a latent disposition to develop overweight that manifests in the
absence of regular exercise. Similarly, in the absence of exercise,
heart disease occurs with probability 1/3. Denote by X the indicator
variable of regular exercise, by W that of excessive weight, and by H
the indicator of heart disease. Below is a structural causal model to
generate samples from this hypothetical population.

1. Sample independent Bernoulli127 random variables, i.e., biased 127 A Bernoulli random variable B(p)
with bias p is a biased coin toss that
assumes value 1 with probability p and
value 0 with probability 1− p.
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coin flips: U1 ∼ B(1/2), U2 ∼ B(1/3), U3 ∼ B(1/3).
2. X := U1

3. W := if X = 1 then 0 else U2

4. H := if X = 1 then 0 else U3

Contrast this generative description of the population with a usual
random sample drawn from the population that might look like this:

X W H

0 1 1

1 0 0

1 1 1

1 1 0

0 1 0

. . . . . . . . .

From the program description, we can immediately see that in
our hypothetical population exercise averts both overweight and heart
disease, but in the absence of exercise the two are independent. At
the outset, our program generates a joint distribution over the ran-
dom variables (X, W, H). We can calculate probabilities under this
distribution. For example, the probability of heart disease under the
distribution specified by our model is 1/2 · 1/3 = 1/6. We can also
calculate the conditional probability of heart diseases given over-
weight. From the event W = 1 we can infer that the individual does
not exercise so that the probability of heart disease given overweight
increases to 1/3 compared with the baseline of 1/6.

Does this mean that overweight causes heart disease in our model?
The answer is no as is intuitive given the program to generate the
distribution. But let’s see how we would go about arguing this point
formally. Having a program to generate a distribution is substantially
more powerful than just having sampling access. One reason is that
we can manipulate the program in whichever way we want, assum-
ing we still end up with a valid program. We could, for example, set
W := 1, resulting in a new distribution. The resulting program looks
like this:

2. X := U1

3. W := 1
4. H := if X = 1 then 0 else U3

This new program specifies a new distribution. We can again
calculate the probability of heart disease under this new distribution.
We still get 1/6. This simple calculation reveals a significant insight.
The substitution W := 1 does not correspond to a conditioning on
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W = 1. One is an action, albeit inconsequential in this case. The
other is an observation from which we can draw inferences. If we
observe that an individual is overweight, we can infer that they have
a higher risk of heart disease (in our toy example). However, this
does not mean that lowering body weight would avoid heart disease.
It wouldn’t in our example. The active substitution W := 1 in contrast
creates a new hypothetical population in which all individuals are
overweight with all that it entails in our model.

Let us belabor this point a bit more by considering another hypo-
thetical population, specified by the equations:

2. W := U2

3. X := if W = 0 then 0 else U1

4. H := if X = 1 then 0 else U3

In this population exercise habits are driven by body weight. Over-
weight individuals choose to exercise with some probability, but
that’s the only reason anyone would exercise. Heart disease develops
in the absence of exercise. The substitution W := 1 in this model
leads to an increased probability of exercise, hence lowering the prob-
ability of heart disease. In this case, the conditioning on W = 1 has
the same affect. Both lead to a probability of 1/6.

What we see is that fixing a variable by substitution may or may
not correspond to a conditional probability. This is a formal render-
ing of our earlier point that observation isn’t action. A substitution
corresponds to an action we perform. By substituting a value we
break the natural course of action our model captures. This is the
reason why the substitution operation is sometimes called the do-
operator, written as do(W := 1).

Structural causal models give us a formal calculus to reason about
the effect of hypothetical actions. We will see how this creates a for-
mal basis for all the different causal notions that we will encounter in
this chapter.

Structural causal models, more formally

Formally, a structural causal model is a sequence of assignments
for generating a joint distribution starting from independent noise
variables. By executing the sequence of assignments we incremen-
tally build a set of jointly distributed random variables. A structural
causal model therefore not only provides a joint distribution, but also
a description of how the joint distribution can be generated from el-
ementary noise variables. The formal definition is a bit cumbersome
compared with the intuitive notion.
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Definition 4. A structural causal model M is given by a set of variables
X1, ..., Xd and corresponding assignments of the form

Xi := fi(Pi, Ui), i = 1, ..., d .

Here, Pi ⊆ {X1, ..., Xd} is a subset of the variables that we call the
parents of Xi. The random variables U1, ..., Ud are called noise variables,
which we require to be jointly independent.

The directed graph corresponding to the model has one node for each
variable Xi, which has incoming edges from all the parents Pi. We will
call such a graph the causal graph corresponding to the structural causal
model.

Let’s walk through the formal concepts introduced in this defini-
tion in a bit more detail.

The noise variables that appear in the definition model exogenous
factors that influence the system. Consider, for example, how the
weather influences the delay on a traffic route you choose. Due to
the difficulty of modeling the influence of weather more precisely, we
could take the weather induced to delay to be an exogenous factor
that enters the model as a noise variable. The choice of exogenous
variables and their distribution can have important consequences for
what conclusions we draw from a model.

The parent nodes Pi of node i in a structural causal model are of-
ten called the direct causes of Xi. Similarly, we call Xi the direct effect
of its direct causes Pi. Recall our hypothetical population in which
weight gain was determined by lack of exercise via the assignment
W := min{U1, 1 − X}. Here we would say that exercise (or lack
thereof) is a direct cause of weight gain.

Structural causal model are a collection of formal assumptions
about how certain variables interact. Each assignment specifies a
response function. We can think of nodes as receiving messages from
their parents and acting according to these messages as well as the
influence of an exogenous noise variable.

To which extent a structural causal model conforms to reality is a
separate and difficult question that we will return to in more detail
later. For now, think of a structural causal model as formalizing and
exposing a set of assumptions about a data generating process. As
such different models can expose different hypothetical scenarios
and serve as a basis for discussion. When we make statements about
cause and effect in reference to a model, we don’t mean to suggest
that these relationship necessarily hold in the real world. Whether
they do depends on the scope, purpose, and validity of our model,
which may be difficult to substantiate.

It’s not hard to show that a structural causal model defines a
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unique joint distribution over the variables (X1, ..., Xd) such that
Xi = fi(Pi, Ui). It’s convenient to introduce a notion for probabilities
under this distribution. When M denotes a structural causal model,
we will write the probability of an event E under the entailed joint
distribution as PM{E}. To gain familiarity with the notation, let M
denote the structural causal model for the hypothetical population in
which both weight gain and heart disease are directly caused by an
absence of exercise. We calculated earlier that the probability of heart
disease in this model is PM{H} = 1/6.

In what follows we will derive from this single definition of a
structural causal model all the different notions and terminology that
we’ll need in this chapter.

Throughout, we restrict our attention to acyclic assignments. Many
real-world systems are naturally described as stateful dynamical sys-
tem with feedback loops. At the end of the chapter, we discuss some
of the options for dealing with such closed loop systems. For exam-
ple, often cycles can be broken up by introducing time dependent
variables, such as, investments at time 0 grow the economy at time 1
which in turn grows investments at time 2, continuing so forth until
some chosen time horizon t.

Causal graphs

We saw how structural causal models naturally give rise to causal
graphs that represent the assignment structure of the model graphi-
cally. We can go the other way as well by simply looking at directed
graphs as placeholders for an unspecified structural causal model
which has the assignment structure given by the graph. Causal
graphs are often called causal diagrams. We’ll use these terms inter-
changeably.

Below we see causal graphs for the two hypothetical populations
from our heart disease example.

Figure 18: Causal diagrams for the
heart disease examples.

The scenarios differ in the direction of the link between exercise
and weight gain.

Causal graphs are convenient when the exact assignments in a
structural causal models are of secondary importance, but what
matters are the paths present and absent in the graph. Graphs also let
us import the established language of graph theory to discuss causal
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notions. We can say, for example, that an indirect cause of a node is
any ancestor of the node in a given causal graph. In particular, causal
graphs allow us to distinguish cause and effect based on whether a
node is an ancestor or descendant of another node.

Let’s take a first glimpse at a few important graph structures.

Forks

A fork is a node Z in a graph that has outgoing edges to two other
variables X and Y. Put differently, the node Z is a common cause of
X and Y.

Figure 19: Example of a fork.

We already saw an example of a fork in our weight and exercise
example: W ← X → H. Here, exercise X influences both weight
and heart disease. We also learned from the example that Z has a
confounding effect: Ignoring exercise X, we saw that W and H appear
to be positively correlated. However, the correlation is a mere result
of confounding. Once we hold exercise levels constant (via the do-
operation), weight has no effect on heart disease in our example.

Confounding leads to a disagreement between the calculus of
conditional probabilities (observation) and do-interventions (actions).

Real-world examples of confounding are a common threat to the
validity of conclusions drawn from data. For example, in a well
known medical study a suspected beneficial effect of hormone re-
placement therapy in reducing cardiovascular disease disappeared after
identifying socioeconomic status as a confounding variable.128 128 L.L. Humphrey, B.K.S. Chan, and

H.C. Sox, “Postmenopausal Hormone
Replacement Therapy and the Primary
Prevention of Cardiovascular Disease,”
Annals of Internal Medicine 137, no. 4

(August 2002): 273–84.

Mediators

The case of a fork is quite different from the situation where Z lies on
a directed path from X to Y:

Figure 20: Example of a chain.

In this case, the path X → Z → Y contributes to the total effect
of X on Y. It’s a causal path and thus one of the ways in which X
causally influences Y. That’s why Z is not a confounder. We call Z a
mediator instead.
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We saw a plausible example of a mediator in our UC Berkeley
admissions example. In one plausible causal graph, department
choice mediates the influences of gender on the admissions decision.

The notion of a mediator is particularly relevant to the topic of
discrimination analysis and we will return to this discussion in more
detail again.

Colliders

Finally, let’s consider another common situation: the case of a collider.

Figure 21: Example of a collider.

Colliders aren’t confounders. In fact, in the above graph, X and
Y are unconfounded, meaning that we can replace do-statements
by conditional probabilities. However, something interesting hap-
pens when we condition on a collider. The conditioning step can
create correlation between X and Y, a phenomenon called explaining
away. A good example of the explaining away effect, or collider bias,
is due to Berkson. Two independent diseases can become negatively
correlated when analyzing hospitalized patients. The reason is that
when either disease (X or Y) is sufficient for admission to the hospi-
tal (indicated by variable Z), observing that a patient has one disease
makes the other statistically less likely.129 129 See the Wikipedia article and the

reprint of Berkson’s original article,
J. Berkson, “Limitations of the Appli-
cation of Fourfold Table Analysis to
Hospital Data,” International Journal of
Epidemiology 43, no. 2 (2014): 511–15.

Berkson’s law is a cautionary tale for statistical analysis when
we’re studying a cohort that has been subjected to a selection rule.
For example, there’s an ongoing debate about the effectiveness of
GRE scores in higher education. Recent studies130 argue that GRE

130 A.M.A.P. Moneta-Koehler Liane
AND Brown, “The Limitations of the
Gre in Predicting Success in Biomedical
Graduate School,” PLOS ONE 12, no.
1 (January 2017): 1–17; A.B.A.C. Hall
Joshua D. AND O’Connell, “Predictors
of Student Productivity in Biomedical
Graduate School Applications,” PLOS
ONE 12, no. 1 (January 2017): 1–14.

scores are not predictive of various success outcomes in a graduate
student population. However, care must be taken when studying the
effectiveness of educational tests, such as the GRE, by examining a
sample of admitted students. After all, students were in part admit-
ted on the basis of the test score. It’s the selection rule that introduces
the potential for collider bias.

Interventions and causal effects

Structural causal models give us a way to formalize the effect of
hypothetical actions or interventions on the population within the
assumptions of our model. As we saw earlier all we needed was the
ability to do substitutions.

https://en.wikipedia.org/wiki/Berkson%27s_paradox
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Substitutions and the do-operator

Given a structural causal model M we can take any assignment of the
form

X := f (P, U)

and replace it by another assignment. The most common substitu-
tion is to assign X a constant value x:

X := x

We will denote the resulting model by M′ = M[X := x] to indicate
the surgery we performed on the original model M. Under this as-
signment we hold X constant by removing the influence of its parent
nodes and thereby any other variables in the model.

Graphically, the operation corresponds to eliminating all incoming
edges to the node X. The children of X in the graph now receive a
fixed message x from X when they query the node’s value.

Figure 22: Graph before and after
substitution.

The assignment operator is also called the do-operator to empha-
size that it corresponds to performing an action or intervention. We
already have notation to compute probabilities after applying the
do-operator, namely, PM[X:=x](E).

Another notation is popular and common:

P{E | do(X := x)} = PM[X:=x](E)

This notation analogizes the do-operation with the usual notation
for conditional probabilities, and is often convenient when doing cal-
culations involving the do-operator. Keep in mind, however, that the
do-operator (action) is fundamentally different from the conditioning
operator (observation).

Causal effects

The causal effect of an action X := x on a variable Y refers to the
distribution of the variable Y in the model M[X := x]. When we
speak of the causal effect of a variable X on another variable Y we
refer to all the ways in which setting X to any possible value x affects
the distribution of Y.
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Often we think of X as a binary treatment variable and are inter-
ested in a quantity such as

EM[X:=1][Y]−EM[X:=0][Y] .

This quantity is called the average treatment effect. It tells us how
much treatment (action X := 1) increases the expectation of Y relative
to no treatment (action X := 0).

Causal effects are population quantities. They refer to effects aver-
aged over the whole population. Often the effect of treatment varies
greatly from one individual or group of individuals to another. Such
treatment effects are called heterogeneous.

Confounding

Important questions in causality relate to when we can rewrite a do-
operation in terms of conditional probabilities. When this is possible,
we can estimate the effect of the do-operation from conventional
conditional probabilities that we can estimate from data.

The simplest question of this kind asks when a causal effect
P{Y = y | do(X := x)} coincides with the condition probability
P{Y = y | X = x}. In general, this is not true. After all, the difference
between observation (conditional probability) and action (interven-
tional calculus) is what motivated the development of causality.

The disagreement between interventional statements and con-
ditional statements is so important that it has a well-known name:
confounding. We say that X and Y are confounded when the causal
effect of action X := x on Y does not coincide with the corresponding
conditional probability.

When X and Y are confounded, we can ask if there is some combi-
nation of conditional probability statements that give us the desired
effect of a do-intervention. This is generally possible given a causal
graph by conditioning on the parent nodes PA of the node X:

P{Y = y | do(X := x)} = ∑
z

P{Y = y | X = x, PA = z}P{PA = z}

This formula is called the adjustment formula. It gives us one way
of estimating the effect of a do-intervention in terms of conditional
probabilities.

The adjustment formula is one example of what is often called
controlling for a set of variables: We estimate the effect of X on Y
separately in every slice of the population defined by a condition
Z = z for every possible value of z. We then average these estimated
sub-population effects weighted by the probability of Z = z in the
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population. To give an example, when we control for age, we mean
that we estimate an effect separately in each possible age group and
then average out the results so that each age group is weighted by the
fraction of the population that falls into the age group.

Controlling for more variables in a study isn’t always the right
choice. It depends on the graph structure. Let’s consider what hap-
pens when we control for the variable Z in the three causal graphs
we discussed above.

• Controlling for a confounding variable Z in a fork X ← Z → Y
will deconfound the effect of X on Y.

• Controlling for a mediator Z on a chain X → Z → Y will eliminate
some of the causal influence of X on Y.

• Controlling for a collider will create correlation between X and Y.
That is the opposite of what controlling for Z accomplishes in the
case of a fork. The same is true if we control for a descendant of a
collider.

The backdoor criterion

At this point, we might worry that things get increasingly compli-
cated. As we introduce more nodes in our graph, we might fear a
combinatorial explosion of possible scenarios to discuss. Fortunately,
there are simple sufficient criteria for choosing a set of deconfound-
ing variables that is safe to control for.

A well known graph-theoretic notion is the backdoor criterion131. 131 Pearl, Causality.

Two variables are confounded if there is a so-called backdoor path
between them. A backdoor path from X to Y is any path starting at X
with a backward edge “←” into X such as:

X ← A→ B← C → Y

Intuitively, backdoor paths allow information flow from X to Y
in a way that is not causal. To deconfound a pair of variables we
need to select a backdoor set of variables that “blocks” all backdoor
paths between the two nodes. A backdoor path involving a chain
A → B → C can be blocked by controlling for B. Information by
default cannot flow through a collider A → B ← C. So we only
have to be careful not to open information flow through a collider by
conditioning on the collider, or descendant of a collider.132 132 For additional discussion of back-

door paths and confounding, see Pearl.

Unobserved confounding

The adjustment formula might suggest that we can always eliminate
confounding bias by conditioning on the parent nodes. However,
this is only true in the absence of unobserved confounding. In practice
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often there are variables that are hard to measure, or were simply left
unrecorded. We can still include such unobserved nodes in a graph,
typically denoting their influence with dashed lines, instead of solid
lines.

Figure 23: Two cases of unobserved
confounding.

The above figure shows two cases of unobserved confounding.
In the first example, the causal effect of X on Y is unidentifiable.
In the second case, we can block the confounding backdoor path
X ← Z → W → Y by controlling for W even though Z is not
observed. The backdoor criterion lets us work around unobserved
confounders in some cases where the adjustment formula alone
wouldn’t suffice.

Unobserved confounding nonetheless remains a major obstacle
in practice. The issue is not just lack of measurement, but often lack
of anticipation or awareness of a counfounding variable. We can try
to combat unobserved confounding by increasing the number of
variables under consideration. But as we introduce more variables
into our study, we also increase the burden of coming up with a valid
causal model for all variables under consideration. In practice, it is
not uncommon to control for as many variables as possible in a hope
to disable confounding bias. However, as we saw, controlling for
mediators or colliders can be harmful.

Randomization

The backdoor criterion gives a non-experimental way of eliminating
confounding bias given a causal model and a sufficient amount of
observational data from the joint distribution of the variables. An
alternative experimental method of eliminating confounding bias is
the well-known randomized controlled trial.

In a randomized controlled trial a group of subjects is randomly
partitioned into a control group and a treatment group. Participants
do not know which group they were assigned to and neither do the
staff administering the trial. The treatment group receives an actual
treatment, such as a drug that is being tested for efficacy, while the
control group receives a placebo identical in appearance. An outcome
variable is measured for all subjects.

The goal of a randomized controlled trial is to break natural incli-
nation. Rather than observing who chose to be treated on their own,
we assign treatment randomly. Thinking in terms of causal mod-
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els, what this means is that we eliminate all incoming edges into the
treatment variable. In particular, this closes all backdoor paths and
hence avoids confounding bias.

There are many reasons why often randomized controlled trials
are difficult or impossible to administer. Treatment might be physi-
cally or legally impossible, too costly, or too dangerous. As we saw,
randomized controlled trials are not always necessary for avoiding
confounding bias and for reasoning about cause and effect. Nor are
they free of issues and pitfalls133. 133 A. Deaton and N. Cartwright, “Un-

derstanding and Misunderstanding
Randomized Controlled Trials,” Social
Science & Medicine 210 (2018): 2–21.Graphical discrimination analysis

We now explore how we can bring causal graphs to bear on discus-
sions of discrimination. We return to the example of graduate ad-
missions at Berkeley and develop a causal perspective on the earlier
analysis.

The first step is to come up with a plausible causal graph consis-
tent with the data that we saw earlier. The data contained only three
variables, sex A, department choice Z, and admission decision Y. It
makes sense to draw two arrows A → Y and Z → Y, because both
features A and Z are available to the institution when making the
admissions decision.

We’ll draw one more arrow, for now, simply because we have to.
If we only included the two arrows A → Y and Z → Y, our graph
would claim that A and Z are statistically independent. However,
this claim is inconsistent with the data.134 134 We can see from the table that several

departments have a statistically signifi-
cant gender bias among applicants.

This means we need to include either the arrow A → Z or Z →
A.135 Deciding between the two isn’t as straightforward as it might

135 There is also the possibility of an
unobserved confounder that we will
discuss later.

first appear.
If we interpreted A in the narrowest possible sense as the ap-

plicant’s reported sex, i.e., literally which box they checked on the
application form, we could imagine a scenario where some appli-
cants choose to (mis-)report their sex in a certain way that depends in
part on their department choice. Even if we assume no misreporting
occurs, it’s hard to substantiate reported sex as a plausible cause of
department choice. The fact that an applicant checked a box labeled
male certainly isn’t the cause for their interest in engineering.

The causal story in Bickel’s argument is a different one. It alludes
to a complex socialization and preference formation process that
took place in the applicant’s life before they applied which in part
depended on the applicant’s sex. To align this story with our causal
graph, we need the variable A to reference whatever ontological
entity it is that through this “socialization process” influences intel-
lectual and professional preferences, and hence, department choice.
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It is difficult to maintain that this ontological entity coincides with
sex as a biological trait. There is no scientific basis to support that the
biological trait sex is what determines our intellectual preferences.
Few scholars (if any) would currently attempt to maintain a claim
such as two X chromosomes cause an interest in English literature.

The truth is that we don’t know the exact mechanism by which the
thing referenced by A influences department choice. In drawing the
arrow A to Z we assert—perhaps with some naivety or ignorance—
that there exists such a mechanism.

We will discuss the important difficulty we encountered here in
depth later on. For now, we commit to this modeling choice and thus
arrive at the following graph.

Figure 24: Possible causal graph for
the UC Berkeley graduate admissions
scenario.

In this graph, department choice mediates the influence of gender
on admissions. There’s a direct path from A to Y and an indirect
path that goes through Z.

We will use this model to put pressure on the central claim in the
original study, namely, that there is no evidence of sex discrimination.

In causal language, Bickel’s argument had two components136: 136 In fact, this is Pearl’s proffered causal
interpretation of Bickel’s analysis. See
Pearl, Causality; Pearl and Mackenzie,
The Book of Why.

1. There appears to be no direct effect of sex A on the admissions
decision Y that favors men.

2. The indirect effect of A on Y that is mediated by department
choice should not be counted as evidence of discrimination.

We will discuss both arguments in turn.

Direct effects

To obtain the direct effect of A on Y we need to disable all paths
between A and Y except for the direct link. In our model, we can
accomplish this by holding department choice Z constant and eval-
uating the conditional distribution of Y given A. Recall that holding
a variable constant is generally not the same as conditioning on the
variable.

Specifically, a problem would arise if department choice and ad-
missions outcome were confounded by another variable, such as,
state of residence R

Department choice is now a collider between A and R. Condition-
ing on a collider opens the backdoor path A → Z ← R → Y. In
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Figure 25: Alternative causal graph for
the UC Berkeley graduate admissions
scenario showing influence of residence.

this graph, conditioning on department choice does not give us the
desired direct effect.137 137 The possibility of a confounder be-

tween department choice and decision
was the subject of an exchange between
Bickel and Kruskal, as Pearl discusses
in Pearl and Mackenzie, The Book of
Why.

If we assume, however, that department choice and admissions
decisions are unconfounded, then Bickel’s approach indeed supports
the first claim.

Unfortunately, the direct effect of a protected variable on a deci-
sion is a poor measure of discrimination on its own. At a technical
level, it is rather brittle as it cannot detect any form of proxy discrim-
ination. The department could, for example, use the applicant’s per-
sonal statement to make inferences about their gender, which are
then used to discriminate.

It’s best to think of the direct effect as whether or not the decision
maker explicitly uses the attribute in its decision rule. The absence
of a direct effect corresponds to the somewhat troubled notion of a
blind decision rule that doesn’t have explicit access to the sensitive
attribute. As we argued in all preceding chapters, blind decision
rules can still be the basis of discriminatory practices.

As we saw in the previous chapter, direct effects don’t cleanly map
onto a legal framework. However, it’s possible to see semblance be-
tween what a direct effect captures and what kind of discrimination
the legal doctrine of disparate treatment describes.

Indirect paths

Let’s turn to the indirect effect of sex on admission that goes through
department choice.

It’s tempting to think of the the node Z as referencing the appli-
cant’s inherent department preferences that stem from a process of
socialization alluded to earlier. In this view, the department is not
responsible for the applicant’s preferences and so the mediating
influence of department preferences is not interpreted as a sign of
discrimination. This, however, is a normative judgment that does not
follow as formal matter.

We can easily think of natural alternative scenarios that are consis-
tent with both the data and our causal model, in which the indirect
path encodes a pattern of discrimination.

For example, the department may have advertised the program in
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a manner that strongly discouraged women from applying. In this
case, department preference in part measures exposure to this hostile
advertising campaign. Or, the department could have a track record
of hostile behavior against women and it is awareness of such that
shapes preferences in an applicant. Finally, blatant discriminatory
practices, such as compensating women at a lower rate than equally
qualified male graduate students can obviously shape an applicant’s
preference.

Figure 26: Alternative causal graph for
the UC Berkeley graduate admissions
scenario where department preferences
are shaped by fear of discrimination.

Accepting the indirect path as non-discriminatory is to assert that
all these scenarios we described are deemed implausible. Funda-
mentally, we are confronted with a normative question. The path
A → Z → Y could either be where discrimination occurs or what ex-
plains the absence thereof. Which case we’re in isn’t a purely techni-
cal matter and cannot be resolved without subject matter knowledge.
Causal modeling gives us a framework for exposing these normative
questions, but not necessarily one to resolve them.

Path inspection

To summarize, discrimination may not only occur on the direct path-
way from the sensitive category to the outcome. Seemingly innocu-
ous mediating paths can hide discriminatory practices. We have to
carefully discuss what pathways we consider evidence for or against
discrimination.

To appreciate this point, contrast our Berkeley scenario with the
important legal case Griggs v. Duke Power Co.138 that was argued 138 Griggs v. Duke Power Co., 401 U.S.

424 (1971)before the U.S. Supreme Court in 1970. Duke Power Company had
introduced the requirement of a high school diploma for certain
higher paying jobs. We could draw a causal graph for this scenario
not unlike the one for the Berkeley case. There’s a mediating variable
(here, level of education), a sensitive category (here, race) and an
employment outcome (here, employment in a higher paying job).
The company didn’t directly make employment decisions based
on race, but rather used the mediating variable. The court ruled
that the requirement of a high school diploma was not justified by
business necessity, but rather had adverse impact on ethnic minority
groups where the prevalence of high school diplomas is lower. Put
differently, the court decided that the use of this mediating variable
was not an argument against, but rather for discrimination.
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Glymour139 makes another related and important point about the 139 M.M. Glymour, “Using Causal
Diagrams to Understand Common
Problems in Social Epidemiology,”
Methods in Social Epidemiology, 2006,
393–428.

moral character of mediation analysis:

Implicitly, the question of what mediates observed social effects in-
forms our view of which types of inequalities are socially acceptable
and which types require remediation by social policies. For example,
a conclusion that women are “biologically programmed” to be de-
pressed more than men may ameliorate the social obligation to try to
reduce gender inequalities in depression. Yet if people get depressed
whenever they are, say, sexually harassed—and women are more fre-
quently sexually harassed than men—this suggests a very strong social
obligation to reduce the depression disparity by reducing the sexual
harassment disparity.

Ending on a technical note, it’s worth noting that we currently
do not have a method to estimate indirect effects. Estimating an
indirect effect somehow requires us to disable the direct influence.
There is no way of doing this with the do-operation that we’ve seen
so far. However, we will shortly introduce counterfactuals, which
among other applications will give us a way of estimating path-
specific effects.

Structural discrimination

There’s an additional problem we neglected so far. Imagine a spite-
ful university administration that systematically defunds graduate
programs that attract more female applicants. This structural pattern
of discrimination is invisible from the causal model we drew. There
is a kind of type mismatch here. Our model talks about individual
applicants, their department preferences, and their outcomes. Put
differently, individuals are the units of our investigation. University
policy is not one of the mechanisms that our model exposes. As a
result we cannot talk about university policy as a cause of discrimina-
tion in our model.

The model we chose commits us to an individualistic perspec-
tive that frames discrimination as the consequence of how decision
makers respond to information about individuals.

An analogy is helpful. In epidemiology, scientists can seek the
cause of health outcomes in biomedical aspects and lifestyle choices
of individuals, such as whether or not an individual smokes, ex-
ercises, maintains a balanced diet etc. The growing field of social
epidemiology criticizes the view of individual choices as causes of
health outcomes, and instead draws attention to social and structural
causes140, such as poverty and inequality. 140 N. Krieger, “Epidemiology and the

People’s Health: Theory and Context,”
2011.

Similarly, we can contrast the individualistic perspective on dis-
crimination with structural discrimination. Causal modeling can in
principle be used to study the causes of structural discrimination, as
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well. But it requires a different perspective than the one we chose for
our Berkeley scenario.

Counterfactuals

Fully specified structural causal models allow us to ask causal ques-
tions that are more delicate than the mere effect of an action. Specif-
ically, we can ask counterfactual questions such as: Would I have
avoided the traffic jam had I taken a different route this morning?
Counterfactual questions are common. We can answer them given a
structural causal model. However, the procedure for extracting the
answer from the model looks a bit subtle at first. It helps to start with
a simple example.

A simple counterfactual

To understand counterfactuals, we first need to convince ourselves
that they aren’t quite as straightforward as a single substitution in
our model.

Assume every morning we need to decide between two routes
X = 0 and X = 1. On bad traffic days, indicated by U = 1, both
routes are bad. On good days, indicated by U = 0, the traffic on
either route is good unless there was an accident on the route.

Let’s say that U ∼ B(1/2) follows the distribution of an un-
biased coin toss. Accidents occur independently on either route
with probability 1/2. So, choose two Bernoulli random variables
U0, U1 ∼ B(1/2) that tell us if there is an accident on route 0 and
route 1, respectively.

We reject all external route guidance and instead decide on which
route to take uniformly at random. That is, X := UX ∼ B(1/2) is also
an unbiased coin toss.

Introduce a variable Y ∈ {0, 1} that tells us whether the traffic
on the chosen route is good (Y = 0) or bad (Y = 1). Reflecting our
discussion above, we can express Y as

Y := X ·max{U, U1}+ (1− X)max{U, U0} .

In words, when X = 0 the first term disappears and so traffic is
determined by the larger of the two values U and U0. Similarly, when
X = 1 traffic is determined by the larger of U and U1.

Figure 27: Causal diagram for our
traffic scenario.

Now, suppose one morning we have X = 1 and we observe bad
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traffic Y = 1. Would we have been better off taking the alternative
route this morning?

A natural attempt to answer this question is to compute the likeli-
hood of Y = 0 after the do-operation X := 0, that is, PM[X:=0](Y = 0).
A quick calculation reveals that this probability is 1

2 ·
1
2 = 1/4. In-

deed, given the substitution X := 0 in our model, for the traffic to be
good we need that max{U, U0} = 0. This can only happen when both
U = 0 (probability 1/2) and U0 = 0 (probability 1/2).

But this isn’t the correct answer to our question. The reason is that
we took route X = 1 and observed that Y = 1. From this observation,
we can deduce that certain background conditions did not manifest
for they are inconsistent with the observed outcome. Formally, this
means that certain settings of the noise variables (U, U0, U1) are no
longer feasible given the observed event {Y = 1, X = 1}. Specifically,
if U and U1 had both been zero, we would have seen no bad traffic
on route X = 1, but this is contrary to our observation. In fact, the
available evidence {Y = 1, X = 1} leaves only the following settings
for U and U1:141 141 We leave out U0 from the table, since

its distribution is unaffected by our
observation.Table 9: Possible noise settings after observing evidence

U U1

0 1

1 1

1 0

Each of these three cases is equally likely, which in particular
means that the event U = 1 now has probability 2/3. In the absence
of any additional evidence, recall, U = 1 had probability 1/2. What
this means is that the observed evidence {Y = 1, X = 1} has biased
the distribution of the noise variable U toward 1. Let’s use the letter
U′ to refer to this biased version of U.142 142 Formally, U′ is distributed according

to the distribution of U conditional on
the event {Y = 1, X = 1}.

Working with this biased noise variable, we can again entertain the
effect of the action X := 0 on the outcome Y. For Y = 0 we need that
max{U′, U0} = 0. This means that U′ = 0, an event that now has
probability 1/3, and U0 = 0 (probability 1/2 as before). Hence, we
get the probability 1/6 = 1/2 · 1/3 for the event that Y = 0 under
our do-operation X := 0, and after updating the noise variables to
account for the observation {Y = 1, X = 1}.

To summarize, incorporating available evidence into our calcula-
tion decreased the probability of no traffic (Y = 0) when choosing
route 0 from 1/4 to 1/6. The intuitive reason is that the evidence
made it more likely that it was generally a bad traffic day, and even
the alternative route would’ve been clogged. More formally, the event
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that we observed biases the distribution of exogenous noise variables.
We think of the result we just calculated as the counterfactual of

choosing the alternative route given the route we chose had bad
traffic.

The general recipe

We can generalize our discussion of computing counterfactuals from
the previous example to a general procedure. There were three es-
sential steps. First, we incorporated available observational evidence
by biasing the exogenous noise variables through a conditioning
operation. Second, we performed a do-operation in the structural
causal model after we substituted the biased noise variables. Third,
we computed the distribution of a target variable.

These three steps are typically called abduction, action, and predic-
tion, as can be described as follows.

Definition 5. Given a structural causal model M, an observed event E,
an action X := x and target variable Y, we define the counterfactual
YX:=x(E) by the following three step procedure:

1. Abduction: Adjust noise variables to be consistent with the observed
event. Formally, condition the joint distribution of U = (U1, ..., Ud) on
the event E. This results in a biased distribution U′.

2. Action: Perform do-intervention X := x in the structural causal model
M resulting in the model M′ = M[X := x].

3. Prediction: Compute target counterfactual YX:=x(E) by using U′ as the
random seed in M′.

It’s important to realize that this procedure defines what a coun-
terfactual is in a structural causal model. The notation YX:=x(E)
denotes the outcome of the procedure and is part of the definition.
We haven’t encountered this notation before.

Put in words, we interpret the formal counterfactual YX:=x(E) as
the value Y would’ve taken had the variable X been set to value x in
the circumstances described by the event E.

In general, the counterfactual YX:=x(E) is a random variable that
varies with U′. But counterfactuals can also be deterministic. When
the event E narrows down the distribution of U to a single point
mass, called unit, the variable U′ is constant and hence the counter-
factual YX:=x(E) reduces to a single number. In this case, it’s com-
mon to use the shorthand notation Yx(u) = YX:=x({U = u}), where
we make the variable X implicit, and let u refer to a single unit.

The motivation for the name unit derives from the common sit-
uation where the structural causal model describes a population of
entities that form the atomic units of our study. It’s common for a
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unit to be an individual (or the description of a single individual).
However, depending on application, the choice of units can vary. In
our traffic example, the noise variables dictate which route we take
and what the road conditions are.

Answers to counterfactual questions strongly depend on the
specifics of the structural causal model, including the precise model
of how the exogenous noise variables come into play. It’s possible
to construct two models that have identical graph structures, and
behave identically under interventions, yet give different answers to
counterfactual queries.143 143 J. Peters, D. Janzing, and B.

Schölkopf, Elements of Causal Inference
(MIT Press, 2017).

Potential outcomes

The potential outcomes framework is a popular formal basis for causal
inference, which goes about counterfactuals differently. Rather than
deriving them from a structural causal model, we assume their exis-
tence as ordinary random variables, albeit some unobserved.

Specifically, we assume that for every unit u there exist random
variables Yx(u) for every possible value of the assignment x. In the
potential outcomes model, it’s customary to think of a binary treat-
ment variable X so that x assumes only two values, 0 for untreated,
and 1 for treated. This gives us two potential outcome variables Y0(u)
and Y1(u) for each unit u.144 144 There is some potential for notational

confusion here. Readers familiar with
the potential outcomes model may be
used to the notation “Yi(0), Yi(1)” for
the two potential outcomes correspond-
ing to unit i. In our notation the unit
(or, more generally, set of units) appears
in the parentheses and the subscript
denotes the substituted value for the
variable we intervene on.

The key point about the potential outcomes model is that we only
observe the potential outcome Y1(u) for units that were treated. For
untreated units we observe Y0(u). In other words, we can never si-
multaneously observe both, although they’re both assumed to exist
in a formal sense. Formally, the outcome Y(u) for unit u that we
observe depends on the binary treatment T(u) and is given by the
expression:

Y(u) = Y0(u) · (1− T(u)) + Y1(u) · T(u)

It’s often convenient to omit the parentheses from our notation for
counterfactuals so that this expression would read Y = Y0 · (1− T) +
Y1 · T.

We can revisit our traffic example in this framework. The next
table summarizes what information is observable in the potential
outcomes model. We think of the route we choose as the treatment
variable, and the observed traffic as reflecting one of the two poten-
tial outcomes.
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Table 10: Traffic example in the potential outcomes model

Route X Outcome Y0 Outcome Y1 Probability

0 0 ? 1/8

0 1 ? 3/8

1 ? 0 1/8

1 ? 1 3/8

Often this information comes in the form of samples. For exam-
ple, we might observe the traffic on different days. With sufficiently
many samples, we can estimate the above frequencies with arbitrary
accuracy.

Table 11: Traffic data in the potential outcomes model

Day Route X Outcome Y0 Outcome Y1

1 0 1 ?
2 0 0 ?
3 1 ? 1

4 0 1 ?
5 1 ? 0

. . . . . . . . . . . .

A typical query in the potential outcomes model is the average
treatment effect E[Y1 − Y0]. Here the expectation is taken over the
properly weighted units in our study. If units correspond to equally
weighted individuals, the expectation is an average over these indi-
viduals.

In our original traffic example, there were 16 units corresponding
to the background conditions given by the four binary variables
U, U0, U1, UX . When the units in the potential outcome model agree
with those of a structural causal model, then causal effects computed
in the potential outcomes model agree with those computed in the
structural equation model. The two formal frameworks are perfectly
consistent with each other.

As is intuitive from the table above, causal inference in the poten-
tial outcomes framework can be thought of as filling in the missing
entries (“?”) in the table above. This is sometimes called missing data
imputation and there are numerous statistical methods for this task.
If we could reveal what’s behind the question marks, estimating the
average treatment effect would be as easy as counting rows.

There is a set of established conditions under which causal infer-
ence becomes possible:
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1. Stable Unit Treatment Value Assumption (SUTVA): The treat-
ment that one unit receives does not change the effect of treatment
for any other unit.

2. Consistency: Formally, Y = Y0(1− T) + Y1T. That is, Y = Y0 if
T = 0 and Y = Y1 if T = 1. In words, the outcome Y agrees with
the potential outcome corresponding to the treatment indicator.

3. Ignorability: The potential outcomes are independent of treat-
ment given some deconfounding variables Z, i.e., T ⊥ (Y0, Y1) | Z.
In words, the potential outcomes are conditionally independent of
treatment given some set of deconfounding variables.

The first two assumptions automatically hold for counterfactual
variables derived from structural causal models according to the
procedure described above. This assumes that the units in the po-
tential outcomes framework correspond to the atomic values of the
background variables in the structural causal model.

The third assumption is a major one. It’s easiest to think of it as
aiming to formalize the guarantees of a perfectly executed random-
ized controlled trial. The assumption on its own cannot be verified or
falsified, since we never have access to samples with both potential
outcomes manifested. However, we can verify if the assumption is
consistent with a given structural causal model by checking if the set
Z blocks all backdoor paths from treatment T to outcome Y.

There’s no tension between structural causal models and potential
outcomes and there’s no harm in having familiarity with both. It
nonetheless makes sense to say a few words about the differences of
the two approaches.

We can derive potential outcomes from a structural causal model
as we did above, but we cannot derive a structural causal model from
potential outcomes alone. A structural causal model in general en-
codes more assumptions about the relationships of the variables. This
has several consequences. On the one hand, a structural causal model
gives us a broader set of formal concepts (causal graphs, mediating
paths, counterfactuals for every variable, and so on). On the other
hand, coming up with a plausibly valid structural causal model is
often a daunting task that might require knowledge that is simply
not available. We will dive deeper into questions of validity below.
Difficulty to come up with a plausible causal model often exposes
unsettled substantive questions that require resolution first.

The potential outcomes model, in contrast, is generally easier to
apply. There’s a broad set of statistical estimators of causal effects
that can be readily applied to observational data. But the ease of ap-
plication can also lead to abuse. The assumptions underpinning the
validity of such estimators are experimentally unverifiable. Frivolous
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application of causal effect estimators in situations where crucial as-
sumptions do not hold can lead to false results, and consequently to
ineffective or harmful interventions.

Counterfactual discrimination analysis

Counterfactuals serve at least two purposes for us. On the technical
side, counterfactuals give us a way to compute path-specific causal
effects. This allows us to make path analysis a quantitative matter.
On the conceptual side, counterfactuals let us engage with the impor-
tant normative debate about whether discrimination can be captured
by counterfactual criteria. We will discuss each of these in turn.

Quantitative path analysis

Mediation analysis is a venerable subject dating back decades145. 145 R.M. Baron and D.A. Kenny, “The
Moderator–Mediator Variable Distinc-
tion in Social Psychological Research:
Conceptual, Strategic, and Statistical
Considerations.” Journal of Personality
and Social Psychology 51, no. 6 (1986):
1173.

Generally speaking, the goal of mediation analysis is to identify a
mechanism through which a cause has an effect. We will review
some recent developments and how they relate to questions of dis-
crimination.

In the language of our formal framework, mediation analysis aims
to decompose a total causal effect into path-specific components.
We will illustrate the concepts in the basic three variable case of a
mediator, although the ideas extend to more complicated structures.

Figure 28: Causal graph with mediator
Z.

There are two different paths from X to Y. A direct path and a
path through the mediator Z. The conditional expectation E[Y | X =

x] lumps together influence from both paths. If there were another
confounding variable in our graph influencing both X and Y, then
the conditional expectation would also include whatever correlation
is the result of confounding. We can eliminate the confounding path
by virtue of the do-operator E[Y | do(X := x)]. This gives us the
total effect of the action X := x on Y. But the total effect still conflates
the two causal pathways, the direct effect and the indirect effect.
We will now see how we can identify the direct and indirect effects
separately.

The direct effect we already dealt with earlier as it did not require
any counterfactuals. Recall, we can hold the mediator fixed at level
Z := z and consider the effect of treatment X := 1 compared with no
treatment X := 0 as follows:



106 solon barocas, moritz hardt, arvind narayanan

E [Y | do(X := 1, Z := z)]−E [Y | do(X := 0, Z := z)] .

We can rewrite this expression in terms of counterfactuals equiva-
lently as:

E [YX:=1,Z:=z −YX:=0,Z:=z] .

To be clear, the expectation is taken over the background variables
in our structural causal models.146 146 In other words, the counterfac-

tuals inside the expectation are in-
voked with an elementary setting
u of the background variables, i.e.,
YX:=1,Z:=z(u)− YX:=0,Z:=x(u) and the
expectation averages over all possible
settings.

The formula for the direct effect above is usually called controlled
direct effect, since it requires setting the mediating variable to a spec-
ified level. Sometimes it is desirable to allow the mediating variable
to vary as it would had no treatment occurred. This too is possible
with counterfactuals and it leads to a notion called natural direct effect,
defined as:

E
[
YX:=1,Z:=ZX:=0 −YX:=0,Z:=ZX:=0

]
.

The counterfactual YX:=1,Z:=ZX:=0 is the value that Y would obtain
had X been set to 1 and had Z been set to the value Z would’ve
assumed had X been set to 0.

The advantage of this slightly mind-bending construction is that it
gives us an analogous notion of natural indirect effect:

E
[
YX:=0,Z:=ZX:=1 −YX:=0,Z:=ZX:=0

]
.

Here we hold the treatment variable constant at level X := 0, but
let the mediator variable change to the value it would’ve attained had
treatment X := 1 occurred.

In our three node example, the effect of X on Y is unconfounded.
In the absence of confounding, the natural indirect effect corresponds
to the following statement of conditional probability (involving nei-
ther counterfactuals nor do-interventions):

∑
z

E [Y | X = 0, Z = z]
(
P(Z = z | X = 1)−P(Z = z | X = 0)

)
.

In this case, we can estimate the natural direct and indirect effect
from observational data.

The technical possibilities go beyond the case discussed here.
In principle, counterfactuals allow us to compute all sorts of path-
specific effects even in the presence of (observed) confounders. We
can also design decision rules that eliminate path-specific effects we
deem undesirable.
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Counterfactual discrimination criteria

Beyond their application to path analysis, counterfactuals can also be
used as a tool to put forward normative fairness criteria.

Consider the typical setup of Chapter 2. We have features X, a
sensitive attribute A, an outcome variable Y and a predictor Ŷ.

One criterion that is technically natural would say the following:
For every possible demographic described by the event E := {X :=
x, A := a} and every possible setting a′ of A we ask that the coun-
terfactual ŶA:=a(E) and the counterfactual ŶA:=a′(E) follow the same
distribution.

We will refer to it as counterfactual demographic parity147, since it’s 147 This criterion was introduced as
counterfactual fairness, M.J. Kusner,
J.R. Loftus, C. Russell, and R. Silva,
“Counterfactual Fairness,” in Proc. 30th
NIPS, 2017, 4069–79.

closely related to the observational criterion conditional demographic
parity. Recall, conditional demographic parity requires that in each
demographic defined by a feature setting X = x, the sensitive at-
tribute is independent of the predictor. Formally, we have the con-
ditional independence relation Ŷ ⊥ A | X. In the case of a binary
predictor, this condition is equivalent to requiring for all feature set-
tings x and groups a, a′:

E[Ŷ | X = x, A = a] = E[Ŷ | X = x, A = a′]

The easiest way to satisfy counterfactual demographic parity is for
the predictor Ŷ to only use non-descendants of A in the causal graph.
This is analogous to the statistical condition of only using features
that are independent of A.

In the same way that we defined a counterfactual analog of de-
mographic parity, we can explore causal analogs of other statistical
criteria in Chapter 2.

In doing so, we need to be careful in separating technical questions
about the difference between observational and causal criteria from
the normative content of the criterion. Just because a causal variant of
a criterion might get around some statistical issues of non-causal cor-
relations does not mean that the causal criterion resolves normative
concerns or questions with its observational cousin.

Counterfactuals in the law

Many scholars see support for a counterfactual interpretation of
United States discrimination law in various rulings by judges that
seemed to have invoked counterfactual language. Here’s a quote
from a popular recent textbook on causal inference148: 148 J. Pearl, M. Glymour, and N.P. Jewell,

Causal Inference in Statistics: A Primer
(Wiley, 2016), 114.U.S. courts have issued clear directives as to what constitutes employ-

ment discrimination. According to law makers, “The central question
in any employment-discrimination case is whether the employer would
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have taken the same action had the employee been of a different race
(age, sex, religion, national origin etc.) and everything else had been
the same.” (In Carson vs Bethlehem Steel Corp., 70 FEP Cases 921, 7th
Cir. (1996).)

Unfortunately, the situation is not so simple. This quote invoked
here—and in several other technical papers on the topic—expresses
the opinion of judges in the 7th Circuit Court at the time. This court
is one of thirteen United States courts of appeals. The case has little
to no precedential value; the quote cannot be considered a definitive
statement on what employment discrimination means under either
Title VII or Equal Protection law.

Even the U.S. Supreme Court has not issued “clear directives” that
cleanly map onto technical criteria, as we examined in Chapter 3.
There is currently no strong basis to support a claim such as U.S. law
and legal precedents necessitate a formal counterfactual criterion to
determine discrimination. Whether formal counterfactual reasoning
should become the legal basis of deciding discrimination cases is a
separate question.

Harvard college admissions

The language of counterfactuals regularly enters discussions of dis-
crimination in high stakes scenarios. A recent example is the impor-
tant Harvard admissions lawsuit.

In a trial dating back to 2015, the plaintiff Students for Fair Ad-
missions (SFFA)149 allege discrimination in Harvard undergraduate 149 Plaintiff SFFA is an offshoot of Ed-

ward Blum’s Project on Fair Representa-
tion, a legal defense fund which aims to
end the use of race in voting, education,
contracting, and employment.

admissions against Asian-Americans.
The trial entailed unprecedented discovery regarding higher ed-

ucation admissions processes and decision-making, including sta-
tistical analyses of individual-level applicant data from the past five
admissions cycles.

The plaintiff’s expert report claims:

Race plays a significant role in admissions decisions. Consider the
example of an Asian-American applicant who is male, is not disad-
vantaged, and has other characteristics that result in a 25% chance
of admission. Simply changing the race of the applicant to white—
and leaving all his other characteristics the same—would increase
his chance of admission to 36%. Changing his race to Hispanic (and
leaving all other characteristics the same) would increase his chance
of admission to 77%. Changing his race to African-American (again,
leaving all other characteristics the same) would increase his chance of
admission to 95%.150 150 Plaintiff’s expert report of Peter S.

Arcidiacono, Professor of Economics at
Duke University.The plaintiff’s charge, summarized above, is based on the technical

argument that conditional statistical parity is not satisfied by a model
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of Harvard’s admissions decisions.151 Formally, denote by Ŷ a model 151 Harvard’s decision process isn’t
codified as a formal decision rule.
Hence, to talk about Harvard’s decision
rule formally, we first need to model
Harvard’s decision rule. The plaintiff’s
expert Arcidiacono did so by fitting
a logistic regression model against
Harvard’s past admissions decisions in
terms of variables deemed relevant for
the admission decision.

of Harvard’s admissions decisions, by X a set of applicant features
deemed relevant for admission, and denoting by A the applicant’s
reported race we have that

E[Ŷ | X = x, A = a] < E[Ŷ | X = x, A = a′]− δ ,

for some groups a, a′ and some significant value of δ > 0.
The violation of this condition certainly depends on which features

we deem relevant for admissions. Indeed, this is to a large extent the
response of the defendant’s expert.152 152 Defendant’s expert report of David

Card, Professor of Economics at the
University of California, Berkeley.

The selection and discussion of what constitute relevant features
is certainly important for the interpretation of conditional statistical
parity. But arguably a bigger question is whether a violation of con-
ditional statistical parity constitutes evidence of discrimination in the
first place. This isn’t merely a question of having selected the right
features to condition on.

What is it the plaintiff’s expert report means by “changing his
race”? The literal interpretation is to “flip” the race attribute in the
input to the model without changing any of the other features of the
input. But a formal interpretation in terms of attribute swapping is
not necessarily what triggers our moral intuition.

A stronger moral intuition derives from the interpretation of such
statements as alluding to a hypothetical world in which the applicant
had been of a different race at the point of application. The con-
struction of such a hypothetical world is closer to the semantics of
counterfactual reasoning.

As we know now, attribute flipping generally does not produce
valid counterfactuals. Indeed, if we assume a causal graph in which
some of the relevant features are influenced by race, then computing
counterfactuals with respect to race would require adjusting down-
stream features. Changing the race attribute without a change in any
other attribute only corresponds to a counterfactual in the case where
race does not have any descendant nodes—an implausible assump-
tion.

Attribute flipping is often mistakenly given a counterfactual causal
interpretation. Obtaining valid counterfactuals is in general substan-
tially more involved than flipping a single attribute independently of
the others. In particular, we cannot meaningfully talk about counter-
factuals without bringing clarity to how the variables under consider-
ation interact.

This raises the question what the substantive knowledge is that
is required in creating valid causal models and counterfactuals. We
turn to this important topic next.
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Validity of causal models

So far we have neglected a central question: What makes a causal
model valid and how do we create valid causal models?

To approach this question, we start with the position that a valid
causal model is one that represents scientific knowledge. As Pearl
put it:

The causal diagrams are simply dot-and-arrow pictures that summa-
rize our existing scientific knowledge. The dots represent variables
of interest, and the arrows represent known or suspected causal rela-
tionships between those variables, namely, which variable “listens” to
which others.153 153 Pearl and Mackenzie, The Book of

Why.

This definition immediately puts some constraints on what we can
put in a valid causal model. For example, we couldn’t substantiate
statements about witchcraft in a valid causal model, since we believe
that witchcraft has no scientific reality. We might argue that we could
still make causal statements about witchcraft in reference to a fantasy
novel. Such causal statements do not represent scientific knowledge,
but rather reference an implicit ontology of what witchcraft is in
some fictional universe.

Causal statements that lack grounding in established scientific
knowledge are better thought of as convenient mathematical fiction154 154 To borrow an expression from C.

Glymour, “Comment: Statistics and
Metaphysics,” Journal of the American
Statistical Association 81, no. 396 (1986):
964–66.

valid causal models. Such narrative causal models can still be use-
ful as the basis of exploring hypothetical scenarios as we did in the
Berkeley case.

The line between convenient mathematical fiction and scientifically
valid causal models is often blurry. This is especially true in cases
where causal models reference constructs with limited established
scientific knowledge.

To discuss these issues, a little bit of additional background and
terminology will be helpful. Simply put, what things and relation-
ships “dot-and-arrow pictures” reference is in part a matter of ontol-
ogy. What beliefs of knowledge about these things are justified is a
matter of epistemology.

Let’s get acquainted with these terms. Webster’s 1913 dictionary
defines ontology as:

That department of the science of metaphysics which investigates and
explains the nature and essential properties and relations of all beings,
as such, or the principles and causes of being.

In order to create a valid causal model, we need to provide clarity
about what ontological entities each node references, and what re-
lationships exist between these entities. This task may no longer be



fairness in machine learning 111

difficult for certain objects of study. We might have strong scientifi-
cally justified beliefs on how certain mechanical parts in an airplane
interact. We can use this knowledge to reliable diagnose the cause of
an airplane crash.

In other domains, our subject matter knowledge is less stable and
subject to debate. This is where epistemology comes in, which the
Oxford dictionary defines as:

The theory of knowledge, especially with regard to its methods, valid-
ity, and scope, and the distinction between justified belief and opinion.

Against this backdrop, we will explore some of the ontological
and epistemic challenges that causal models relating to questions of
discrimination surface.

A motivating example

Consider a claim of employment discrimination of the kind: The
company’s hiring practices discriminated against applicants of a certain
religion.

What we will see is how two different ontological representations
of religious affiliation lead to fundamentally different causal models.
Each model in turn leads to different conclusions and comes with
modeling challenges that raise difficult questions.

Our first attempt is to model religious affiliation as a personal trait
or characteristic that someone either does or does not possess. This
trait, call it A, may influence choices relating to one’s appearance, so-
cial practices, and variables relevant to the job, such as, the person’s
level of education Z. So, we might like to start with a model such as
the following:

Figure 29: Religion as a root node.

Religious affiliation A is a source node in this graph, which influ-
ences the person’s level of education Z. Members of certain religions
may be steered away from or encouraged towards obtaining a higher
level of education by their social peer group. This story is similar
to how in our Berkeley admissions graph sex influences department
choice.

This view of religion places burden on understanding the possible
indirect pathways, such as A → Z → Y, through which religion can
influence the outcome. There may be insufficient understanding of
how a religious affiliation affects numerous other relevant variables
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throughout life. If we think of religion as a source node in a causal
graph, changing it will potentially affect all downstream nodes. For
each such downstream node we would need a clear understanding of
the mechanisms by which religion influence the node. Where would
such scientific knowledge of such relationships come from?

But the causal story around religion might also be different. It
could be that obtaining a higher level of education causes an individ-
ual to lose their religious beliefs.155 From this perspective, religious 155 In fact this modeling choice was

put forward in a recent paper on this
topic., Zhang and Bareinboim, “Fairness
in Decision-Making — the Causal
Explanation Formula.”.

affiliation becomes an ancestor of level of education and so the graph
might look like this:

Figure 30: Religion as ancestor.

This view of religion forces us to correctly identify the variables
that influence religious affiliation and are also relevant to the deci-
sion. Perhaps it is not just level of education, but also socioeconomic
status and other factors that have a similar confounding influence.

What is troubling is that in our first graph level of education is a
mediator, while in our second graph it is a confounder. The differ-
ence is important; to quote Pearl:

As you surely know by now, mistaking a mediator for a confounder is
one of the deadliest sins in causal inference and may lead to the most
outrageous error. The latter invites adjustment; the former forbids
it.156 156 Pearl and Mackenzie, The Book of

Why, 276.
Either of our modeling choices follows a natural causal story. Iden-

tifying which one is more accurate and applicable to the problem at
hand is no easy task. Where do we turn for subject matter knowledge
that confirms one model and rejects the other?

The point is not that these are the only two possible modeling
choices for how religious affiliation might interact with decision mak-
ing processes. Rather, our point is that there exist multiple plausible
choices. Moreover, different ontological representations lead to dif-
ferent results emphasizing that how we think of categories such as
religion is not just a philosophical debate that practitioners can afford
to ignore.

Social construction and human categories

The difficulties we encountered in our motivating example arise rou-
tinely when making causal statements involving human kinds and
categories, such as, race, religion, or gender, and how these interact
with consequential decisions.



fairness in machine learning 113

Let’s take a closer look at the case of race. The ontology of race is
complex and still subject of debate, as an article on this topic noted
not long ago:

In recent years, there has been a flurry of work on the metaphysics of
race. While it is now widely accepted that races do not share robust,
biobehavioral essences, opinions differ over what, if anything, race
is.157 157 R. Mallon, “‘Race’: Normative, Not

Metaphysical or Semantic,” Ethics 116,
no. 3 (2006): 525–51.Moreover, the act of assigning racial categories to individuals is

inextricably tied to a long history of oppression, segregation, and
discriminatory practices.158 158 For an entry point to this topic, see

for example G.C. Bowker and S. Leigh
Star, Sorting Things Out: Classification
and Its Consequences (MIT Press, 2000);
K.E. Fields and B.J. Fields, Racecraft: The
Soul of Inequality in American Life (Verso,
2014); R. Benjamin, Race After Technology
(Polity, 2019).

In the technical literature around discrimination and causality, it’s
common for researchers to model race as a source node in a causal
graph, which is to say that race has no incoming arrows. As a source
node it can directly and indirectly influence an outcome variable, say,
getting a job offer.159

159 A recent example of this kind of
modeling approach can be found in
Kusner, Loftus, Russell, and Silva,
“Counterfactual Fairness.”.

Implicit in this modeling choice is a kind of naturalistic perspec-
tive that views race as a biologically grounded trait, similar to sex.
The trait exists at the beginning of one’s life. Other variables that
come later in life, education and income, for example, thus become
ancestors in the causal graph.

This view of race challenges us to identify all the possible indirect
pathways through which race can influence the outcome. But it’s not
just this modeling challenge that we need to confront. The view of
race as a biologically grounded trait stands in contrast with the social
constructivist account of race.160 160 For an entry points to this literature,

see I. Hacking, The Social Construction of
What? (Harvard University Press, 2000);
S. Haslanger, Resisting Reality: Social
Construction and Social Critique (Oxford
University Press, 2012); R. Mallon, The
Construction of Human Kinds (Oxford
University Press, 2018); J. Glasgow, S.
Haslanger, C. Jeffers, and Q. Spencer,
“What Is Race?: Four Philosophical
Views,” 2019.

In this view, roughly speaking, race has no strong biological
grounding but rather is a social construct. Race stems from a particu-
lar classification of individuals by society, and the shared experiences
that stem from the classification. As such, the surrounding social sys-
tem of an individual influences what race is and how it is perceived.
In the constructivist view, race is a socially constructed category that
individuals are assigned to.

The challenge with adopting this view is that it is difficult to tease
out a set of nodes that faithfully represent the influence that soci-
ety has on race, and perceptions of race. The social constructivist
perspective does not come with a simple operational guide for identi-
fying causal structures.

Lack of modularity

Another challenge with socially constructed categories is that they
often lack the kind of modularity that a causal diagram requires.
Suppose that group membership is constructed from a set of social
facts about the group and practices of individuals within the group.
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We might have some understanding of how these facts and practices
constitutively identify group membership. But we may not have an
understanding of how each factor individually interacts with each
other factor, or whether such a decomposition is even possible.161 161 For a deeper discussion of modu-

larity in causality, see N. Cartwright,
Hunting Causes and Using Them, Too
(Cambridge University Press, 2006).

Causal models inevitably must draw “bounding boxes” around
a subset of the possible variables that we could include in a study.
Models are therefore systems of reduced complexity that isolate a set
variables from their possibly chaotic surroundings in the universe.
Pearl summarizes this philosophical point crisply:

If you wish to include the entire universe in the model, causality dis-
appears because interventions disappear—the manipulator and the
manipulated lose their distinction. However, scientists rarely consider
the entirety of the universe as an object of investigation. In most cases
the scientist carves out a piece from the universe and proclaims that
piece in—namely, the focus of investigation. The rest of the universe
is then considered out or background and is summarized by what we
call boundary conditions. This choice of ins and outs creates asymmetry
in the way we look at things, and it is this asymmetry that permits us
to talk about “outside intervention” and hence about causality and
cause-effect directionality.162 162 Pearl, Causality, 420.

What we learn from a causal model therefore depends on what
bounding box we chose. Too broad a bounding box can lead to a
Byzantine model that requires too many interactions to be modeled.
Too narrow a bounding box can fail to capture salient aspects of
the object of our study. Drawing adequate bounding boxes around
socially constructed categories is a delicate task.

Ontological instability

The previous arguments notwithstanding, pragmatist might accuse
our discussion of adding unnecessary complexity to what might
seem like a matter of common sense to some. Surely, we could also
find subtlety in other characteristics, such as, smoking habits or phys-
ical exercise. How is race different from other things we reference in
causal models?

An important difference is a matter of ontological stability. When
we say rain caused the grass to be wet we also refer to an implicit un-
derstanding of what rain is, what grass is, and what wet means.
However, we find that acceptable in this instance, because all three
things we refer to in our causal statement have stable enough ontolo-
gies. We know what we reference when we invoke them. To be sure,
there could be subtleties in what we call grass. Perhaps the colloquial
term grass does not correspond to a precise botanical category, or
one that has changed over time and will again change in the future.
However, by making the causal claim, we implicitly assert that these
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subtleties are irrelevant for the claim we made. We know that grass is
a plant and that other plants would also get wet from rain. In short,
we believe the ontologies we reference are stable enough for the claim
we make.

This is not always an easy judgment to make. There are, broadly
speaking, at least two sources of ontological instability. One stems
from the fact that the world changes over time. Both social progress,
political events, and our own epistemic activities may obsolete theo-
ries, create new categories, or disrupt existing ones.163 163 Mallon calls this form of instability

Taylor instability in reference to work by
the philosopher Charles Taylor., Mallon,
The Construction of Human Kinds

Hacking’s work describes another important source of instabil-
ity. Categories lead people who putatively fall into such categories
to change their behavior in possibly unexpected ways. Individuals
might conform or disconform to the categories they are confronted
with. As a result, the responses of people, individually or collec-
tively, invalidate the theory underlying the categorization. Hacking
calls this a “looping effect.”164 As such, social categories are moving 164 I. Hacking, “Making up People,”

London Review of Books 28, no. 16 (2006).targets that need constant revision.165

165 Related feedback effects are well
known in policy-making and some-
times go by the name Goodhart’s law or
Campbell’s law. Patterns observed in a
population tend to break down when
used for consequential classification or
control purposes.

Certificates of ontological stability

The debate around human categories in causal models is by no
means new. But it often surfaces in a seemingly unrelated, yet long-
standing discussion around causation and manipulation.

One school of thought in causal inference aligns with the mantra
no causation without manipulation, a view expressed by Holland in an
influential article from 1986:

Put as bluntly and as contentiously as possible, in this article I take the
position that causes are only those things that could, in principle, be
treatments in experiments.166 166 P.W. Holland, “Statistics and Causal

Inference,” Journal of the American
Statistical Association (JASA) 81 (1986):
945–70.Holland goes further by arguing that statements involving “at-

tributes” are necessarily statements of association:

The only way for an attribute to change its value is for the unit to
change in some way and no longer be the same unit. Statements of
“causation” that involve attributes as “causes” are always statements of
association between the values of an attribute and a response variable
across the units in a population.167 167 Holland.

To give an example, Holland maintains that the sentence “She did
well on the exam because she is a woman” means nothing but “the
performance of women on the exam exceeds, in some sense, that of
men.”168 168 Holland.

If we believed that there is no causation without manipulation, we
would have to refrain from including immutable characteristics in
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causal models altogether. After all, there is by definition no experi-
mental mechanism that turns immutable attributes into treatments.

Holland’s view remains popular among practitioners of the po-
tential outcomes model. The assumptions common in the potential
outcomes model are easiest to conceptualize by analogy with a well-
designed randomized trial. Practitioners in this framework are there-
fore used to conceptualizing causes as things that could, in principle,
be a treatment in randomized controlled trials.

The desire or need to make causal statements involving race in
one way or the other not only arises in the context of discrimination.
Epidemiologists encounter the same difficulties when confronting
health disparities169, as do social scientists when reasoning about 169 Jackson and VanderWeele, “Decom-

position Analysis to Identify Interven-
tion Targets for Reducing Disparities”;
T.J. VanderWeele and W.R. Robinson,
“On Causal Interpretation of Race in
Regressions Adjusting for Confounding
and Mediating Variables,” Epidemiology,
2014.

inequality in poverty, crime, and education.
Practitioners facing the need of making causal statements about

race often turn to a particular conceptual trick. The idea is to change
object of study from the effect of race to the effect of perceptions of
race.170 What this boils down to is that we change the units of the

170 D.J. Greiner and D.B. Rubin, “Causal
Effects of Perceived Immutable Char-
acteristics,” The Review of Economics and
Statistics 93, no. 3 (2011): 775–85.

study from individuals with a race attribute to decision makers. The
treatment becomes exposure to race through some observable trait,
like the name on a CV in a job application setting. The target of the
study is then how decision makers respond to such racial stimuli in
the decision-making process. The hope behind this maneuver is that
exposure to race, unlike race itself, may be something that we can
control, manipulate, and experiment with.

While this approach superficially avoids the difficulty of conceptu-
alizing manipulation of immutable characteristics, it shifts the burden
elsewhere. We now have to sort out all the different ways in which
we think that race could possibly be perceived: through names,
speech, style, and all sorts of other characteristics and combinations
thereof. But not only that. To make a counterfactual statements viz-a-
viz exposure to race, we would have to be able to create the authentic
background conditions under which all these perceptible characteris-
tics would’ve come out in a manner that’s consistent with a different
racial category. There is no way to construct such counterfactuals
accurately without a clear understanding of what we mean by the
category of race.171 171 For a deeper discussion of this

point and an insightful critique of
counterfactual arguments about race
more broadly, see I. Kohler-Hausmann,
“Eddie Murphy and the Dangers of
Counterfactual Causal Thinking About
Detecting Racial Discrimination,”
SSRN, 2019.

Just as we cannot talk about witchcraft in a valid causal model for
lack of any scientific basis, we also cannot talk about perceptions of
witchcraft in a valid causal model for the very same reason. Similarly,
if we lack the ontological and epistemic basis for talking about race in
a valid causal model, there is no easy remedy to be found in moving
to perceptions of race.172 172 Note the term racecraft coined in

Fields and Fields, Racecraft.In opposition to Holland’s view, other scholars, including Pearl,
argue that causation does not require manipulability but rather an
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understanding of interactions.
We can reason about hypothetical Volcano eruptions without be-

ing able to manipulate Volcanoes. We can explain the mechanism
that causes tides without being able to manipulate the moon by any
feasible intervention. What is required is an understanding of the
ways in which a variable interacts with other variables in the model.
Structural equations in a causal model are response functions. We can
think of a node in a causal graph as receiving messages from its par-
ent nodes and responding to those messages. Causality is thus about
who listens to whom. We can form a causal model once we know
how the nodes in it interact.

But as we saw the conceptual shift to interaction—who listens to
whom—by no means makes it straightforward to come up with valid
causal models. If causal models organize available scientific or em-
pirical information, there are inevitably limitations to what constructs
we can include in a causal model without running danger of divorc-
ing the model from reality. Especially in sociotechnical systems, sci-
entific knowledge may not be available in terms of precise modular
response functions.

We take the position that causes need not be experimentally ma-
nipulable. However, our discussion motivates that constructs refer-
enced in causal models need a certificate of ontological and epistemic
stability. Manipulation can be interpreted as a somewhat heavy-
handed approach to clarify the ontological nature of a node by speci-
fying an explicit experimental mechanism for manipulating the node.
This is one way, but not the only way, to clarify what it is that the
node references.

Looking ahead

We did not resolve the question of validity in causal modeling
around discrimination. Nor do we expect that these questions can
be resolved at generality. Questions of validity depend on the pur-
pose and scope of the model.173 We will return to questions of va- 173 On this point of purpose and scope,

see Cartwright’s essay in I.F. Peschard
and B.C. Van Fraassen, The Experi-
mental Side of Modeling (University of
Minnesota Press, 2018).

lidity in our next chapter on measurement that provides a helpful
complementary perspective.

Problem set

Bibliographic notes and further reading

Introductions to causality

There are several excellent introductory textbooks on the topic of
causality. For an introduction to causality turn to Pearl’s primer174, 174 Pearl, Glymour, and Jewell, Causal

Inference in Statistics.
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or the more comprehensive text175. At the technical level, Pearl’s 175 Pearl, Causality.

text emphasizes causal graphs and structural causal models. Our
exposition of Simpson’s paradox and the UC Berkeley was influenced
by Pearl’s discussion, updated for a new popular audience book176. 176 Pearl and Mackenzie, The Book of

Why.All of these texts touch on the topic of discrimination. In these books,
Pearl takes the position that discrimination corresponds to the direct
effect of the sensitive category on a decision.

The technically-minded reader will enjoy complementing Pearl’s
book with the recent open access text by Peters, Janzing, and Schölkopf177 177 Peters, Janzing, and Schölkopf,

Elements of Causal Inference.that is available online. The text emphasizes two variable causal mod-
els and applications to machine learning. See Spirtes, Glymour and
Scheines178 for a general introduction based on causal graphs with 178 P. Spirtes, C.N. Glymour, R. Scheines,

D. Heckerman, C. Meek, G. Cooper,
and T. Richardson, Causation, Prediction,
and Search (MIT press, 2000).

an emphasis on graph discovery, i.e., inferring causal graphs from
observational data.

Morgan and Winship179 focus on applications in the social sci- 179 S.L. Morgan and C. Winship, Coun-
terfactuals and Causal Inference (Cam-
bridge University Press, 2014).

ences. Imbens and Rubin180 give a comprehensive overview of the

180 G.W. Imbens and D.B. Rubin, Causal
Inference for Statistics, Social, and Biomed-
ical Sciences (Cambridge University
Press, 2015).

technical repertoire of causal inference in the potential outcomes
model. Angrist and Pischke181 focus on causal inference and poten-

181 J.D. Angrist and P. Jörn-Steffen,
Mostly Harmless Econometrics: An
Empiricist’s Companion (Princeton
University Press, 2009).

tial outcomes in econometrics.
Hernan and Robins182 give another detailed introduction to causal

182 M. Hernán and J. Robins, Causal
Inference (Boca Raton: Chapman &
Hall/CRC, forthcoming, 2019).

inference that draws on the authors’ experience in epidemiology.
Pearl183 already considered the example of gender discrimination

183 Pearl, Causality.

in UC Berkeley graduate admissions that we discussed at length.
In his discussion, he implicitly advocates for a view of discussing
discrimination based on the causal graphs by inspecting which paths
in the graph go from the sensitive variable to the decision point.

Recent technical work

The topic of causal reasoning and discrimination gained significant
momentum in the computer science and statistics community around
2017. Zhang et al.184 previously also considered discrimination anal- 184 L. Zhang, Y. Wu, and X. Wu, “A

Causal Framework for Discovering
and Removing Direct and Indirect
Discrimination,” in Proc. 26th IJCAI,
2017, 3929–35.

ysis via path-specific causal effects. Kusner et al.185 introduced a no-

185 Kusner, Loftus, Russell, and Silva,
“Counterfactual Fairness.”

tion of counterfactual fairness. The authors extend this line of thought
in another work186. Chiappa introduces a path-specific notion of

186 C. Russell, M.J. Kusner, J.R. Loftus,
and R. Silva, “When Worlds Collide:
Integrating Different Counterfactual
Assumptions in Fairness,” in Proc. 30th
NIPS, 2017, 6417–26.

counterfactual fairness187.

187 S. Chiappa, “Path-Specific Counter-
factual Fairness,” in Proc. 33rd Aaai, vol.
33, 2019, 7801–8.

Kilbertus et al.188 distinguish between two graphical causal cri-

188 N. Kilbertus, M. Rojas-Carulla, G.
Parascandolo, M. Hardt, D. Janzing,
and B. Schölkopf, “Avoiding Discrimi-
nation Through Causal Reasoning,” in
Proc. 30th NIPS, 2017, 656–66.

teria, called unresolved discrimination and proxy discrimination. Both
notions correspond to either allowing or disallowing paths in causal
models. Razieh and Shpitser189 conceptualize discrimination as the

189 R. Nabi and I. Shpitser, “Fair Infer-
ence on Outcomes,” in Proc. 32nd AAAI,
2018, 1931–40.

influence of the sensitive attribute on the outcome along certain disal-
lowed causal paths. Chiappa and Isaac190 give a tutorial on causality

190 S. Chiappa and W.S. Isaac, “A Causal
Bayesian Networks Viewpoint on
Fairness,” Arxiv.org arXiv:1907.06430

(2019).

and fairness with an emphasis on the COMPAS debate.
There is also extensive relevant scholarship in other disciplines

https://mitpress.mit.edu/books/elements-causal-inference
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that we cannot fully survey here. Of relevance is the vast literature
in epidemiology on health disparities. In particular, epidemiologists
have grappled with race and gender in causal models. See, for exam-
ple, the article by VanderWeele and Robinson191, as well as Krieger’s 191 VanderWeele and Robinson, “On

Causal Interpretation of Race in Regres-
sions Adjusting for Confounding and
Mediating Variables.”

comment on the article192, and Krieger’s article on discrimination

192 N. Krieger, “On the Causal Interpre-
tation of Race,” Epidemiology 25, no. 6

(2014): 937.

and health inequalities193 for a starting point.

193 N. Krieger, “Discrimination and
Health Inequities,” International Journal
of Health Services 44, no. 4 (2014): 643–
710.

Sociological and philosophical debate

A recent article by Hirschman and Reed194 does an excellent job at

194 D. Hirschman and I.A. Reed, “For-
mation Stories and Causality in Sociol-
ogy,” Sociological Theory 32, no. 4 (2014):
259–82.

summarizing and systematizing sociological accounts of causality.
Hirschman and Reed argue that traditional sociological and formal
accounts of causality conceptualize causes as forces that govern fixed
entities with variable attributes and the modular relationships be-
tween fixed entities. The article distinguishes between three main
strands of such forcing cause accounts: variable causality, treatment and
manipulation, and mechanisms. To connect this distinction with the
content of this chapter, it may be helpful to analogize variable causal-
ity with drawing causal diagrams, treatment and manipulation with
Rubin’s potential outcomes model, and mechanisms with mediation
analysis.

In this chapter we took a rather pragmatic perspective on causal-
ity by developing the minimal conceptual and technical tools to
understand ongoing research on causal inference. In doing so,
we’ve ignored centuries of philosophical debate around causality.
Cartwright’s work195 is a good starting point in this direction. 195 Cartwright, Hunting Causes and Using

Them, Too.

Systems, dynamics, feedback loops

So far we have assumed that our causal models are always acyclic.
Variables cannot simultaneously cause each other. In many appli-
cations it does make sense to talk about cyclic dependencies. For
example, we might reason that the economy grew, because of an in-
crease investments, and that investments grew, because of a growing
economy. The formalisms we encountered do not directly apply to
such closed loop dynamics.

There are a few ways of coping. One is to unroll the system into
discrete time steps. What this means is that we repeat the causal
graph for some number of discrete time steps in such a manner that
each node appears multiple times indexed by a time step.

An alternative route is to develop formalisms that directly deal
with actions in closed loop dynamics. See, work by Bongers et al.196 196 S. Bongers, J. Peters, B. Schölkopf,

and J.M. Mooij, “Theoretical Aspects
of Cyclic Structural Causal Models,”
arXiv.org Preprint arXiv:1611.06221v2

(2018).

on extending the structural causal model perspective to cyclic mod-
els.

Traditionally, feedback systems are the focus of control theory, an
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area with a long history and vast technical repertoire197. While much 197 K.J. Aström and R.M. Murray, Feed-
back Systems: An Introduction for Scien-
tists and Engineers (Princeton university
press, 2010).

of control theory focuses on physical systems, concepts from control
theory also influenced policy and decision making in other domains.
A well-known example is the area of system dynamics pioneered by
Forrester198 in the 60s and 70s that lead to some politically influential 198 J.W. Forrester, “Urban Dynamics,”

IMR; Industrial Management Review
(Pre-1986) 11, no. 3 (1970): 67; J.W.
Forrester, “Counterintuitive Behavior of
Social Systems,” Technological Forecasting
and Social Change 3 (1971): 1–22; J.W.
Forrester, “System Dynamics, Systems
Thinking, and Soft or,” System Dynamics
Review 10, nos. 2-3 (1994): 245–56.

works such as Limits to Growth199. But see Baker’s thesis200 for a

199 D.H. Meadows, J. Randers, and D.
Meadows, The Limits to Growth: The
30-Year Update (Routledge, 2012).
200 K.T. Baker, “World Processors:
Computer Modeling, Global Environ-
mentalism, and the Birth of Sustainable
Development” (Northwestern Univer-
sity, 2019).

history of system modeling and its pitfalls.



Testing Discrimination in Practice

In previous chapters, we have seen statistical, causal, and normative
fairness criteria. This chapter is about the complexities that arise
when we want to apply them in practice.

A running theme of this book is that there is no single test for fair-
ness. Rather, there are many quantitative criteria that can be used
to diagnose potential unfairness or discrimination.201 There’s often 201 We will use the terms unfairness and

discrimination roughly synonymously.
There is no overarching definition
of either term, but we will make our
discussion precise by referring to a
specific criterion whenever possible.
Linguistically, the term discrimination
puts more emphasis on the agency of
the decision maker.

a gap between moral notions of fairness and what is measurable by
available experimental or observational methods. This does not mean
that we can select and apply a fairness test based on convenience. Far
from it: we need moral reasoning and domain-specific considerations
to determine which test(s) are appropriate, how to apply them, de-
termine whether the findings indicate wrongful discrimination, and
whether an intervention is called for. We will see examples of such
reasoning throughout this chapter. Conversely, if a system passes a
fairness test, we should not interpret it as a certificate that the system
is fair.202 202 We’ll use “system” as a shorthand

for a decision-making system, such as
hiring at a company. It may or may not
involve any automation or machine
learning.

In this chapter, our primary objects of study will be real systems
rather than models of systems. We must bear in mind that there are
many necessary assumptions in creating a model which may not
hold in practice. For example, so-called automated decision making
systems rarely operate without any human judgment. Or, we may
assume that a machine learning system is trained on a sample drawn
from the same population on which it makes decisions, which is also
almost never true in practice. Further, decision making in real life
is rarely a single decision point, but rather a cumulative series of
small decisions. For example, hiring includes sourcing, screening,
interviewing, selection, and evaluation, and those steps themselves
include many components.203 203 M. Bogen and A. Rieke, “Help

wanted: an examination of hiring
algorithms, equity, and bias” (Technical
report, Upturn, 2018).

An important source of difficulty for testing discrimination in
practice is that researchers have a limited ability to observe — much
less manipulate — many of the steps in a real-world system. In fact,
we’ll see that even the decision maker faces limitations in its ability to
study the system.

Despite these limitations and difficulties, empirically testing fair-
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ness is vital. The studies that we’ll discuss serve as an existence proof
of discrimination and provide a lower bound of its prevalence. They
enable tracking trends in discrimination over time. When the findings
are sufficiently blatant, they justify the need for intervention regard-
less of any differences in interpretation. And when we do apply a
fairness intervention, they help us measure its effectiveness. Finally,
empirical research can also help uncover the mechanisms by which
discrimination takes place, which enables more targeted and effec-
tive interventions. This requires carefully formulating and testing
hypotheses using domain knowledge.

The first half of this chapter surveys classic tests for discrimina-
tion that were developed in the context of human-decision making
systems. The underlying concepts are just as applicable to the study
of fairness in automated systems. Much of the first half will build
on the causality chapter and explain concrete techniques including
experiments, difference-in-differences, and regression discontinuity.
While these are standard tools in the causal inference toolkit, we’ll
learn about the specific ways in which they can be applied to fairness
questions. Then we will turn to the application of the observational
criteria from Chapter 2. The summary table at the end of the first half
lists, for each test, the fairness criterion that it probes, the type of ac-
cess to the system that is required, and other nuances and limitations.
The second half of the chapter is about testing fairness in algorithmic
decision making, focusing on issues specific to algorithmic systems.

Part 1: Traditional tests for discrimination

Audit studies

The audit study is a popular technique for diagnosing discrimination.
It involves a study design called a field experiment. “Field” refers
to the fact that it is an experiment on the actual decision making
system of interest (in the “field”, as opposed to a lab simulation of
decision making). Experiments on real systems are hard to pull off.
For example, we usually have to keep participants unaware that
they are in an experiment. But field experiments allow us to study
decision making as it actually happens rather than worrying that
what we’re discovering is an artifact of a lab setting. At the same
time, the experiment, by carefully manipulating and controlling
variables, allows us to observe a treatment effect, rather than merely
observing a correlation.

How to interpret such a treatment effect is a more tricky question.
In our view, most audit studies, including the ones we’ll describe,
are best seen as attempts to test blindness: whether a decision maker
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directly uses a sensitive attribute. Recall that this notion of discrim-
ination is not necessarily a counterfactual in a valid causal model
(Chapter 4). Even as tests of blindness, there is debate about precisely
what it is that they measure, since the researcher can at best signal
race, gender, or another sensitive attribute. This will become clear
when we discuss specific studies.

Audit studies were pioneered by the US Department of Housing
and Urban Development in the 1970s for the purpose of studying
the adverse treatment faced by minority home buyers and renters.204 204 R.E. Wienk, C.E. Reid, J.C. Simonson,

and F.J. Eggers, “Measuring Racial
Discrimination in American Housing
Markets: The Housing Market Practices
Survey.” 1979.

They have since been successfully applied to many other domains.
In one landmark study, researchers recruited 38 testers to visit

about 150 car dealerships to bargain for cars, and record the price
they were offered at the end of bargaining.205 Testers visited deal- 205 I. Ayres and P. Siegelman, “Race and

Gender Discrimination in Bargaining
for a New Car,” The American Economic
Review, 1995, 304–21.

erships in pairs; testers in a pair differed in terms of race or gender.
Both testers in a pair bargained for the same model of car, at the
same dealership, usually within a few days of each other.

Pulling off an experiment such as this in a convincing way re-
quires careful attention to detail; here we describe just a few of the
many details in the paper. Most significantly, the researchers went
to great lengths to minimize any differences between the testers that
might correlate with race or gender. In particular, all testers were 28–
32 years old, had 3–4 years of postsecondary education, and “were
subjectively chosen to have average attractiveness”. Further, to mini-
mize the risk of testers’ interaction with dealers being correlated with
race or gender, every aspect of their verbal or nonverbal behavior was
governed by a script. For example, all testers “wore similar ‘yuppie’
sportswear and drove to the dealership in similar rented cars.” They
also had to memorize responses to a long list of questions they were
likely to encounter. All of this required extensive training and regular
debriefs.

The paper’s main finding was a large and statistically significant
price penalty in the offers received by black testers. For example,
black males received final offers that were about $1,100 more than
white males, which represents a threefold difference in dealer profits
based on data on dealer costs. The analysis in the paper has alter-
native target variables (initial offers instead of final offers; percent-
age markup instead of dollar offers), alternate model specifications
(e.g. to account the two audits in each pair having correlated noise),
and additional controls (e.g. bargaining strategy). Thus, there are a
number of different estimates, but the core findings remain robust.206 206 In an experiment such as this where

the treatment is randomized, the addi-
tion or omission of control variables in
a regression estimate of the treatment
effect does not result in an incorrect es-
timate, but control variables can explain
some of the noise in the observations
and thus increase the precision of the
treatment effect estimate, i.e., decrease
the standard error of the coefficient.

A tempting interpretation of this study is that if two people were
identical except for race, with one being white and the other being
black, then the offers they should expect to receive would differ by
about $1,100. But what does it mean for two people to be identical
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except for race? Which attributes about them would be the same, and
which would be different?

With the benefit of the discussion of ontological instability in
Chapter 4, we can understand the authors’ implicit framework for
making these decisions. In our view, they treat race as a stable source
node in a causal graph, attempt to hold constant all of its descen-
dants, such as attire and behavior, in order to estimate the direct
effect of race on the outcome. But what if one of the mechanisms of
what we understand as “racial discrimination” is based on attire and
behavior differences? The social construction of race suggests that
this is plausible.207 207 J.B. Freeman, A.M. Penner, A. Saper-

stein, M. Scheutz, and N. Ambady,
“Looking the Part: Social Status Cues
Shape Race Perception,” PloS One 6, no.
9 (2011): e25107.

Note that the authors did not attempt to eliminate differences
in accent between testers. Why not? From a practical standpoint,
accent is difficult to manipulate. But a more principled defense of
the authors’ choice is that accent is a part of how we understand
race; a part of what it means to be black, white, etc., so that even if
the testers could manipulate their accents, they shouldn’t. Accent is
subsumed into the “race” node in the causal graph.

To take an informed stance on questions such as this, we need
a deep understanding of cultural context and history. They are the
subject of vigorous debate in sociology and critical race theory. Our
point is this: the design and interpretation of audit studies requires
taking positions on contested social questions. It may be futile to
search for a single “correct” way to test even the seemingly straight-
forward fairness notion of whether the decision maker treats similar
individuals similarly regardless of race. Controlling for a plethora of
attributes is one approach; another is to simply recruit black testers
and white testers, have them behave and bargain as would be their
natural inclination, and measure the demographic disparity. Each
approach tells us something valuable, and neither is “better.”208 208 In most other domains, say employ-

ment, testing demographic disparity
would be less valuable, because there
are relevant differences between candi-
dates. Price discrimination is unusual
in that there are no morally salient
qualities of buyers that may justify it.

Another famous audit study tested discrimination in the labor
market.209 Instead of sending testers in person, the researchers sent

209 M. Bertrand and S. Mullainathan,
“Are Emily and Greg More Employ-
able Than Lakisha and Jamal? A Field
Experiment on Labor Market Discrim-
ination,” American Economic Review 94,
no. 4 (2004): 991–1013.

in fictitious resumes in response to job ads. Their goal was to test if
an applicant’s race had an impact on the likelihood of an employer
inviting them for an interview. They signaled race in the resumes by
using white-sounding names (Emily, Greg) or black-sounding names
(Lakisha, Jamal). By creating pairs of resumes that were identical
except for the name, they found that white names were 50% more
likely to result in a callback than black names. The magnitude of the
effect was equivalent to an additional eight years of experience on a
resume.

Despite the study’s careful design, debates over interpretation
have inevitably arisen, primarily due to the use of candidate names
as a way to signal race to employers. Did employers even notice the
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names in all cases, and might the effect have been even stronger if
they had? Or, can the observed disparities be better explained based
on factors correlated with race, such as a preference for more com-
mon and familiar names, or an inference of higher socioeconomic
status for the candidates with white-sounding names? (Of course, the
alternative explanations don’t make the observed behavior morally
acceptable, but they are important to consider.) Although the au-
thors provide evidence against these interpretations, debate has per-
sisted. For a discussion of critiques of the validity of audit studies,
see Pager’s survey.210 210 D. Pager, “The Use of Field Exper-

iments for Studies of Employment
Discrimination: Contributions, Cri-
tiques, and Directions for the Future,”
The Annals of the American Academy of
Political and Social Science 609, no. 1

(2007): 104–33.

In any event, like other audit studies, this experiment tests fair-
ness as blindness. Even simple proxies for race, such as residential
neighborhood, were held constant between matched pairs of resumes.
Thus, the design likely underestimates the extent to which morally
irrelevant characteristics affect callback rates in practice. This is just
another way to say that attribute flipping does not generally pro-
duce counterfactuals that we care about, and it is unclear if the effect
sizes measured have any meaningful interpretation that generalizes
beyond the context of the experiment.

Rather, audit studies are valuable because they trigger a strong
and valid moral intuition.211 They also serve a practical purpose: 211 I. Kohler-Hausmann, “Eddie Murphy

and the Dangers of Counterfactual
Causal Thinking About Detecting
Racial Discrimination,” Nw. UL Rev. 113

(2018): 1163.

when designed well, they illuminate the mechanisms that produce
disparities and help guide interventions. For example, the car bar-
gaining study concluded that the preferences of owners of dealer-
ships don’t explain the observed discrimination, that the preferences
of other customers may explain some of it, and strong evidence that
dealers themselves (rather than owners or customers) are the primary
source of the observed discrimination.

Resume-based audit studies, also known as correspondence stud-
ies, have been widely replicated. We briefly present some major find-
ings, with the caveat that there may be publication biases. For exam-
ple, studies finding no evidence of an effect are in general less likely
to be published. Alternately, published null findings might reflect
poor experiment design, or might simply indicate that discrimination
is only expressed in certain contexts.

A 2016 survey lists 30 studies from 15 countries covering nearly
all continents revealing pervasive discrimination against racial and
ethnic minorities.212 The method has also been used to study dis- 212 M. Bertrand and E. Duflo, “Field

Experiments on Discrimination,” in
Handbook of Economic Field Experiments,
vol. 1 (Elsevier, 2017), 309–93.

crimination based on gender, sexual orientation, and physical ap-
pearance.213 It has also been used outside the labor market, in retail

213 Bertrand and Duflo.and academia.214 Finally, trends over time have been studied: a meta-
214 Bertrand and Duflo.analysis found no change in racial discrimination in hiring against

African Americans from 1989 to 2015. There was some indication of
declining discrimination against Latinx Americans, although the data
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on this question was sparse.215 215 L. Quillian, D. Pager, O. Hexel, and
A.H. Midtbøen, “Meta-Analysis of
Field Experiments Shows No Change
in Racial Discrimination in Hiring
over Time,” Proceedings of the National
Academy of Sciences 114, no. 41 (2017):
10870–5.

Collectively, audit studies have helped nudge the academic and
policy debate away from the naive view that discrimination is a con-
cern of a bygone era. From a methodological perspective, our main
takeaway from the discussion of audit studies is the complexity of
defining and testing blindness.

Testing the impact of blinding

In some situations, it is not possible to test blindness by randomizing
the decision maker’s perception of race, gender, or other sensitive
attribute. For example, suppose we want to test if there’s gender bias
in peer review in a particular research field. Submitting real papers
with fictitious author identities may result in the reviewer attempting
to look up the author and realizing the deception. A design in which
the researcher changes author names to those of real people is even
more problematic.

There is a slightly different strategy that’s more viable: an editor of
a scholarly journal in the research field could conduct an experiment
in which each paper received is randomly assigned to be reviewed
in either a single-blind fashion (in which the author identities are
known to the referees) or double-blind fashion (in which author
identities are withheld from referees). Indeed, such experiments
have been conducted,216 but in general even this strategy can be 216 R.M. Blank, “The Effects of Double-

Blind Versus Single-Blind Reviewing:
Experimental Evidence from the Amer-
ican Economic Review,” The American
Economic Review, 1991, 1041–67.

impractical.
At any rate, suppose that a researcher has access to only obser-

vational data on journal review policies and statistics on published
papers. Among ten journals in the research field, some introduced
double-blind review, and did so in different years. The researcher
observes that in each case, right after the switch, the fraction of
female-authored papers rose, whereas there was no change for the
journals that stuck with single-blind review. Under certain assump-
tions, this enables estimating the impact of double-blind reviewing
on the fraction of accepted papers that are female-authored. This hy-
pothetical example illustrates the idea of a “natural experiment”, so
called because experiment-like conditions arise due to natural vari-
ation. Specifically, the study design in this case is called differences-
in-differences. The first “difference” is between single-blind and
double-blind reviewing, and the second “difference” is between jour-
nals (row 2 in the summary table).

Differences-in-differences is methodologically nuanced, and a
full treatment is beyond our scope.217 We briefly note some pit- 217 J.-S. Pischke, “Empirical Methods in

Applied Economics: Lecture Notes,”
2005.

falls. There may be unobserved confounders: perhaps the switch
to double-blind reviewing at each journal happened as a result of a
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change in editorship, and the new editors also instituted policies that
encouraged female authors to submit strong papers. There may also
be spillover effects (which violates the Stable Unit Treatment Value
Assumption): a change in policy at one journal can cause a change in
the set of papers submitted to other journals. Outcomes are serially
correlated (if there is a random fluctuation in the gender composition
of the research field due to an entry or exodus of some researchers,
the effect will last many years). This complicates the computation
of the standard error of the estimate.218 Finally, the effect of double 218 M. Bertrand, E. Duflo, and S. Mul-

lainathan, “How Much Should We Trust
Differences-in-Differences Estimates?”
The Quarterly Journal of Economics 119,
no. 1 (2004): 249–75.

blinding on the probability of acceptance of female-authored papers
(rather than on the fraction of accepted papers that are female au-
thored) is not identifiable using this technique without additional
assumptions or controls.

Even though testing the impact of blinding sounds similar to test-
ing blindness, there is a crucial conceptual and practical difference.
Since we are not asking a question about the impact of race, gender,
or another sensitive attribute, we avoid running into ontological in-
stability. The researcher doesn’t need to intervene on the observable
features by constructing fictitious resumes or training testers to use
a bargaining script. Instead, the natural variation in features is left
unchanged; the study involves real decision subjects. The researcher
only intervenes on the decision making procedure (or exploits natu-
ral variation) and evaluates the impact of that intervention on groups
of candidates defined by the sensitive attribute A. Thus, A is not
a node in a causal graph, but merely a way to split the units into
groups for analysis. Questions of whether the decision maker ac-
tually inferred the sensitive attribute or merely a feature correlated
with it are irrelevant to the interpretation of the study. Further, the
effect sizes measured do have a meaning that generalizes to scenarios
beyond the experiment. For example, a study tested the effect of “re-
sume whitening”, in which minority applicants deliberately conceal
cues of their racial or ethnic identity in job application materials to
improve their chances of getting a callback.219 The effects reported in 219 S.K. Kang, K.A. DeCelles, A. Tilcsik,

and S. Jun, “Whitened Resumes: Race
and Self-Presentation in the Labor Mar-
ket,” Administrative Science Quarterly 61,
no. 3 (2016): 469–502.

the study are meaningful to job seekers who engage in this practice.

Revealing extraneous factors in decisions

Sometimes natural experiments can be used to show the arbitrari-
ness of decision making rather than unfairness in the sense of non-
blindness (row 3 in the summary table). Recall that arbitrariness
is one type of unfairness that we are concerned about in this book
(Chapter 3). Arbitrariness may refer to the lack of a uniform decision
making procedure or to the incursion of irrelevant factors into the
procedure.
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For example, a study looked at decisions made by judges in
Louisiana juvenile courts, including sentence lengths.220 It found that 220 O. Eren and N. Mocan, “Emotional

Judges and Unlucky Juveniles,” Ameri-
can Economic Journal: Applied Economics
10, no. 3 (2018): 171–205.

in the week following an upset loss suffered by the Louisiana State
University (LSU) football team, judges imposed sentences that were
7% longer on average. The impact was greater for black defendants.
The effect was driven entirely by judges who got their undergradu-
ate degrees at LSU, suggesting that the effect is due to the emotional
impact of the loss.221 221 For readers unfamiliar with the cul-

ture of college football in the United
States, the paper helpfully notes that
“Describing LSU football just as an
event would be a huge understate-
ment for the residents of the state of
Louisiana.”

Another well-known study on the supposed unreliability of judi-
cial decisions is in fact a poster child for the danger of confounding
variables in natural experiments. The study tested the relationship
between the order in which parole cases are heard by judges and the
outcomes of those cases.222 It found that the percentage of favorable 222 S. Danziger, J. Levav, and L. Avnaim-

Pesso, “Extraneous Factors in Judicial
Decisions,” Proceedings of the National
Academy of Sciences 108, no. 17 (2011):
6889–92.

rulings started out at about 65% early in the day before gradually
dropping to nearly zero right before the judges’ food break, returned
to ~65% after the break, with the same pattern repeated for the fol-
lowing food break! The authors suggested that judges’ mental re-
sources are depleted over the course of a session, leading to poorer
decisions. It quickly became known as the “hungry judges” study
and has been widely cited as an example of the fallibility of human
decision makers.

Figure 31: (from Danziger et al.):
fraction of favorable rulings over
the course of a day. The dotted lines
indicate food breaks.

The finding would be extraordinary if the order of cases was truly
random.223 The authors were well aware that the order wasn’t ran- 223 In fact, it would be so extraordi-

nary that it has been argued that the
study should be dismissed simply
based on the fact that the effect size
observed is far too large to be caused
by psychological phenomena such
as judges’ attention. See D. Lakens,
“Impossibly Hungry Judges” (https:
//daniellakens.blogspot.com/2017/

07/impossibly-hungry-judges.html,
2017)

dom, and performed a few tests to see if it is associated with factors
pertinent to the case (since those factors might also impact the prob-
ability of a favorable outcome in a legitimate way). They did not
find such factors. But it turned out they didn’t look hard enough. A
follow-up investigation revealed multiple confounders and potential
confounders, including the fact that prisoners without an attorney
are presented last within each session, and tend to prevail at a much
lower rate.224 This invalidates the conclusion of the original study. 224 K. Weinshall-Margel and J. Shapard,

“Overlooked Factors in the Analysis
of Parole Decisions,” Proceedings of the
National Academy of Sciences 108, no. 42

(2011): E833–E833.

https://daniellakens.blogspot.com/2017/07/impossibly-hungry-judges.html
https://daniellakens.blogspot.com/2017/07/impossibly-hungry-judges.html
https://daniellakens.blogspot.com/2017/07/impossibly-hungry-judges.html
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Testing the impact of decisions and interventions

An underappreciated aspect of fairness in decision making is the
impact of the decision on the decision subject. In our prediction
framework, the target variable (Y) is not impacted by the score or
prediction (R). But this is not true in practice. Banks set interest rates
for loans based on the predicted risk of default, but setting a higher
interest rate makes a borrower more likely to default. The impact of
the decision on the outcome is a question of causal inference.

There are other important questions we can ask about the impact
of decisions. What is the utility or cost of a positive or negative deci-
sion to different decision subjects (and groups)? For example, admis-
sion to a college may have a different utility to different applicants
based on the other colleges where they were or weren’t admitted. De-
cisions may also have effects on people who are not decision subjects:
for instance, incarceration impacts not just individuals but commu-
nities.225 Measuring these costs allows us to be more scientific about 225 A.Z. Huq, “Racial Equity in Algorith-

mic Criminal Justice,” Duke LJ 68 (2018):
1043.

setting decision thresholds and adjusting the tradeoff between false
positives and negatives in decision systems.

One way to measure the impact of decisions is via experiments,
but again, they can be infeasible for legal, ethical, and technical rea-
sons. Instead, we highlight a natural experiment design for testing
the impact of a decision — or a fairness intervention — on the candi-
dates, called regression discontinuity (row 4 in the summary table).

Suppose we’d like to test if a merit-based scholarship program for
first-generation college students has lasting beneficial effects — say,
on how much they earn after college. We cannot simply compare the
average salary of students who did and did not win the scholarship,
as those two variables may be confounded by intrinsic ability or
other factors. But suppose the scholarships were awarded based on
test scores, with a cutoff of 85%. Then we can compare the salary
of students with scores of 85% to 86% (and thus were awarded the
scholarship) with those of students with scores of 84% to 85% (and
thus were not awarded the scholarship). We may assume that within
this narrow range of test scores, scholarships are awarded essentially
randomly.226 Thus we can estimate the impact of the scholarship as if 226 For example, if the variation (stan-

dard error) in test scores for students of
identical ability is 5 percentage points,
then the difference between 84% and
86% is of minimal significance.

we did a randomized controlled trial.
We need to be careful, though. If we consider too narrow a band

of test scores around the threshold, we may end up with insufficient
data points for inference. If we consider a wider band of test scores,
the students in this band may no longer be exchangeable units for the
analysis.

Another pitfall arises because we assumed that the set of students
who receive the scholarship is precisely those that are above the
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threshold. If this assumption fails, it immediately introduces the
possibility of confounders. Perhaps the test score is not the only
scholarship criterion, and income is used as a secondary criterion. Or,
some students offered the scholarship may decline it because they
already received another scholarship. Other students may not avail of
the offer because the paperwork required to claim it is cumbersome.
If it is possible to take the test multiple times, wealthier students may
be more likely to do so until they meet the eligibility threshold.

Purely observational tests

The final category of quantitative tests for discrimination is purely
observational. When we are not able to do experiments on the system
of interest, nor have the conditions that enable quasi-experimental
studies, there are still many questions we can answer with purely
observational data.

One question that is often studied using observational data is
whether the decision maker used the sensitive attribute; this can be
seen as a loose analog of audit studies. This type of analysis is often
used in the legal analysis of disparate treatment, although there is a
deep and long-standing legal debate on whether and when explicit
consideration of the sensitive attribute is necessarily unlawful.227 227 H. Norton, “The Supreme Court’s

Post-Racial Turn Towards a Zero-Sum
Understanding of Equality,” Wm. &
Mary L. Rev. 52 (2010): 197.

The most common way to do this is to use regression analysis to
see if attributes other than the protected attributes can collectively
“explain” the observed decisions228 (row 5 in the summary table). 228 I. Ayres, “Three Tests for Measuring

Unjustified Disparate Impacts in Organ
Transplantation: The Problem of"
Included Variable" Bias,” Perspectives
in Biology and Medicine 48, no. 1 (2005):
68–S87.

If they don’t, then the decision maker must have used the sensitive
attribute. However, this is a brittle test. As discussed in Chapter 2,
given a sufficiently rich dataset, the sensitive attribute can be recon-
structed using the other attributes. It is no surprise that attempts to
apply this test in a legal context can turn into dueling expert reports,
as seen in the SFFA vs. Harvard case discussed in Chapter 4.

We can of course try to go deeper with observational data and
regression analysis. To illustrate, consider the gender pay gap. A
study might reveal that there is a gap between genders in wage per
hour worked for equivalent positions in a company. A rebuttal might
claim that the gap disappears after controlling for college GPA and
performance review scores. Such studies can be seen as tests for
conditional demographic parity (row 6 in the summary table).229 229 Testing conditional demographic

parity using regression requires strong
assumptions about the functional
form of the relationship between the
independent variables and the target
variable.

It can be hard to make sense of competing claims based on re-
gression analysis. Which variables should we control for, and why?
There are two ways in which we can put these observational claims
on a more rigorous footing. The first is to use a causal framework to
make our claims more precise. In this case, causal modeling might
alert us to unresolved questions: why do performance review scores
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differ by gender? What about the gender composition of different
roles and levels of seniority? Exploring these questions may reveal
unfair practices. Of course, in this instance the questions we raised
are intuitively obvious, but other cases may be more intricate.

The second way to go deeper is to apply our normative under-
standing of fairness to determine which paths from gender to wage
are morally problematic. If the pay gap is caused by the (well-known)
gender differences in negotiating for pay raises, does the employer
bear the moral responsibility to mitigate it? This is, of course, a nor-
mative and not a technical question.

Outcome-based tests

So far in this chapter we’ve presented many scenarios — screening
job candidates, peer review, parole hearings — that have one thing
in common: while they all aim to predict some outcome (job perfor-
mance, paper quality, recidivism), the researcher does not have access
to data on the true outcomes.

Lacking ground truth, the focus shifts to the observable character-
istics at decision time, such as job qualifications. A persistent source
of difficulty in these settings is for the researcher to construct two sets
of samples that differ only in the sensitive attribute and not in any of
the relevant characteristics. This is often an untestable assumption.
Even in an experimental setting such as a resume audit study, there
is substantial room for different interpretations: did employers in-
fer race from names, or socioeconomic status? And in observational
studies, the findings might turn out to be invalid because of unob-
served confounders (such as in the hungry judges study).

But if outcome data are available, then we can do at least one test
of fairness without needing any of the observable features (other than
the sensitive attribute): specifically, we can test for sufficiency, which
requires that the true outcome be conditionally independent of the
sensitive attribute given the prediction (Y ⊥ A|R). For example, in
the context of lending, if the bank’s decisions satisfy sufficiency, then
among applicants in any narrow interval of predicted probability of
default (R), we should find the same rate of default (Y) for applicants
of any group (A).

Typically, the decision maker (the bank) can test for sufficiency,
but an external researcher cannot, since the researcher only gets to
observe Ŷ and not R (i.e., whether or not the loan was approved).
Such a researcher can test predictive parity rather than sufficiency.
Predictive parity requires that the rate of default (Y) for favorably
classified applicants (Ŷ = 1) of any group (A) be the same. This
observational test is called the outcome test (row 7 in the summary
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table).
Here is a tempting argument based on the outcome test: if one

group (say women) who receive loans have a lower rate of default
than another (men), it suggests that the bank applies a higher bar
for loan qualification for women. Indeed, this type of argument was
the original motivation behind the outcome test. But it is a logical
fallacy; sufficiency does not imply predictive parity (or vice versa). To
see why, consider a thought experiment involving the Bayes optimal
predictor. In the hypothetical figure below, applicants to the left of
the vertical line qualify for the loan. Since the area under the curve
to the left of the line is concentrated further to the right for men than
for women, men who receive loans are more likely to default than
women. Thus, the outcome test would reveal that predictive parity is
violated, whereas it is clear from the construction that sufficiency is
satisfied, and the bank applies the same bar to all groups.

Figure 32: Hypothetical probability
density of loan default for two groups,
women (orange) and men (blue).

This phenomenon is called infra-marginality, i.e., the measurement
is aggregated over samples that are far from the decision threshold
(margin). If we are indeed interested in testing sufficiency (equiva-
lently, whether the bank applied the same threshold to all groups),
rather than predictive parity, this is a problem. To address it, we can
somehow try to narrow our attention to samples that are close to the
threshold. This is not possible with (Ŷ, A, Y) alone: without knowing
R, we don’t know which instances are close to the threshold. How-
ever, if we also had access to some set of features X′ (which need not
coincide with the set of features X observed by the decision maker), it
becomes possible to test for violations of sufficiency. The threshold test
is a way to do this (row 8 in the summary table). A full description is
beyond our scope.230 One limitation is that it requires a model of the 230 C. Simoiu, S. Corbett-Davies, and S.

Goel, “The Problem of Infra-Marginality
in Outcome Tests for Discrimination,”
The Annals of Applied Statistics 11, no. 3

(2017): 1193–1216.

joint distribution of (X′, A, Y) whose parameters can be inferred from
the data, whereas the outcome test is model-free.

While we described infra-marginality as a limitation of the out-
come test, it can also be seen as a benefit. When using a marginal
test, we treat the distribution of applicant characteristics as a given,
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and miss the opportunity to ask: why are some individuals so far
from the margin? Ideally, we can use causal inference to answer this
question, but when the data at hand don’t allow this, non-marginal
tests might be a useful starting point for diagnosing unfairness that
originates “upstream” of the decision maker. Similarly, error rate
disparity, to which we will now turn, while crude by comparison to
more sophisticated tests for discrimination, attempts to capture some
of our moral intuitions for why certain disparities are problematic.

Separation and selective labels

Recall that separation is defined as R ⊥ A|Y. At first glance, it seems
that there is a simple observational test analogous to our test for suf-
ficiency (Y ⊥ A|R). However, this is not straightforward, even for
the decision maker, because outcome labels can be observed only
for some of the applicants (i.e. the ones who received favorable de-
cisions). Trying to test separation using this sample suffers from
selection bias. This is an instance of what is called the selective labels
problem. The issue also affects the computation of false positive and
false negative rate parity, which are binary versions of separation.

More generally, the selective labels problem is the issue of selec-
tion bias in evaluating decision making systems due to the fact that
the very selection process we wish to study determines the sample
of instances that are observed. It is not specific to the issue of testing
separation or error rates: it affects the measurement of other fun-
damental metrics such as accuracy as well. It is a serious and often
overlooked issue that has been the subject of recent study.231 231 H. Lakkaraju, J. Kleinberg, J.

Leskovec, J. Ludwig, and S. Mul-
lainathan, “The Selective Labels Prob-
lem: Evaluating Algorithmic Predic-
tions in the Presence of Unobservables,”
in Proceedings of the 23rd Acm Sigkdd
International Conference on Knowledge
Discovery and Data Mining (ACM, 2017),
275–84.

One way to get around this barrier is for the decision maker to
employ an experiment in which some sample of decision subjects
receive positive decisions regardless of the prediction (row 9 in the
summary table). However, such experiments raise ethical concerns
and are rarely done in practice. In machine learning, some experi-
mentation is necessary in settings where there does not exist offline
data for training the classifier, which must instead simultaneously
learn and make decisions.232 232 S. Bird, S. Barocas, K. Crawford, F.

Diaz, and H. Wallach, “Exploring or
Exploiting? Social and Ethical Implica-
tions of Autonomous Experimentation
in Ai,” in Workshop on Fairness, Ac-
countability, and Transparency in Machine
Learning, 2016.

One scenario where it is straightforward to test separation is when
the “prediction” is not actually a prediction of a future event, but
rather when machine learning is used for automating human judg-
ment, such as harassment detection in online comments. In these
applications, it is indeed possible and important to test error rate
parity.

Summary of traditional tests and methods
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Table 12: Summary of traditional tests and methods, highlight-
ing the relationship to fairness, the observational and experi-
mental access required by the researcher, and limitations.

Test / study design Fairness notion / application Access Notes / limitations

1 Audit study Blindness A-exp :=, X :=, R Difficult to interpret
2 Natural experiment Impact of blinding A-exp ∼, R Confounding;

especially diff-in-diff SUTVA violations; other
3 Natural experiment Arbitrariness W ∼, R Unobserved confounders
4 Natural experiment Impact of decision R, Y or Y′ Sample size; confounding;

especially regr. disc. other technical difficulties
5 Regression analysis Blindness X, A, R Unreliable due to proxies
6 Regression analysis Cond. demographic parity X, A, R Weak moral justification
7 Outcome test Predictive parity A, Y | Ŷ = 1 Infra-marginality
8 Threshold test Sufficiency X′, A, Y | Ŷ = 1 Model-specific
9 Experiment Separation/error rate parity A, R, Ŷ := , Y Often unethical or impractical
10 Observational test Demographic parity A, R See Chapter 2

11 Mediation analysis “Relevant” mechanism X, A, R See Chapter 4

Legend:

• := indicates intervention on some variable (that is, X := does not represent a new random variable but is
simply an annotation describing how X is used in the test)

• ∼ natural variation in some variable exploited by the researcher
• A-exp exposure of a signal of the sensitive attribute to the decision maker
• W a feature that is considered irrelevant to the decision
• X′ a set of features which may not coincide with those observed by the decision maker|
• Y′ an outcome that may or may not be the one that is the target of prediction|

Taste-based and statistical discrimination

We have reviewed several methods of detecting discrimination but
we have not addressed the question of why discrimination happens.
A long-standing way to try to answer this question from an economic
perspective is to classify discrimination as taste-based or statistical.
A taste-based discriminator is motivated by an irrational animus
or prejudice for a group. As a result, they are willing to make sub-
optimal decisions by passing up opportunities to select candidates
from that group, even though they will incur a financial penalty
for doing so. This is the classic model of discrimination in labor
markets.233 233 G.S. Becker, The Economics of Discrim-

ination (University of Chicago Press,
1957).

A statistical discriminator, in contrast, aims to make optimal pre-
dictions about the target variable using all available information,
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including the protected attribute.234 In the simplest model of sta- 234 E.S. Phelps, “The Statistical Theory of
Racism and Sexism,” The American Eco-
nomic Review 62, no. 4 (1972): 659–61; K.
Arrow, “The Theory of Discrimination,”
Discrimination in Labor Markets 3, no. 10

(1973): 3–33.

tistical discrimination, two conditions hold: first, the distribution of
the target variable differs by group. The usual example is of gender
discrimination in the workplace, involving an employer who believes
that women are more likely to take time off due to pregnancy (re-
sulting in lower job performance). The second condition is that the
observable characteristics do not allow a perfect prediction of the
target variable, which is essentially always the case in practice. Un-
der these two conditions, the optimal prediction will differ by group
even when the relevant characteristics are identical. In this example,
the employer would be less likely to hire a woman than an equally
qualified man. There’s a nuance here: from a moral perspective we
would say that the employer above discriminates against all female
candidates. But under the definition of statistical discrimination, the
employer only discriminates against the female candiates who would
not have taken time off if hired (and in fact discriminates in favor of
the female candidates who would take time off if hired).

While some authors put much weight understanding discrimina-
tion based on the taste-based vs. statistical categorization, we will
de-emphasize it in this book. Several reasons motivate our choice.
First, since we are interested in extracting lessons for statistical deci-
sion making systems, the distinction is not that helpful: such systems
will not exhibit taste-based discrimination unless prejudice is explic-
itly programmed into them (while that is certainly a possibility, it is
not a primary concern of this book).

Second, there are practical difficulties in distinguishing between
taste-based and statistical discrimination. Often, what might seem
to be a “taste” for discrimination is simply the result of an imperfect
understanding of the decision-maker’s information and beliefs. For
example, at first sight the findings of the car bargaining study may
look like a clear-cut case of taste-based discrimination. But maybe the
dealer knows that different customers have different access to com-
peting offers and therefore have different willingness to pay for the
same item. Then, the dealer uses race as a proxy for this amount (cor-
rectly or not). In fact, the paper provides tentative evidence towards
this interpretation. The reverse is also possible: if the researcher does
not know the full set of features observed by the decision maker,
taste-based discrimination might be mischaracterized as statistical
discrimination.

Third, many of the fairness questions of interest to us, such as
structural discrimination, don’t map to either of these criteria (as
they only consider causes that are relatively proximate to the decision
point). We will discuss structural discrimination in Chapter 6.

Finally, the distinction is also not especially valuable from a nor-
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mative perspective. Recall that our moral understanding of fairness
emphasizes the effects on the decision subjects and does not put
much weight on the mental state of the decision maker. It’s also
worth nothing that this dichotomy is associated with the policy
position that fairness interventions are unnecessary — firms that
practice taste-based discrimination will go out of business; as for sta-
tistical discrimination, either it is argued to be justified or futile to
proscribe, because firms will find workarounds.235 Of course, that’s 235 For example, laws restricting em-

ployers from asking about applicants’
criminal history resulted in employers
using race as a proxy for it. See A.
Agan and S. Starr, “Ban the Box, Crimi-
nal Records, and Racial Discrimination:
A Field Experiment,” The Quarterly
Journal of Economics 133, no. 1 (2017):
191–235.

not necessarily a reason to avoid discussing taste-based and statis-
tical discrimination, as the policy position in no way follows from
the technical definitions and models themselves; it’s just a relevant
caveat for the reader who might encounter these dubious arguments
in other sources.

Although we de-emphasize this distinction, we consider it critical
to study the sources and mechanisms of discrimination. This helps us
design effective and well-targeted interventions. For example, several
studies (including the car bargaining study) test whether the source
of discrimination lies in the owner, employees, or customers.

An example of a study that can be difficult to interpret without
understanding the mechanism is a 2015 resume-based audit study
that revealed a 2:1 faculty preference for women for STEM tenure-
track positions.236 Consider the range of possible explanations: 236 W.M. Williams and S.J. Ceci, “Na-

tional Hiring Experiments Reveal 2: 1

Faculty Preference for Women on Stem
Tenure Track,” Proceedings of the National
Academy of Sciences 112, no. 17 (2015):
5360–5.

animus against men; a desire to compensate for past disadvantage
suffered by women in STEM fields; a preference for a more diverse
faculty (assuming that the faculties in question are currently male
dominated); a response to financial incentives for diversification
frequently provided by universities to STEM departments; and an
assumption by decision makers that due to prior descrimination, a
female candidate with an equivalent CV to a male candidate is of
greater intrinsic ability.237 237 Note that if this assumption is

correct, then a preference for female
candidates is both accuracy maximizing
(as a predictor of career success) and re-
quired under some notions of fairness,
such as counterfactual fairness.

To summarize, rather than a one-size-fits-all approach to under-
standing mechanisms such as taste-based vs statistical discrimination,
more useful is a nuanced and domain-specific approach where we
formulate hypotheses in part by studying decision making processes
and organizations, especially in a qualitative way. Let us now turn to
those studies.

Studies of decision making processes and organizations

One way to study decision making processes is through surveys of
decision makers or organizations. Sometimes such studies reveal
blatant discrimination, such as strong racial preferences by employ-
ers.238 Over the decades, however, such overt attitudes have become 238 K.M. Neckerman and J. Kirschen-

man, “Hiring Strategies, Racial Bias,
and Inner-City Workers,” Social Problems
38, no. 4 (1991): 433–47.

less common, or at least less likely to be expressed.239 Discrimination

239 D. Pager and H. Shepherd, “The
Sociology of Discrimination: Racial Dis-
crimination in Employment, Housing,
Credit, and Consumer Markets,” Annu.
Rev. Sociol 34 (2008): 181–209.
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tends to operate in more subtle, indirect, and covert ways.
Ethnographic studies excel at helping us understand covert dis-

crimination. Ethnography is one of the main research methods in the
social sciences and is based on the idea of the researcher being em-
bedded among the research subjects for an extended period of time
as they go about their daily activities. It is a set of qualitative meth-
ods that are complementary to and symbiotic with quantitative ones.
Ethnography allows us to ask questions that are deeper than quan-
titative methods permit and to produce richly detailed accounts of
culture. It also helps formulate hypotheses that can be tested quanti-
tatively.

A good illustration is the book Pedigree which examines hiring
practices in a set of elite consulting, banking, and law firms.240 These 240 L.A. Rivera, Pedigree: How Elite Stu-

dents Get Elite Jobs (Princeton University
Press, 2016).

firms together constitute the majority of the highest-paying and most
desirable entry-level jobs for college graduates. The author used two
standard ethnographic research methods. The first is a set of 120

interviews in which she presented as a graduate student interested
in internship opportunities. The second method is called participant
observation: she worked in an unpaid Human Resources position
at one of the firms for 9 months, after obtaining consent to use her
observations for research. There are several benefits to the researcher
becoming a participant in the culture: it provides a greater level of
access, allows the researcher to ask more nuanced questions, and
makes it more likely that the research subjects would behave as they
would when not being observed.

Several insights from the book are relevant to us. First, the hiring
process has about nine stages, including outreach, recruitment events,
screening, multiple rounds of interviews and deliberations, and “sell”
events. This highlights why any quantitative study that focuses on
a single slice of the process (say, evaluation of resumes) is limited
in scope. Second, the process bears little resemblance to the ideal of
predicting job performance based on a standardized set of attributes,
albeit noisy ones, that we described in Chapter 1. Interviewers pay a
surprising amount of attention to attributes that should be irrelevant
or minimally relevant, such as leisure activities, but which instead
serve as markers of class. Applicants from privileged backgrounds
are more likely to be viewed favorably, both because they are able
to spare more time for such activities, and because they have the
insider knowledge that these seemingly irrelevant attributes matter
in recruitment. The signals that firms do use as predictors of job
performance, such as admission to elite universities — the pedigree
in the book’s title — are also highly correlated with socioeconomic
status. The authors argue that these hiring practices help explain
why elite status is perpetuated in society along hereditary lines. In
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our view, the careful use of statistical methods in hiring, despite their
limits, may mitigate the strong social class based preferences exposed
in the book.

Another book, Inside Graduate Admissions, focuses on education
rather than labor market.241 It resulted from the author’s observa- 241 J.R. Posselt, Inside Graduate Admis-

sions (Harvard University Press, 2016).tions of decision making by graduate admissions committees in nine
academic disciplines over two years. A striking theme that pervades
this book is the tension between formalized and holistic decision
making. For instance, committees arguably over-rely on GRE scores
despite stating that they consider their predictive power to be limited.
As it turns out, one reason for the preference for GRE scores and
other quantitative criteria is that they avoid the difficulties of subjec-
tive interpretation associated with signals such as reference letters.
This is considered valuable because it minimizes tensions between fac-
ulty members in the admissions process. On the other hand, decision
makers are implicitly aware (and occasionally explicitly articulate)
that if admissions criteria are too formal, then some groups of appli-
cants — notably, applicants from China — would be successful at a
far greater rate, and this is considered undesirable. This motivates a
more holistic set of criteria, which often include idiosyncratic factors
such as an applicant’s hobby being considered “cool” by a faculty
member. The author argues that admissions committees use a facially
neutral set of criteria, characterized by an almost complete absence
of explicit, substantive discussion of applicants’ race, gender, or so-
cioeconomic status, but which nonetheless perpetuates inequities. For
example, there is a reluctance to take on students from underrepre-
sented backgrounds whose profiles suggest that they would benefit
from more intensive mentoring.

This concludes the first part of the chapter. Now let us turn to al-
gorithmic systems. The background we’ve built up so far will prove
useful. In fact, the traditional tests of discrimination are just as appli-
cable to algorithmic systems. But we will also encounter many novel
issues.

Part 2: Testing discrimination in algorithmic systems

An early example of discrimination in an algorithmic system is from
the 1950s. In the United States, applicants for medical residency pro-
grams provide a ranked list of their preferred hospital programs
to a centralized system, and hospitals likewise rank applicants. A
matching algorithm takes these preferences as input and produces an
assignment of applicants to hospitals that optimizes mutual desirabil-
ity.242 242 Specifically, it satisfies the require-

ment that if applicant A is not matched
to hospital H, then either A matched to
a hospital that he ranked higher than
H, or H matched to a set of applicants
all of whom it ranked higher than A.

Early versions of the system discriminated against couples who
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wished to stay geographically close, because couples could not accu-
rately express their joint preferences: for example, each partner might
prefer a hospital over all others but only if the other partner also
matched to the same hospital.243 This is a non-comparative notion of 243 A.E. Roth, “The Origins, History,

and Design of the Resident Match,”
Jama 289, no. 7 (2003): 909–12; Friedman
and Nissenbaum, “Bias in Computer
Systems.”

discrimination: the system does injustice to an applicant (or a couple)
when it does not allow them to express their preferences, regardless
of how other applicants are treated. Note that none of the tests for
fairness that we have discussed are capable of detecting this instance
of discrimination, as it arises because of dependencies between pairs
of units, which is not something we have modeled.

There was a crude attempt in the residency matching system to
capture joint preferences, involving designating one partner in each
couple as the “leading member”; the algorithm would match the
leading member without constraints and then match the other mem-
ber to a proximate hospital if possible. Given the prevailing gender
norms at that time, it is likely that this method had a further discrim-
inatory impact on women in heterosexual couples.

Despite these early examples, it is the 2010s that testing unfairness
in real-world algorithmic systems has become a pressing concern
and a distinct area of research.244 This work has much in common 244 A 2014 paper issued a call to action

towards this type of research. Most of
the studies that we cite postdate that
piece. C. Sandvig, K. Hamilton, K.
Karahalios, and C. Langbort, “Auditing
Algorithms: Research Methods for
Detecting Discrimination on Internet
Platforms,” ICA Pre-Conference on Data
and Discrimination, 2014

with the social science research that we reviewed, but the targets
of research have expanded considerably. In the rest of this chapter,
we will review and attempt to systematize the research methods in
several areas of algorithmic decision making: various applications
of natural-language processing and computer vision; ad targeting
platforms; search and information retrieval tools; and online markets
(ride hailing, vacation rentals, etc). Much of this research has focused
on drawing attention to the discriminatory effects of specific, widely-
used tools and platforms at specific points in time. While that is a
valuable goal, we will aim to highlight broader, generalizable themes
in our review. We will close the chapter by identifying common prin-
ciples and methods behind this body of research.

Fairness considerations in applications of natural language process-
ing

One of the most central tasks in NLP is language identification: de-
termining the language that a given text is written in. It is a precur-
sor to virtually any other NLP operation on the text such as trans-
lation to the user’s preferred language on social media platforms. It
is considered a more-or-less solved problem, with relatively simple
models based on n-grams of characters achieving high accuracies on
standard benchmarks, even for short texts that are a few words long.

However, a 2016 study showed that a widely used tool, langid.py,
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which incorporates a pre-trained model, had substantially more false
negatives for tweets written in African-American English (AAE)
compared to those written in more common dialectal forms: 13.2%
of AAE tweets were classified as non-English compared to 7.6% of
“white-aligned” English tweets. AAE is a set of English dialects com-
monly spoken by black people in the United States (of course, there
is no implication that all black people in the United States primarily
speak AAE or even speak it at all)245. The authors’ construction of 245 For a treatise on AAE, see L.J. Green,

African American English: A Linguistic In-
troduction (Cambridge University Press,
2002). The linguistic study of AAE
highlights the complexity and internal
consistency of its grammar, vocabulary,
and other distinctive features, and re-
futes the basis of prejudiced views of
AAE as inferior to standard English.

the AAE and white-aligned corpora themselves involved machine
learning as well as validation based on linguistic expertise; we will
defer a full discussion to the Measurement chapter. The observed
error rate disparity is likely a classic case of underrepresentation in
the training data.

Unlike the audit studies of car sales or labor markets discussed
earlier, here it is not necessary (or justifiable) to control for any fea-
tures of the texts, such as the level of formality. While it may cer-
tainly be possible to “explain” disparate error rates based on such
features, that is irrelevant to the questions of interest in this context,
such as whether NLP tools will perform less well for one group of
users compared to another.

NLP tools range in their application from aids to online interaction
to components of decisions with major career consequences. In par-
ticular, NLP is used in predictive tools for screening of resumes in the
hiring process. There is some evidence of potential discriminatory
impacts of such tools, both from employers themselves246 and from 246 J. Dastin, “Amazon Scraps Secret

Ai Recruiting Tool That Showed Bias
Against Women,” Reuters, 2018.

applicants,247 but it is limited to anecdotes. There is also evidence

247 S. Buranyi, “How to Persuade a
Robot That You Should Get the Job”
(Guardian, 2018).

from the lab experiments on the task of predicting occupation from
online biographies.248

248 M. De-Arteaga et al., “Bias in Bios: A
Case Study of Semantic Representation
Bias in a High-Stakes Setting,” in
Proceedings of the Conference on Fairness,
Accountability, and Transparency (ACM,
2019), 120–28.

We briefly survey other findings. Automated essay grading soft-
ware tends to assign systematically lower scores to some demo-
graphic groups249 compared to human graders, who may themselves

249 C. Ramineni and D. Williamson,
“Understanding Mean Score Differences
Between the e-rater Automated Scoring
Engine and Humans for Demographi-
cally Based Groups in the GRE General
Test,” ETS Research Report Series 2018,
no. 1 (2018): 1–31.

provide biased ratings.250 Hate speech detection models use markers

250 E. Amorim, M. Cançado, and A.
Veloso, “Automated Essay Scoring in
the Presence of Biased Ratings,” in
Proceedings of the 2018 Conference of the
North American Chapter of the Association
for Computational Linguistics: Human
Language Technologies, Volume 1 (Long
Papers), 2018, 229–37.

of dialect as predictors of toxicity, according to a lab study,251 result-

251 M. Sap, D. Card, S. Gabriel, Y. Choi,
and N.A. Smith, “The Risk of Racial
Bias in Hate Speech Detection,” in
Proceedings of the 57th Annual Meeting
of the Association for Computational
Linguistics, 2019, 1668–78.

ing in discrimination against minority speakers. Many sentiment
analysis tools assign systematically different scores to text based on
race-aligned or gender-aligned names of people mentioned in the
text.252 Speech-to-text systems perform worse for speakers with cer-

252 S. Kiritchenko and S.M. Mohammad,
“Examining Gender and Race Bias in
Two Hundred Sentiment Analysis Sys-
tems,” arXiv Preprint arXiv:1805.04508,
2018.

tain accents.253 In all these cases, the author or speaker of the text

253 R. Tatman, “Gender and Dialect
Bias in YouTube’s Automatic Cap-
tions,” in Proceedings of the First
ACL Workshop on Ethics in Natu-
ral Language Processing (Valencia,
Spain: Association for Computa-
tional Linguistics, 2017), 53–59, https:
//doi.org/10.18653/v1/W17-1606.

is potentially harmed. In other NLP systems, i.e., those involving
natural language generation or translation, there is a different type
of fairness concern, namely the generation of text reflecting cultural
prejudices resulting in representational harm to a group of people.254

254 I. Solaiman et al., “Release Strate-
gies and the Social Impacts of
Language Models,” arXiv Preprint
arXiv:1908.09203, 2019.

The table below summarizes this discussion.
There is a line of research on cultural stereotypes reflected in word

https://doi.org/10.18653/v1/W17-1606
https://doi.org/10.18653/v1/W17-1606
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embeddings. Word embeddings are representations of linguistic
units; they do not correspond to any linguistic or decision-making
task. As such, lacking any notion of ground truth or harms to people,
it is not meaningful to ask fairness questions about word embed-
dings without reference to specific downstream tasks in which they
might be used. More generally, it is meaningless to ascribe fairness
as an attribute of models as opposed to actions, outputs, or decision
processes.

Table 13: Four types of NLP tasks and the types of unfairness
that can result. Note that the traditional tests discussed in Part
1 operate in the context of predicting outcomes (row 3 in this
table).

Type of
task Examples Sources of disparity Harm

Perception Language id;
speech-to-
text

Underrepresentation
in training corpus

Degraded
service

Automating
judgment

Toxicity
detection;
essay
grading

Human labels;
underrepresentation
in training corpus

Adverse
decisions

Predicting
outcomes

Resume
filtering

Various, including
human labels

Adverse
decisions

Sequence
prediction

Language
generation;
translation

Cultural stereotypes,
historical prejudices

Representational
harm

Demographic disparities and questionable applications of computer
vision

Like NLP, computer vision technology has made major headway
in the 2010s due to the availability of large-scale training corpora
and improvements in hardware for training neural networks. Today,
many types of classifiers are used in commercial products to analyze
images and videos of people. Unsurprisingly, they often exhibit dis-
parities in performance based on gender, race, skin tone, and other
attributes, as well as deeper ethical problems.

A prominent demonstration of error rate disparity comes from
an analysis of three commercial tools designed to classify a person’s
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gender as female or male based on an image, developed by Microsoft,
IBM, and Face++ respectively.255 The study found that all three clas- 255 J. Buolamwini and T. Gebru, “Gen-

der Shades: Intersectional Accuracy
Disparities in Commercial Gender
Classification,” in Conference on Fairness,
Accountability and Transparency, 2018,
77–91.

sifiers perform better on male faces than female faces (8.1% – 20.6%
difference in error rate). Further, all perform better on lighter faces
than darker faces (11.8% – 19.2% difference in error rate), and worst
on darker female faces (20.8% – 34.7% error rate). Finally, since all
classifiers treat gender as binary, the error rate for people of nonbi-
nary gender can be considered to be 100%.

If we treat the classifier’s target variable as gender and the sensi-
tive attribute as skin tone, we can decompose the observed disparities
into two separate issues: first, female faces are classified as male
more often than male faces are classified as female. This can be ad-
dressed relatively easily by recalibrating the classification threshold
without changing the training process. The second and deeper issue
is that darker faces are misclassified more often than lighter faces.

Image classification tools have found it particularly challenging
to achieve geographic equity due to the skew in training datasets.
A 2019 study evaluated five popular object recognition services on
images of household objects from 54 countries.256 It found significant 256 T. de Vries, I. Misra, C. Wang, and

L. van der Maaten, “Does Object
Recognition Work for Everyone?” in
Proceedings of the Ieee Conference on
Computer Vision and Pattern Recognition
Workshops, 2019, 52–59.

accuracy disparities between countries, with images from lower-
income countries being less accurately classified. The authors point
out that household objects such as dish soap or spice containers
tend to look very different in different countries. These issues are
exacerbated when images of people are being classified. A 2017 anal-
ysis found that models trained on ImageNet and Open Images, two
prominent datasets for object recognition, performed dramatically
worse at recognizing images of bridegrooms from countries such
as Pakistan and India compared to those from North American and
European countries (the former were often classified as chain mail, a
type of armor).257 257 S. Shankar, Y. Halpern, E. Breck, J.

Atwood, J. Wilson, and D. Sculley, “No
Classification Without Representation:
Assessing Geodiversity Issues in Open
Data Sets for the Developing World,” in
NIPS 2017 Workshop: Machine Learning
for the Developing World, 2017.

Several other types of unfairness are known through anecdotal ev-
idence in image classification and face recognition systems. At least
two different image classification systems are known to have applied
demeaning and insulting labels to photos of people.258 Face recogni-

258 T. Simonite, “When It Comes to
Gorillas, Google Photos Remains
Blind,” Wired, January 13 (2018); A.
Hern, “Flickr Faces Complaints over
‘Offensive’auto-Tagging for Photos,”
The Guardian 20 (2015).

tion systems have been anecdotally reported to exhibit the cross-race
effect wherein they are more likely to confuse faces of two people
who are from a racial group that is underrepresented in the training
data.259 This possibility was shown in a simple linear model of face

259 P. Martineau, “Cities Examine
Proper—and Improper—Uses
of Facial Recognition | Wired”
(https://www.wired.com/story/
cities-examine-proper-improper-facial-recognition/,
2019).

recognition as early as 1991.260 Many commercial products have had

260 A.J. O’TOOLE, K. DEFFENBACHER,
H. Abdi, and J.C. BARTLETT, “Simulat-
ing the ‘Other-Race Effect’as a Problem
in Perceptual Learning,” Connection
Science 3, no. 2 (1991): 163–78.

difficulty detecting faces of darker-skinned people.261 Similar results

261 A. Frucci, “HP Face-Tracking
Webcams Don’t Recognize
Black People” (https://gizmodo.com/
hp-face-tracking-webcams-dont-recognize-black-people-5431190,
2009), @KinectMa48.

are known from lab studies of publicly available object detection
models.262

262 B. Wilson, J. Hoffman, and J.
Morgenstern, “Predictive Inequity
in Object Detection,” arXiv Preprint
arXiv:1902.11097, 2019.

More broadly, computer vision techniques seem to be particularly
prone to use in ways that are fundamentally ethically questionable

https://www.wired.com/story/cities-examine-proper-improper-facial-recognition/
https://www.wired.com/story/cities-examine-proper-improper-facial-recognition/
https://gizmodo.com/hp-face-tracking-webcams-dont-recognize-black-people-5431190
https://gizmodo.com/hp-face-tracking-webcams-dont-recognize-black-people-5431190
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regardless of accuracy. Consider gender classification: while Mi-
crosoft, IBM, and Face++ have worked to mitigate the accuracy dis-
parities discussed above, a more important question is why build a
gender classification tool in the first place. By far the most common
application appears to be displaying targeted advertisements based
on inferred gender (and many other inferred characteristics, includ-
ing age, race, and current mood) in public spaces, such as billboards,
stores, or screens in the back seats of taxis. We won’t recap the objec-
tions to targeted advertising here, but it is an extensively discussed
topic, and the practice is strongly opposed by the public, at least in
the United States.263 263 J. Turow, J. King, C.J. Hoofnagle, A.

Bleakley, and M. Hennessy, “Americans
Reject Tailored Advertising and Three
Activities That Enable It,” Available at
SSRN 1478214, 2009.

Morally dubious computer vision technology goes well beyond
this example, and includes apps that “beautify” images of users’
faces, i.e., edit them to better conform to mainstream notions of at-
tractiveness; emotion recognition, which has been alleged to be a
pseudoscience; and the analysis of video footage for cues such as
body language for screening job applicants.264 264 M. Raghavan, S. Barocas, J. Klein-

berg, and K. Levy, “Mitigating Bias in
Algorithmic Employment Screening:
Evaluating Claims and Practices,” arXiv
Preprint arXiv:1906.09208, 2019.

Search and recommendation systems: three types of harms

Search engines, social media platforms, and recommendation systems
have different goals and underlying algorithms, but they do have
many things in common from a fairness perspective. They are not
decision systems and don’t provide or deny people opportunities, at
least not directly. Instead, there are (at least) three types of dispari-
ties and attendant harms that may arise in these systems. First, they
may serve the informational needs of some consumers (searchers or
users) better than others. Second, they may create inequities among
producers (content creators) by privileging certain content over others.
Third, they may create representational harms by amplifying and
perpetuating cultural stereotypes. There are a plethora of other eth-
ical concerns about information platforms, such as the potential to
contribute to the political polarization of society. However, we will
limit our attention to harms that can be considered to be forms of
discrimination.

Unfairness to consumers. An illustration of unfairness to consumers
comes from a study of collaborative filtering recommender systems
that used theoretical and simulation methods (rather than a field
study of a deployed system).265 Collaborative filtering is an approach 265 S. Yao and B. Huang, “Beyond Parity:

Fairness Objectives for Collaborative
Filtering,” in Advances in Neural Informa-
tion Processing Systems, 2017, 2921–30.

to recommendations that is based on the explicit or implicit feedback
(e.g. ratings and consumption, respectively) provided by other users
of the system. The intuition behind it is seen in the “users who liked
this item also liked. . . ” feature on many services. The study found
that such systems can underperform for minority groups in the sense
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of being worse at recommending content that those users would like.
A related but distinct reason for underperformance occurs when
users from one group are less observable, e.g., less likely to provide
ratings. The underlying assumption is that different groups have
different preferences, so that what the system learns about one group
doesn’t generalize to other groups.

In general, this type of unfairness is hard to study in real sys-
tems (not just by external researchers but also by system operators
themselves). The main difficulty is accurately measuring the target
variable. The relevant target construct from a fairness perspective
is users’ satisfaction with the results or how well the results served
the users’ needs. Metrics such as clicks and ratings serve as crude
proxies for the target, and are themselves subject to demographic
measurement biases. Companies do expend significant resources on
A/B testing or other experimental methods for optimizing search
and recommendation systems, and frequently measure demographic
differences as well. But to reiterate, such tests almost always empha-
size metrics of interest to the firm rather than benefit or payoff for the
user.

A rare attempt to transcend this limitation comes from an (inter-
nal) audit study of the Bing search engine.266 The authors devised 266 R. Mehrotra, A. Anderson, F. Diaz,

A. Sharma, H. Wallach, and E. Yilmaz,
“Auditing Search Engines for Differen-
tial Satisfaction Across Demographics,”
in Proceedings of the 26th International
Conference on World Wide Web Compan-
ion, 2017, 626–33.

methods to disentangle user satisfaction from other demographic-
specific variation by controlling for the effects of demographic factors
on behavioral metrics. They combined it with a method for inferring
latent differences directly instead of estimating user satisfaction for
each demographic group and then comparing these estimates. This
method infers which impression, among a randomly selected pair
of impressions, led to greater user satisfaction. They did this using
proxies for satisfaction such as reformulation rate. Reformulating a
search query is a strong indicator of dissatisfaction with the results.
Based on these methods, they found no gender differences in satisfac-
tion but mild age differences.

Unfairness to producers. In 2019, a group of content creators sued
YouTube alleging that YouTube’s algorithms as well as human mod-
erators suppressed the reach of LGBT-focused videos and the abil-
ity to earn ad revenue from them. This is a distinct type of issue
from that discussed above, as the claim is about a harm to produc-
ers rather than consumers (although, of course, YouTube viewers
interested in LGBT content are also presumably harmed). There
are many other ongoing allegations and controversies that fall into
this category: partisan bias in search results and social media plat-
forms, search engines favoring results from their own properties over
competitors, fact-checking of online political ads, and inadequate
(or, conversely, over-aggressive) policing of purported copyright vi-
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olations. It is difficult to meaningfully discuss and address these
issues through the lens of fairness and discrimination rather than a
broader perspective of power and accountability. The core issue is
that when information platforms have control over public discourse,
they become the arbiters of conflicts between competing interests
and viewpoints. From a legal perspective, these issues fall primarily
under antitrust law and telecommunication regulation rather than
antidiscrimination law.267 267 For in-depth treatments of the

history and politics of information
platforms, see: T. Wu, The Master
Switch: The Rise and Fall of Information
Empires (Vintage, 2010); T. Gillespie,
“The Politics of ‘Platforms’,” New Media
& Society 12, no. 3 (2010): 347–64; T.
Gillespie, Custodians of the Internet:
Platforms, Content Moderation, and
the Hidden Decisions That Shape Social
Media (Yale University Press, 2018); K.
Klonick, “The New Governors: The
People, Rules, and Processes Governing
Online Speech,” Harv. L. Rev. 131

(2017): 1598

Representational harms. The book Algorithms of Oppression drew at-
tention to the ways in which search engines reinforce harmful racial,
gender, and intersectional stereotypes.268 There have also been quan-

268 Noble, Algorithms of Oppression.

titative studies of some aspects of these harms. In keeping with our
quantitative focus, let’s discuss a study that measured how well the
gender skew in Google image search results for 45 occupations (au-
thor, bartender, construction worker . . . ) corresponded to the real-world
gender skew of the respective occupations.269 This can be seen as

269 Kay, Matuszek, and Munson, “Un-
equal Representation and Gender
Stereotypes in Image Search Results for
Occupations.”

test for calibration.270 The study found weak evidence for stereo-

270 Specifically, instances are occupations
and the fraction of women in the search
results is viewed as a predictor of the
fraction of women in the occupation in
the real world.

type exaggeration, that is, imbalances in occupational statistics are
exaggerated in image search results. However, the deviations were
minor.

Consider a thought experiment: suppose the study had found
no evidence of miscalibration. Is the resulting system fair? It would
be simplistic to answer in the affirmative for at least two reasons.
First, the study tested calibration between image search results and
occupational statistics in the United States. Gender stereotypes of
occupations as well as occupational statistics differ substantially be-
tween countries and cultures. Second, accurately reflecting real-world
statistics may still constitute a representational harm when those
statistics are skewed and themselves reflect a history of prejudice.
Such a system contributes to the lack of visible role models for un-
derrepresented groups. To what extent information platforms should
bear responsibility for minimizing these imbalances, and what types
of interventions are justified, remain matters of debate.

Understanding unfairness in ad targeting

Ads have long been targeted in relatively crude ways. For example,
a health magazine might have ads for beauty products, exploiting a
coarse correlation. In contrast to previous methods, online targeting
offers several key advantages to advertisers: granular data collection
about individuals, the ability to reach niche audiences (in theory,
the audience size can be one, since ad content can be programmati-
cally generated and customized with user attributes as inputs), and
the ability to measure conversion (conversion is when someone who
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views the ad clicks on it, and then takes another action such as a pur-
chase). To date, ad targeting has been one of the most commercially
impactful applications of machine learning.

The complexity of modern ad targeting results in many avenues
for disparities in the demographics of ad views, which we will study.
But it is not obvious how to connect these disparities to fairness.
After all, many types of demographic targeting such as clothing ads
by gender are considered innocuous.

There are two frameworks for understanding potential harms from
ad targeting. The first framework sees ads as unlocking opportunities
for their recipients, because they provide information that the viewer
might not have. This is why targeting employment or housing ads
based on protected categories may be unfair and unlawful. The do-
mains where targeting is legally prohibited broadly correspond to
those which impact civil rights, and reflect the complex histories of
discrimination in those domains, as discussed in Chapter 3.

The second framework views ads as tools of persuasion rather
than information dissemination. In this framework, harms arise from
ads being manipulative — that is, exerting covert influence instead
of making forthright appeals — or exploiting stereotypes.271 Users 271 D. Susser, B. Roessler, and H. Nis-

senbaum, “Online Manipulation:
Hidden Influences in a Digital World,”
Available at SSRN 3306006, 2018.

are harmed by being targeted with ads that provide them negative
utility, as opposed to the first framework, in which the harm comes
from missing out on ads with positive utility. The two frameworks
don’t necessarily contradict each other. Rather, individual ads or ad
campaigns can be seen as either primarily informational or primarily
persuasive, and accordingly, one or the other framework might be
appropriate for analysis.272 272 The economic analysis of advertising

includes a third category, complemen-
tary, that’s related to persuasive or
manipulative category K. Bagwell, “The
Economic Analysis of Advertising,”
Handbook of Industrial Organization 3

(2007): 1701–1844.

There is a vast literature on how race and gender are portrayed
in ads that we consider to fall under the persuasion framework.273

273 See, e.g. , S. Coltrane and M. Messi-
neo, “The Perpetuation of Subtle
Prejudice: Race and Gender Imagery in
1990s Television Advertising,” Sex Roles
42, nos. 5-6 (2000): 363–89

However, this line of inquiry has yet to turn its attention to online
targeted advertising, which has the potential for accentuating the
harms of manipulation and stereotyping by targeting specific people
and groups. Thus, the empirical research that we will highlight falls
under the informational framework.

There are roughly three mechanisms by which the same targeted
ad may reach one group more often than another. The most obvious
is the use of explicit targeting criteria by advertisers: either the sen-
sitive attribute itself or a proxy for it (such as ZIP code as a proxy
for race). For example, Facebook allows thousands of targeting cat-
egories, including categories that are automatically constructed by
the system based on users’ free-form text descriptions of their inter-
ests. These categories were found to include “Jew haters” and many
other antisemitic terms.274 The company has had difficulty eliminat- 274 J. Angwin, M. Varner, and

A. Tobin, “Facebook Enabled
Advertisers to Reach ‘Jew
Haters”’ (ProPublica. https:
//www.%20propublica.%20org/article/

facebook-enabled-advertisers-to-reach-jew-haters,
2017).

ing even direct proxies for sensitive categories, resulting in repeated

https://www.%20propublica.%20org/article/facebook-enabled-advertisers-to-reach-jew-haters
https://www.%20propublica.%20org/article/facebook-enabled-advertisers-to-reach-jew-haters
https://www.%20propublica.%20org/article/facebook-enabled-advertisers-to-reach-jew-haters
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exposés.
The second disparity-producing mechanism is optimization of

click rate (or another measure of effectiveness), which is one of the
core goals of algorithmic targeting. Unlike the first category, this
does not require explicit intent by the advertiser or the platform.
The algorithmic system may predict a user’s probability of engaging
with an ad based on her past behavior, her expressed interests, and
other factors (including, potentially, explicitly expressed sensitive
attributes).

The third mechanism is market effects: delivering an ad to differ-
ent users may cost the advertiser different amounts. For example,
some researchers have observed that women cost more to advertise
to than men and hypothesized that this is because women clicked on
ads more often, leading to a higher measure of effectiveness.275 Thus 275 M. Ali, P. Sapiezynski, M. Bogen, A.

Korolova, A. Mislove, and A. Rieke,
“Discrimination Through Optimization:
How Facebook’s Ad Delivery Can Lead
to Biased Outcomes,” Proceedings of the
ACM on Human-Computer Interaction 3,
no. CSCW (2019): 199; A. Lambrecht
and C. Tucker, “Algorithmic Bias? An
Empirical Study of Apparent Gender-
Based Discrimination in the Display of
Stem Career Ads,” Management Science,
2019.

if the advertiser simply specifies a total budget and leaves the deliv-
ery up to the platform (which is a common practice), then the audi-
ence composition will vary depending on the budget: smaller bud-
gets will result in the less expensive group being overrepresented.

In terms of methods to detect these disparities, researchers and
journalists have used broadly two approaches: interact with the
system either as a user or as an advertiser. Tschantz et al. created
simulated users that had the “gender” attribute in Google’s Ad set-
tings page set to female or male, and found that Google showed the
simulated male users ads from a certain career coaching agency that
promised large salaries more frequently than the simulated female
users.276 While this type of study establishes that employment ads 276 Datta, Tschantz, and Datta, “Au-

tomated Experiments on Ad Privacy
Settings.”

through Google’s ad system are not blind to gender (as expressed
in the ad settings page), it cannot uncover the mechanism, i.e., dis-
tinguish between explicit targeting by the advertiser and platform
effects of various kinds.

Interacting with ad platforms as an advertiser has proved to be a
more fruitful approach so far, especially to analyze Facebook’s adver-
tising system. This is because Facebook exposes vastly more details
about its advertising system to advertisers than to users. In fact, it
allows advertisers to learn more information it has inferred or pur-
chased about a user than it will allow the user himself to access.277 277 A. Andreou, O. Goga, K. Gum-

madi, Loiseau Patrick, and A.
Mislove, “AdAnalyst” (https:
//adanalyst.mpi-sws.org/, 2017).

The existence of anti-semitic auto-generated targeting categories,
mentioned above, was uncovered using the advertiser interface. Ad
delivery on Facebook has been found to introduce demographic dis-
parities due to both market effects and effectiveness optimization
effects.278 To reiterate, this means that even if the advertiser does not 278 Ali, Sapiezynski, Bogen, Korolova,

Mislove, and Rieke, “Discrimination
Through Optimization.”

explicitly target an ad by (say) gender, there may be a systematic gen-
der skew in the ad’s audience. The optimization effects are enabled
by Facebook’s analysis of the contents of ads. Interestingly, this in-

https://adanalyst.mpi-sws.org/
https://adanalyst.mpi-sws.org/
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cludes image analysis, which researchers revealed using the clever
technique of serving ads with transparent content that is invisible to
humans but nonetheless had an effect on ad delivery.279 279 Ali, Sapiezynski, Bogen, Korolova,

Mislove, and Rieke.

Fairness considerations in the design of online marketplaces

Online platforms for ride hailing, short-term housing, and freelance
(gig) work have risen to prominence in the 2010s: notable examples
are Uber, Lyft, Airbnb, and TaskRabbit. They are important targets
for the study of fairness because they directly impact people’s liveli-
hoods and opportunities. We will set aside some types of markets
from our discussion. Online dating apps share some similarities with
these markets, but they require an entirely separate analysis because
the norms governing romance are different from those governing
commerce and employment.280 Then there are marketplaces for 280 J.A. Hutson, J.G. Taft, S. Barocas, and

K. Levy, “Debiasing Desire: Addressing
Bias & Discrimination on Intimate
Platforms,” Proceedings of the ACM
on Human-Computer Interaction 2, no.
CSCW (2018): 73.

goods such as Amazon and eBay. In these markets the characteristics
of the participants are less salient than the attributes of the product,
so discrimination is less of a concern.281

281 This is not to say that discrimination
is nonexistent. See, e.g., I. Ayres, M.
Banaji, and C. Jolls, “Race Effects on
eBay,” The RAND Journal of Economics
46, no. 4 (2015): 891–917.

Unlike the domains studied so far, machine learning is not a core
component of the algorithms in online marketplaces. (Nonetheless,
we consider it in scope because of our broad interest in decision
making and fairness, rather than just machine learning.) Therefore
fairness concerns are less about training data or algorithms; the far
more serious issue is discrimination by buyers and sellers. For ex-
ample, one study found that Uber drivers turned off the app in areas
where they did not want to pick up passengers.282 282 M.K. Lee, D. Kusbit, E. Metsky,

and L. Dabbish, “Working with Ma-
chines: The Impact of Algorithmic and
Data-Driven Management on Human
Workers,” in Proceedings of the 33rd
Annual Acm Conference on Human Factors
in Computing Systems (ACM, 2015),
1603–12.

Methods to detect discrimination in online marketplaces are fairly
similar to traditional settings such as housing and employment; a
combination of audit studies and observational methods have been
used. A notable example is a field experiment targeting Airbnb.283

283 B. Edelman, M. Luca, and D. Svirsky,
“Racial Discrimination in the Sharing
Economy: Evidence from a Field
Experiment,” American Economic Journal:
Applied Economics 9, no. 2 (2017): 1–22.

The authors created fake guest accounts whose names signaled race
(African-American or white) and gender (female or male), but were
otherwise identical. Twenty different names were used: five in each
combination of race and gender. They then contacted the hosts of
6,400 listings in five cities through these accounts to inquire about
availability. They found a 50% probability of acceptance of inquiries
from guests with White-sounding names, compared to 42% for guests
with African-American-sounding names. The effect was persistent
regardless of the host’s race, gender, and experience on the platform,
as well as listing type (high or low priced; entire property or shared),
and diversity of the neighborhood. Note that the accounts did not
have profile pictures; if inference of race by hosts happens in part
based on appearance, a study design that varied the accounts’ profile
pictures might find a greater effect.
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Compared to traditional settings, some types of observational data
are readily available on online platforms, which can be useful to the
researcher. In the above study, the public availability of reviews of
listed properties proved useful. It was not essential to the design of
the study, but allowed an interesting validity check. When the analy-
sis was restricted to the 29% hosts in the sample who had received at
least one review from an African-American guest, the racial disparity
in responses declined sharply. If the study’s findings were a result of
a quirk of the experimental design, rather than actual racial discrimi-
nation by Airbnb hosts, it would be difficult to explain why the effect
would disappear for this subset of hosts. This supports the study’s
external validity.

In addition to discrimination by participants, another fairness is-
sue that many online marketplaces must contend with is geographic
differences in effectiveness. One study of TaskRabbit and Uber
found that neighborhoods with high population density and high-
income neighborhoods receive the largest benefits from the sharing
economy.284 Due to the pervasive correlation between poverty and 284 J. Thebault-Spieker, L. Terveen, and

B. Hecht, “Toward a Geographic Under-
standing of the Sharing Economy: Sys-
temic Biases in Uberx and Taskrabbit,”
ACM Transactions on Computer-Human
Interaction (TOCHI) 24, no. 3 (2017): 21.

race/ethnicity, these also translate to racial disparities.
Of course, geographic and structural disparities in these markets

are not caused by online platforms, and no doubt exist in offline
analogs such as word-of-mouth gig work. In fact, the magnitude of
racial discrimination is much larger in scenarios such as hailing taxis
on the street285 compared to technologically mediated interactions. 285 Y. Ge, C.R. Knittel, D. MacKenzie,

and S. Zoepf, “Racial and Gender
Discrimination in Transportation
Network Companies” (National Bureau
of Economic Research, 2016).

However, in comparison to markets regulated by antidiscrimination
law, such as hotels, discrimination in online markets is more severe.
In any case, the formalized nature of online platforms makes audits
easier. As well, the centralized nature of these platforms is a powerful
opportunity for fairness interventions.

There are many ways in which platforms can use design to mini-
mize users’ ability to discriminate (such as by withholding informa-
tion about counterparties) and the impetus to discriminate (such as
by making participant characteristics less salient compared to prod-
uct characteristics in the interface).286 There is no way for platforms 286 K. Levy and S. Barocas, “Designing

Against Discrimination in Online
Markets,” Berkeley Tech. LJ 32 (2017):
1183.

to take a neutral stance towards discrimination by participants: even
choices made without explicit regard for discrimination can affect
how vulnerable users are to bias.

As a concrete example, the authors of the Airbnb study recom-
mend that the platform withhold guest information from hosts prior
to booking. (Note that ride hailing services do withhold customer
information. Carpooling services, on the other hand, allow users to
view names when selecting matches; unsurprisingly, this enables dis-
crimination against ethnic minorities.287) The authors of the study on 287 J.D. Tjaden, C. Schwemmer, and

M. Khadjavi, “Ride with Me—Ethnic
Discrimination, Social Markets, and the
Sharing Economy,” European Sociological
Review 34, no. 4 (2018): 418–32.

geographic inequalities suggest, among other interventions, that ride
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hailing services provide a “geographic reputation” score to drivers to
combat the fact that drivers often incorrectly perceive neighborhoods
to be more dangerous than they are.

Mechanisms of discrimination

We’ve looked at a number of studies on detecting unfairness in algo-
rithmic systems. Let’s take stock.

In the introductory chapter we discussed, at a high-level, different
ways in which unfairness could arise in machine learning systems.
Here, we see that the specific sources and mechanisms of unfairness
can be intricate and domain-specific. Researchers need an under-
standing of the domain to effectively formulate and test hypotheses
about sources and mechanisms of unfairness.

For example, consider the study of gender classification systems
discussed above. It is easy to guess that unrepresentative training
datasets contributed to the observed accuracy disparities, but un-
representative in what way? A follow-up paper considered this
question.288 It analyzed several state-of-the-art gender classifiers 288 V. Muthukumar et al., “Understand-

ing Unequal Gender Classification
Accuracy from Face Images,” arXiv
Preprint arXiv:1812.00099, 2018.

(in a lab setting, as opposed to field tests of commercial APIs in the
original paper) and argued that underrepresentation of darker skin
tones in the training data is not a reason for the observed disparity.
Instead, one mechanism suggested by the authors is based on the
fact that many training datasets of human faces comprise photos of
celebrities.289 They found that photos of female celebrities have more 289 This overrepresentation is because

photos of celebrities are easier to
gather publicly, and celebrities are
thought to have weakened privacy
rights due to the competing public
interest in their activities. However, for
a counterpoint, see A. Harvey and J.
LaPlace, “MegaPixels: Origins, Ethics,
and Privacy Implications of Publicly
Available Face Recognition Image
Datasets,” 2019, https://megapixels.
cc/.

prominent makeup compared to photos of women in general. This
led to classifiers using makeup as a proxy for gender in a way that
didn’t generalize to the rest of the population.

Slightly different hypotheses can produce vastly different conclu-
sions, especially in the presence of complex interactions between con-
tent producers, consumers, and platforms. For example, one study
tested claims of partisan bias by search engines, as well as related
claims that search engines return results that reinforce searchers’
existing views (the “filter bubble” hypothesis).290 The researchers 290 R.E. Robertson, S. Jiang, K. Joseph,

L. Friedland, D. Lazer, and C. Wilson,
“Auditing Partisan Audience Bias
Within Google Search,” Proceedings of
the ACM on Human-Computer Interaction
2, no. CSCW (2018): 148.

recruited participants with different political views, collected Google
search results on a political topic in both standard and incognito win-
dows from those participants’ computers, and found that standard
(personalized) search results were no more partisan than incognito
(non-personalized) ones, seemingly finding evidence against the
claim that online search reinforces users’ existing beliefs.

This finding is consistent with the fact that Google doesn’t person-
alize search results except based on searcher location and immediate
(10-minute) history of searches. This is known based on Google’s
own admission291 and prior research.292 291 J. D’Onfro, “Google Tests

Changes to Its Search Algo-
rithm; How Search Works”
(https://www.cnbc.com/2018/09/17/
google-tests-changes-to-its-search-algorithm-how-search-works.

html, 2019).
292 A. Hannak, P. Sapiezynski, A. Molavi
Kakhki, B. Krishnamurthy, D. Lazer,
A. Mislove, and C. Wilson, “Measuring
Personalization of Web Search,” in
Proceedings of the 22nd International
Conference on World Wide Web (ACM,
2013), 527–38.

https://megapixels.cc/
https://megapixels.cc/
https://www.cnbc.com/2018/09/17/google-tests-changes-to-its-search-algorithm-how-search-works.html
https://www.cnbc.com/2018/09/17/google-tests-changes-to-its-search-algorithm-how-search-works.html
https://www.cnbc.com/2018/09/17/google-tests-changes-to-its-search-algorithm-how-search-works.html
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However, a more plausible hypothesis for the filter bubble effect
in search comes from a qualitative study.293 Simplified somewhat for 293 F. Tripodi, “Searching for Alternative

Facts: Analyzing Scriptural Inference in
Conservative News Practices,” Data &
Society, 2018.

our purposes, it goes as follows: when an event with political sig-
nificance unfolds, key influencers (politicians, partisan news outlets,
interest groups, political message boards) quickly craft their own
narratives of the event. Those narratives selectively reach their re-
spective partisan audiences through partisan information networks.
Those people then turn to search engines to learn more or to “verify
the facts”. Crucially, however, they use different search terms to refer
to the same event, reflecting the different narratives to which they
have been exposed.294 The results for these different search terms 294 For example, in 2017, US president

Donald Trump called for the National
Football League to fire players who
engaged in a much-publicized political
protest during games. Opposing
narratives of this event were that
NFL viewership had declined due to
fans protesting players’ actions, or that
it had increased despite the protests.
Search terms reflecting these views
might be “NFL ratings down” versus
“NFL ratings up”.

are often starkly different, because the producers of news and com-
mentary selectively and strategically cater to partisans using these
same narratives. Thus, searchers’ beliefs are reinforced. Note that this
filter-bubble-producing mechanism operates effectively even though
the search algorithm itself is arguably neutral.295

295 But see M. Golebiewski and D. Boyd,
“Data Voids: Where Missing Data Can
Easily Be Exploited,” Data & Society
29 (2018). (“Data Void Type #4: Frag-
mented Concepts”) for an argument
that search engines’ decision not to
collapse related concepts contributes to
this fragmentation.

A final example to reinforce the fact that disparity-producing
mechanisms can be subtle and that domain expertise is required to
formulate the right hypothesis: an investigation by journalists found
that staples.com showed discounted prices to individuals in some ZIP
codes; these ZIP codes were, on average, wealthier.296 However, the

296 J. Valentino-Devries, J. Singer-Vine,
and A. Soltani, “Websites Vary Prices,
Deals Based on Users’ Information,”
Wall Street Journal 10 (2012): 60–68.

actual pricing rule that explained most of the variation, as they re-
ported, was that if there was a competitor’s physical store located
within 20 miles or so of the customer’s inferred location, then the
customer would see a discount! Presumably this strategy is intended
to infer the customer’s reservation price or willingness to pay. Inci-
dentally, this is a similar kind of “statistical discrimination” as seen in
the car sales discrimination study discussed at the beginning of this
chapter.

Fairness criteria in algorithmic audits

While the mechanisms of unfairness are different in algorithmic sys-
tems, the applicable fairness criteria are the same for algorithmic
decision making as other kinds of decision making. That said, some
fairness notions are more often relevant, and others less so, in algo-
rithmic decision making compared to human decision making. We
offer a few selected observations on this point.

Fairness as blindness is seen less often in audit studies of algorith-
mic systems; such systems are generally designed to be blind to
sensitive attributes. Besides fairness concerns often arise precisely
from the fact that blindness is generally not an effective fairness in-
tervention in machine learning. Two exceptions are ad targeting and
online marketplaces (where the non-blind decisions are in fact being
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made by users and not the platform).
Unfairness as arbitrariness. There are roughly two senses in which

decision making could be considered arbitrary and hence unfair. The
first is when decisions are made on a whim rather than a uniform
procedure. Since automated decision making results in procedural
uniformity, this type of concern is generally not salient.

The second sense of arbitrariness applies even when there is a uni-
form procedure, if that procedure relies on a consideration of factors
that are thought to be irrelevant, either statistically or morally. Since
machine learning excels at finding correlations, it commonly identi-
fies factors that seem puzzling or blatantly unacceptable. For exam-
ple, in aptitude tests such as the Graduate Record Examination, es-
says are graded automatically. Although e-rater and other tools used
for this purpose are subject to validation checks, and are found to
perform similarly to human raters on samples of actual essays, they
are able to be fooled into giving perfect scores to machine-generated
gibberish. Recall that there is no straightforward criterion that allows
us to assess if a feature is morally valid (Chapter 3), and this question
must be debated on a case-by-case basis.

More serious issues arise when classifiers are not even subjected
to proper validity checks. For example, there are a number of com-
panies that claim to predict candidates’ suitability for jobs based
on personality tests or body language and other characteristics in
videos.297 There is no peer-reviewed evidence that job performance is 297 Raghavan, Barocas, Kleinberg, and

Levy, “Mitigating Bias in Algorithmic
Employment Screening.”

predictable using these factors, and no basis for such a belief. Thus,
even if these systems don’t produce demographic disparities, they are
unfair in the sense of being arbitrary: candidates receiving an adverse
decision lack due process to understand the basis for the decision,
contest it, or determine how to improve their chances of success.

Observational fairness criteria including demographic parity, error
rate parity, and calibration have received much attention in algorith-
mic fairness studies. Convenience has probably played a big role
in this choice: these metrics are easy to gather and straightforward
to report without necessarily connecting them to moral notions of
fairness. We reiterate our caution about the overuse of parity-based
notions; parity should rarely be made a goal by itself. At a minimum,
it is important to understand the sources and mechanisms that pro-
duce disparities as well as the harms that result from them before
deciding on appropriate interventions.

Representational harms. Traditionally, allocative and representational
harms were studied in separate literatures, reflecting the fact that
they are mostly seen in separate spheres of life (for instance, housing
discrimination versus stereotypes in advertisements). Many algorith-
mic systems, on the other hand, are capable of generating both types
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of harms. A failure of face recognition for darker-skinned people is
demeaning, but it could also prevent someone from being able to
access a digital device or enter a building that uses biometric security.

Information flow, fairness, privacy

A notion called information flow is seen frequently in algorithmic au-
dits. This criterion requires that sensitive information about subjects
not flow from one information system to another, or from one part
of a system to another. For example, a health website may promise
that user activity, such as searches and clicks, are not shared with
third parties such as insurance companies (since that may lead to
potentially discriminatory effects on insurance premiums). It can be
seen as a generalization of blindness: whereas blindness is about not
acting on available sensitive information, restraining information flow
ensures that the sensitive information is not available to act upon in
the first place.

There is a powerful test for testing violations of information flow
constraints, which we will call the adversarial test.298 It does not 298 Datta, Tschantz, and Datta, “Au-

tomated Experiments on Ad Privacy
Settings.”

directly detect information flow, but rather decisions that are made
on the basis of that information. It is powerful because it does not
require specifying a target variable, which minimizes the domain
knowledge required of the researcher. To illustrate, let’s revisit the ex-
ample of the health website. The adversarial test operates as follows:

1. Create two groups of simulated users (A and B), i.e., bots, that are
identical except for the fact that users in group A, but not group B,
browse the sensitive website in question.

2. Have both groups of users browse other websites that are thought
to serve ads from insurance companies, or personalize content
based on users’ interests, or somehow tailor content to users based
on health information. This is the key point: the researcher does
not need to hypothesize a mechanism by which potentially unfair
outcomes result — e.g. which websites (or third parties) might
receive sensitive data, whether the personalization might take the
form of ads, prices, or some other aspect of content.

3. Record the contents of the web pages seen by all users in the pre-
vious step.

4. Train a binary classifier to distinguish between web pages en-
countered by users in group A and those encountered by users in
group B. Use cross-validation to measure its accuracy.

5. If the information flow constraint is satisfied (i.e., the health web-
site did not share any user information with any third parties),
then the websites browsed in step 2 are blind to user activities in
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step 1; thus the two groups of users look identical, and there is
no way to systematically distinguish the content seen by group A
from that seen by group B. The classifier’s test accuracy should
not significantly exceed 1

2 . The permutation test can be used to
quantify the probability that the classifier’s observed accuracy (or
better) could have arisen by chance if there is in fact no systematic
difference between the two groups.299 299 M. Ojala and G.C. Garriga, “Per-

mutation Tests for Studying Classifier
Performance,” Journal of Machine Learn-
ing Research 11, no. Jun (2010): 1833–63.There are additional nuances relating to proper randomization and

controls, for which we refer the reader to the study.300 Note that if
300 Datta, Tschantz, and Datta, “Au-
tomated Experiments on Ad Privacy
Settings.”

the adversarial test fails to detect an effect, it does not mean that the
information flow constraint is satisfied. Also note that the adversarial
test is not capable of measuring an effect size. Such a measurement
would be meaningless anyway, since the goal is to detect information
flow, and any effect on observable behavior of the system is merely a
proxy for it.

This view of information flow as a generalization of blindness re-
veals an important connection between privacy and fairness. Many
studies based on this principle can be seen as either privacy or fair-
ness investigations. For example, a study found that Facebook solicits
phone numbers from users with the stated purpose of improving
account security, but uses those numbers for ad targeting.301 This 301 G. Venkatadri, E. Lucherini, P.

Sapiezynski, and A. Mislove, “In-
vestigating Sources of Pii Used in
Facebook’s Targeted Advertising,”
Proceedings on Privacy Enhancing Tech-
nologies 2019, no. 1 (2019): 227–44.

is an example of undisclosed information flow from one part of the
system to another. Another study used ad retargeting — in which
actions taken on one website, such as searching for a product, result
in ads for that product on another website — to infer the exchange of
user data between advertising companies.302 Neither study used the 302 M.A. Bashir, S. Arshad, W. Robert-

son, and C. Wilson, “Tracing Infor-
mation Flows Between Ad Exchanges
Using Retargeted Ads,” in USENIX
Security Symposium 16, 2016, 481–96.

adversarial test.

Comparison of research methods

For auditing user fairness on online platforms, there are two main
approaches: creating fake profiles and recruiting real users as testers.
Each has its pros and cons. Both approaches have the advantage,
compared to traditional audit studies, of allowing a potentially
greater scale due to the ease of creating fake accounts or recruiting
testers online (e.g. through crowd-sourcing).

Scaling is especially relevant for testing geographic differences,
given the global reach of many online platforms. It is generally pos-
sible to simulate geographically dispersed users by manipulating
testing devices to report faked locations. For example, the above-
mentioned investigation of regional price differences on staples.com
actually included a measurement from each of the 42,000 ZIP codes
in the United States.303 They accomplished this by observing that the 303 J. Singer-Vine, J. Valentino-DeVries,

and A. Soltani, “How the Journal
Tested Prices and Deals Online”
(Wall Street Journal. http://blogs.
%20wsj.%20com/digits/2012/12/23/

how-the-journal-tested-prices-and-deals-online,
2012).

http://blogs.%20wsj.%20com/digits/2012/12/23/how-the-journal-tested-prices-and-deals-online
http://blogs.%20wsj.%20com/digits/2012/12/23/how-the-journal-tested-prices-and-deals-online
http://blogs.%20wsj.%20com/digits/2012/12/23/how-the-journal-tested-prices-and-deals-online
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website stored the user’s inferred location in a cookie, and proceed-
ing to programmatically change the value stored in the cookie to each
possible value.

That said, practical obstacles commonly arise in the fake-profile
approach. In one study, the number of test units was practically lim-
ited by the requirement for each account to have a distinct credit card
associated with it.304 Another issue is bot detection. For example, the 304 L. Chen, A. Mislove, and C. Wil-

son, “Peeking Beneath the Hood of
Uber,” in Proceedings of the 2015 Internet
Measurement Conference (ACM, 2015),
495–508.

Airbnb study was limited to five cities, even though the researchers
originally planned to test more, because the platform’s bot-detection
algorithms kicked in during the course of the study to detect and
shut down the anomalous pattern of activity. It’s easy to imagine an
even worse outcome where accounts detected as bots are somehow
treated differently by the platform (e.g. messages from those accounts
are more likely to be hidden from intended recipients), compromis-
ing the validity of the study.

As this example illustrates, the relationship between audit re-
searchers and the platforms being audited is often adversarial. Plat-
forms’ efforts to hinder researchers can be technical but also legal.
Many platforms, notably Facebook, prohibit both fake-account cre-
ation and automated interaction in their Terms of Service. The ethics
of Terms-of-Service violation in audit studies is a matter of ongo-
ing debate, paralleling some of the ethical discussions during the
formative period of traditional audit studies. In addition to ethical
questions, researchers incur a legal risk when they violate Terms
of Service. In fact, under laws such as the US Computer Fraud and
Abuse Act, it is possible that they may face criminal as opposed to
just civil penalties.

Compared to the fake-profile approach, recruiting real users al-
lows less control over profiles, but is better able to capture the natural
variation in attributes and behavior between demographic groups.
Thus, neither design is always preferable, and they are attuned to
different fairness notions. When testers are recruited via crowd-
sourcing, the result is generally a convenience sample (i.e. the sample
is biased towards people who are easy to contact), resulting in a non-
probability (non-representative) sample. It is generally infeasible to
train such a group of testers to carry out an experimental protocol;
instead, such studies typically handle the interaction between testers
and the platform via software tools (e.g. browser extensions) created
by the researcher and installed by the tester. For more on the diffi-
culties of research using non-probability samples, see the book Bit by
Bit.305 305 M. Salganik, Bit by Bit: Social Research

in the Digital Age (Princeton University
Press, 2019).

Due to the serious limitations of both approaches, lab studies of
algorithmic systems are commonly seen. The reason that lab studies
have value at all is that since automated systems are fully specified
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using code, the researcher can hope to simulate them relatively faith-
fully. Of course, there are limitations: the researcher typically doesn’t
have access to training data, user interaction data, or configuration
settings. But simulation is a valuable way for developers of algorith-
mic systems to test their own systems, and this is a common approach
in the industry. Companies often go so far as to make de-identified
user interaction data publicly available so that external researchers
can conduct lab studies to develop and test algorithms. The Netflix
Prize is a prominent example of such a data release.306 So far, these 306 J. Bennett and S. Lanning, “The

Netflix Prize,” in Proceedings of Kdd Cup
and Workshop, vol. 2007 (New York, NY,
USA., 2007), 35.

efforts have almost always been about improving the accuracy rather
than the fairness of algorithmic systems.

Lab studies are especially useful for getting a handle on ques-
tions that cannot be studied by other empirical methods, notably
the dynamics of algorithmic systems, i.e., their evolution over time.
One prominent result from this type of study is the quantification
of feedback loops in predictive policing.307 Another insight is the 307 Lum and Isaac, “To Predict and

Serve?”; Ensign, Friedler, Neville,
Scheidegger, and Venkatasubrama-
nian, “Runaway Feedback Loops in
Predictive Policing.”

increasing homogeneity of users’ consumption patterns over time in
recommender systems.308

308 A.J. Chaney, B.M. Stewart, and
B.E. Engelhardt, “How Algorithmic
Confounding in Recommendation
Systems Increases Homogeneity and
Decreases Utility,” in Proceedings of the
12th Acm Conference on Recommender
Systems (ACM, 2018), 224–32.

Observational studies and observational fairness criteria continue
to be important. Such studies are typically carried out by algorithm
developers or decision makers, often in collaboration with external
researchers.309 It is relatively rare for observational data to be made

309 Z. Obermeyer, B. Powers, C. Vogeli,
and S. Mullainathan, “Dissecting
Racial Bias in an Algorithm Used to
Manage the Health of Populations,”
Science 366, no. 6464 (2019): 447–53; A.
Chouldechova, D. Benavides-Prado, O.
Fialko, and R. Vaithianathan, “A Case
Study of Algorithm-Assisted Decision
Making in Child Maltreatment Hotline
Screening Decisions,” in Conference on
Fairness, Accountability and Transparency,
2018, 134–48.

publicly available. A rare exception, the COMPAS dataset, involved a
Freedom of Information Act request.

Finally, it is worth reiterating that quantitative studies are nar-
row in what they can conceptualize and measure. Qualitative and
ethnographic studies of decision makers thus provide an invaluable
complementary perspective. To illustrate, we’ll discuss one study
that reports on six months of ethnographic fieldwork in a corporate
data science team.310 The team worked on a project in the domain of

310 S. Passi and S. Barocas, “Problem
Formulation and Fairness,” in Pro-
ceedings of the Conference on Fairness,
Accountability, and Transparency (ACM,
2019), 39–48.

car financing that aimed to “improve the quality” of leads (leads are
potential car buyers in need of financing who might be converted to
actual buyers through marketing). Given such an amorphous high-
level goal, formulating a concrete and tractable data science problem
is a necessary and nontrivial task — a task that is further complicated
by the limitations of the data available. The paper documents how
there is substantial latitude in problem formulation, and spotlights
the iterative process that was used, resulting in the use of a series of
proxies for lead quality. The authors show that different proxies have
different fairness implications: one proxy would maximize people’s
lending opportunities and another would alleviate dealers’ existing
biases, both potentially valuable fairness goals. However, the data
scientists were not aware of the normative implications of their deci-
sions and did not explicitly deliberate them.
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Looking ahead

In this chapter, we covered traditional tests for discrimination as well
as fairness studies of various algorithmic systems. Together, these
methods constitute a powerful toolbox for interrogating a single
decision system at a single point in time. But there are other types
of fairness questions we can ask: what is the cumulative effect of
the discrimination faced by a person over the course of a lifetime?
What structural aspects of society result in unfairness? We cannot
answer such a question by looking at individual systems. The next
chapter is all about broadening our view of discrimination and then
using that broader perspective to study a range of possible fairness
interventions.





Appendix — Technical background

In this chapter we provide technical background on some of the
mathematical concepts used in this book. We focus on two topics.
The first is properties of random variables and how random variables
can be used to model populations. The second is about the funda-
mentals of supervised learning and how we compute classifiers from
data.

Random variables and conditional probabilities

Throughout this book, it’s fine to think of all that all probabilities
as counting things in a finite population P. We can think of P as a
finite set of things or individuals. Probabilities therefore correspond
to simple counts of things in the population. We can interpret the
probability P{E} as the fraction of the population contained in the
set E, called event when it appears inside a probability statement.
The conditional probability statement P{E | C} instructs us to restrict
the population to the set C and to compute probabilities within this
subpopulation C as if it were the whole population.

We generally denote random variables with capital letters U, V, W, X, Y, Z.
Random variables are functions that assign values to elements of
the probability space. A statement like P{U = u} corresponds
to the probability that the random variable assumes the value u.
More formally, this is a shorthand for the probability of the event
{i ∈ P : U(i) = u}.

Two random variables U and V are independent if for all values u
and v that the random variables might assume, we have:

P{U = u, V = v} = P{U = u} ·P{V = v} .

A calculation reveals that independent can be written in terms of
conditional probabilities as:

P{U = u | V = v} = P{U = u} ,

This equivalent formulation has an intuitive interpretation. It says



160 solon barocas, moritz hardt, arvind narayanan

that observing that V assumed value v gives us no hint about the
probability of observing the event U = u. It’s this second character-
ization that we used in Chapter 2 when we argued that the indepen-
dence criterion for binary classification (accept/reject) implies equal
acceptance rates in all groups.

The notion of independent random variables, extends to conditional
independence. Two random variables U and V are conditionally indepen-
dent given a third random variable W if for all values u, v and w that
the random variables might assume, we have:

P{U = u, V = v |W = w} = P{U = u |W = w} ·P{V = v |W = w} .

Sample and population

We often think of random variables (X, Y) as modeling a population
of instances of a classification problem. In almost all decision making
scenarios, however, we do not have access to the entire population of
instances that we will encounter. Instead, we only have a sample of
instances from this population. To give an example, consider a pop-
ulation consisting of all currently eligible voters in the United States
and some of their features, such as, age, income, state of residence
etc. An unbiased random sample would from this population would
correspond to a subset of voters so that each voter has an equal prob-
ability of appearing the sample.

Sampling is a difficult problem with numerous pitfalls that can
strongly affect the performance of statistical estimators and the valid-
ity of what we learn from data. Even defining a good population for
the problem we’re trying to solve is often tricky.

The theory of machine learning largely ignores these issues. The
focus is instead on the challenges that remain even if we have a well-
defined population and an unbiased sample from it.

Supervised learning is the prevalent method for constructing classi-
fiers from data. The essential idea is very simple. We assume we have
labeled data, also called training examples, of the form (x1, y1), ..., (xn, yn),
where each example is a pair (xi, yi) of an instance xi and a corre-
sponding label yi.

Building predictive models from data

The exact process by which predictive models are derived from data
is often secondary for questions of fairness. Nonetheless, in reading
the book it is quite helpful to have a working grasp of what this
process looks like.
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We’ll dive into the main method that machine learning practi-
tioners use to construct classifiers from a sample of data points. We
assume we have a sample S = ((x1, y1), ..., (xn, yn)) of labeled data
points drawn independently from a population (X, Y).

A loss function is a map ` : Y × Y → R that assigns a non-negative
real-valued cost `(y′, y) for outputting the prediction y′ when the
correct label is y.

The empirical risk of a classifier f : X → Y with respect to the
sample S and a fixed loss function~` is defined as

RS( f ) =
1
n

n

∑
i=1

`( f (xi), yi) .

Empirical risk minimization is the optimization problem of finding
a classifier in a given function family that minimizes the empmirical
risk:

min
f∈F

RS( f )

Introducing empirical risk minimization directly leads to three
important questions that we discuss next.

• Representation: What is the class of functions F we should
choose?

• Optimization: How can we efficiently solve the resulting opti-
mization problem? We will see a number of different optimization
methods that under certain circumstances find either a global or
local minimum of the empirical risk objective.

• Generalization: Will the performance of classifier transfer grace-
fully from seen training examples to unseen instances of our prob-
lem? The most common way to measure generalization perfor-
mance is to consider the difference between risk and empirical risk
R( f ) − RS( f ). We will see several mathematical frameworks for
reasoning about the gap between risk and empirical risk.

These three questions are intertwined. Our choice of representa-
tion influences both the difficulty of optimization and our general-
ization performance. Improvements in optimization may not help, or
could even hurt, generalization.

But there are also important differences between the three. If we
can show that optimization works, it will typically be independent
of how the sample was chosen. To reason about generalization, how-
ever, we will need assumptions about the data generating process.
The most common one is that the samples (x1, y1), ..., (xn, yn) were
drawn independently and identically (i.i.d.) from the population
(X, Y).
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There are also aspects of the problem that don’t neatly fall into
any of these categories. The choice of the loss function, for example,
affects all of the three questions above.

Let’s start with a good example to illustrate these questions.

Example: Perceptron

The New York Times wrote in 1958 that the Perceptron algorithm311 311 F. Rosenblatt, “The Perceptron: A
Probabilistic Model for Information
Storage and Organization in the Brain,”
Psychological Review, 1958, 65–386.

was:

the embryo of an electronic computer that (the Navy) expects will be
able to walk, talk, see, write, reproduce itself and be conscious of its
existence.

So, what is this algorithm? Let’s assume we’re in a binary classifi-
cation problem with labels in {−1, 1}. The Perceptron algorithm aims
to find a linear separator w ∈ Rd so that yi〈w, xi〉 ≥ 1. In other words,
the linear function f (x) = 〈w, x〉 agrees in sign with the labels on all
training instances (xi, yi).

The algorithm goes about it in the following way:

• At each step t = 1, 2, ..., select a random index i ∈ {1, ..., n} and
perform the following update step:

– If yi〈wt, xi〉 < 1, put

wt+1 = wt(1− γ) + ηyixi

– Otherwise put wt+1 = wt(1− γ).

Can we represent the Perceptron algorithm as an instance of em-
pirical risk minimization? The answer is that we can and it is instruc-
tive to see how.

First, it’s clear from the description that we’re looking for a linear
separator. Hence, our function class is the set of linear functions
f (x) = 〈w, x〉, where w ∈ Rd. We will sometimes call the vector w the
weight vector or vector of model parameters.

An optimization method that picks a random example at each step
and makes an improvement to the model parameters is the popular
stochastic gradient method specified by the updated rule:

wt+1 = wt − η∇wt`( f (xi), yi)

Here, ∇`( f (x), yi) is the gradient of the loss function with respect to
the model parameters wt on a randomly chosen example (xi, yi). We
will typically drop the vector wt from the subscript of the gradient
when it’s clear from the context. The scalar η > 0 is a step sise pa-
rameter that we will discuss more carefully later. For now, think of it
as a small constant.

https://www.nytimes.com/1958/07/08/archives/new-navy-device-learns-by-doing-psychologist-shows-embryo-of.html
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Consider the loss function

`(y, 〈w, x〉) = max(1− y〈w, x〉, 0) .

This loss function is called hinge loss. Its gradient is −yx when
y〈w, x〉 < 1 and 0 when y〈w, x〉 > 1. Note that the gradient is not
defined at y〈w, x〉 = 1.312 312 The loss function is not differen-

tiable everywhere. This is why techni-
cally speaking the stochastic gradient
method operates with what is called a
subgradient.

We can see that the hinge loss gives us part of the update rule
in the Perceptron algorithm. The other part comes from adding
a weight penalty γ

2 ‖w‖2 to the loss function that discourages the
weights from growing out of bounds. This weight penality is called
`2-regularization, weight decay, or Tikhonov regularization depending on
which field you work in. The purpose of regularization is to promote
generalization. We will therefore return to regularization in detail
when we discuss generalization in more depth.

Putting the two loss functions together, we get the `2-regularized
empirical risk minimization problem for the hinge loss:

1
n

n

∑
i=1

max(1− yi〈w, xi〉, 0) +
γ

2
‖w‖2

2

The Perceptron algorithm corresponds to solving this empirical
risk objective with the stochastic gradient method. The optimization
problem is also known as support vector machine and we will return to
it later on.

A note on representation

Our example focused on linear predictors. Linear models continue
to remain the model family of choice in many applications, espe-
cially those involving data with a relatively small number of features.
When the data are images, videos, speech segments, or text, non-
linear models are popular.

The basic approach remains the same. We train the model pa-
rameters using stochastic gradient descent except that the model
parameters are no longer a vector that we can interpret as a separat-
ing hyperplane. Artificial neural networks are models that perform
a sequence of transformations to the input. Each transformation, or
layer, typically performs an (affine) linear transformation followed by
a non-linear function applied coordinate wise.

What is relevant to this book is that the mechanics of training a
model remain the same, and the details of neural network architec-
tures rarely matter for normative questions about fairness. In fact,
there’s a useful heuristic. For any given claim about a machine learn-
ing system, understand what the claim corresponds to in the case of
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simple linear models. If it does not make sense for linear models, it
likely also does not make sense for non-linear models.

A note on optimization

If our goal is to minimize the accuracy of a predictor, why don’t we
directly solve empirical risk minimization with respect to the zero-one
loss `(y, z) = 1{y 6= z} that gives us penalty 1 if our label is incorrect,
and penalty 0 if our predicted label z matches the true label y?

The reason is that the zero one loss is hard to optimize. The gradi-
ents of the zero-one loss are zero everywhere they’re defined, and so
we can’t expect the gradient-based methods to directly optimize the
zero-one loss.

This is why there are numerous loss functions that approximate
the zero-one loss in different ways.

• The squared loss is given by 1
2 (y− z)2. Linear least squares regres-

sion corresponds to empirical risk minimization with the squared
loss.

• The hinge loss is max{1− yz, 0} and support vector machine refers to
empirical risk minimization with the hinge loss and `2-regularization.

• The logistic loss is − log(σ(z)) when y = 1 and − log(1− σ(z))
when y = −1, where σ(z) = 1/(1 + exp(−z)) is the logistic func-
tion. Logistic regression corresponds to empirical risk minimization
with the logistic loss.

Sometimes we can theoretically relate empirical risk minimization
under a surrogate loss to the zero-one loss. In general, however, these
loss functions are used heuristically and performance is evaluated by
trial-and-error.

A note on generalization

When we use the term generalization colloquially, it often evokes
the idea of extrapolating knowledge from one task to another task.
It alludes to our ability of taking principles we’ve learned in one
situation and applying them in another context.

Generalization in machine learning, however, has a significantly
more narrow definition. It essentially means for a model to be able
to do more of the same. If the predictive model correctly labels cats
and dogs on the training data, we want the model to be able to do
the same on cats and dogs drawn from the very same distribution
that the training data were drawn from. This kind of generalization is
best thought of interpolation. The model is able to smooth the gaps
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between training data and perform well on the distribution that the
data came from.

It is important to recognize that even state-of-the-art models per-
form substantially worse when test data are drawn from a distri-
bution that differs even slightly from the distribution of the train-
ing data. A striking illustration of this phenomenon comes from
researchers who created a new test set for the popular ImageNet clas-
sification benchmark. The new test set was created according to the
exact same protocol as the original test set, starting from the same
source data. Still, the performance of all known models is substan-
tially worse on the new test set as the old one.313 313 B. Recht, R. Roelofs, L. Schmidt, and

V. Shankar, “Do ImageNet Classifiers
Generalize to ImageNet?” in Proc. 36th
ICML, 2019.Bibliographic notes and further reading

There are numerous texts on machine learning and pattern classi-
fication, for example, the standard text book by Duda, Hart, and
Stork314. For background on statistics, see Wasserman’s text315. 314 R.O. Duda, P.E. Hart, and D.G. Stork,

Pattern Classification (John Wiley & Sons,
2012).
315 Wasserman, All of Statistics.





Bibliography

Agan, Amanda, and Sonja Starr. “Ban the Box, Criminal Records, and Racial Discrimination: A Field Ex-
periment.” The Quarterly Journal of Economics 133, no. 1 (2017): 191–235.

Ali, Muhammad, Piotr Sapiezynski, Miranda Bogen, Aleksandra Korolova, Alan Mislove, and Aaron
Rieke. “Discrimination Through Optimization: How Facebook’s Ad Delivery Can Lead to Biased Out-
comes.” Proceedings of the ACM on Human-Computer Interaction 3, no. CSCW (2019): 199.

Amorim, Evelin, Marcia Cançado, and Adriano Veloso. “Automated Essay Scoring in the Presence of
Biased Ratings.” In Proceedings of the 2018 Conference of the North American Chapter of the Association for Com-
putational Linguistics: Human Language Technologies, Volume 1 (Long Papers), 229–37, 2018.

Andreou, Athanasios, Oana Goga, Krishna Gummadi, Loiseau Patrick, and Alan Mislove. “AdAnalyst.”
https://adanalyst.mpi-sws.org/, 2017.

Angrist, Joshua D., and Pischke Jörn-Steffen. Mostly Harmless Econometrics: An Empiricist’s Companion.
Princeton University Press, 2009.

Angwin, Julia, Jeff Larson, Surya Mattu, and Lauren Kirchner. “Machine Bias.” ProPublica, May 2016.
https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing.

Angwin, Julia, Madeleine Varner, and Ariana Tobin. “Facebook Enabled Advertisers to Reach ‘Jew
Haters’.” ProPublica. https://www.%20propublica.%20org/article/facebook-enabled-advertisers-to-reach-jew-haters,
2017.

Arrow, Kenneth. “The Theory of Discrimination.” Discrimination in Labor Markets 3, no. 10 (1973): 3–33.
Ashkenas, Jeremy, Haeyoun Park, and Adam Pearce. “Even with Affirmative Action, Blacks and His-

panics Are More Underrepresented at Top Colleges Than 35 Years Ago.” https://www.nytimes.com/

interactive/2017/08/24/us/affirmative-action.html, 2017.
Aström, Karl Johan, and Richard M Murray. Feedback Systems: An Introduction for Scientists and Engineers.

Princeton university press, 2010.
Ayres, Ian. “Three Tests for Measuring Unjustified Disparate Impacts in Organ Transplantation: The

Problem of" Included Variable" Bias.” Perspectives in Biology and Medicine 48, no. 1 (2005): 68–S87.
Ayres, Ian, Mahzarin Banaji, and Christine Jolls. “Race Effects on eBay.” The RAND Journal of Economics

46, no. 4 (2015): 891–917.
Ayres, Ian, and Peter Siegelman. “Race and Gender Discrimination in Bargaining for a New Car.” The

American Economic Review, 1995, 304–21.
Bagwell, Kyle. “The Economic Analysis of Advertising.” Handbook of Industrial Organization 3 (2007):

1701–1844.
Baker, Kevin T. “World Processors: Computer Modeling, Global Environmentalism, and the Birth of

Sustainable Development.” PhD thesis, Northwestern University, 2019.
Bakshy, Eytan, Solomon Messing, and Lada A Adamic. “Exposure to Ideologically Diverse News and

https://adanalyst.mpi-sws.org/
https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
https://www.%20propublica.%20org/article/facebook-enabled-advertisers-to-reach-jew-haters
https://www.nytimes.com/interactive/2017/08/24/us/affirmative-action.html
https://www.nytimes.com/interactive/2017/08/24/us/affirmative-action.html


168 solon barocas, moritz hardt, arvind narayanan

Opinion on Facebook.” Science 348, no. 6239 (2015): 1130–2.
Barocas, Solon. “Putting Data to Work.” In Data and Discrimination: Collected Essays, edited by Seeta Peña

Gangadharan Virginia Eubanks and Solon Barocas, 59–62. New America Foundation, 2014.
Barocas, Solon, and Andrew D. Selbst. “Big Data’s Disparate Impact.” California Law Review 104 (2016).
Baron, Reuben M, and David A Kenny. “The Moderator–Mediator Variable Distinction in Social Psy-

chological Research: Conceptual, Strategic, and Statistical Considerations.” Journal of Personality and Social
Psychology 51, no. 6 (1986): 1173.

Bashir, Muhammad Ahmad, Sajjad Arshad, William Robertson, and Christo Wilson. “Tracing Informa-
tion Flows Between Ad Exchanges Using Retargeted Ads.” In USENIX Security Symposium 16, 481–96, 2016.

Becker, Gary S. The Economics of Discrimination. University of Chicago Press, 1957.
Benjamin, Ruha. Race After Technology. Polity, 2019.
Bennett, James, and Stan Lanning. “The Netflix Prize.” In Proceedings of Kdd Cup and Workshop, 2007:35.

New York, NY, USA., 2007.
Berk, Richard, Hoda Heidari, Shahin Jabbari, Michael Kearns, and Aaron Roth. “Fairness in Criminal

Justice Risk Assessments: The State of the Art.” ArXiv E-Prints 1703.09207 (2017).
Berkson, Joseph. “Limitations of the Application of Fourfold Table Analysis to Hospital Data.” Interna-

tional Journal of Epidemiology 43, no. 2 (2014): 511–15.
Bertrand, Marianne, and Esther Duflo. “Field Experiments on Discrimination.” In Handbook of Economic

Field Experiments, 1:309–93. Elsevier, 2017.
Bertrand, Marianne, Esther Duflo, and Sendhil Mullainathan. “How Much Should We Trust Differences-

in-Differences Estimates?” The Quarterly Journal of Economics 119, no. 1 (2004): 249–75.
Bertrand, Marianne, and Sendhil Mullainathan. “Are Emily and Greg More Employable Than Lakisha

and Jamal? A Field Experiment on Labor Market Discrimination.” American Economic Review 94, no. 4

(2004): 991–1013.
Bickel, Peter J, Eugene A Hammel, J William O’Connell, and others. “Sex Bias in Graduate Admissions:

Data from Berkeley.” Science 187, no. 4175 (1975): 398–404.
Bird, Sarah, Solon Barocas, Kate Crawford, Fernando Diaz, and Hanna Wallach. “Exploring or Exploit-

ing? Social and Ethical Implications of Autonomous Experimentation in Ai.” In Workshop on Fairness, Ac-
countability, and Transparency in Machine Learning, 2016.

Blank, Rebecca M. “The Effects of Double-Blind Versus Single-Blind Reviewing: Experimental Evidence
from the American Economic Review.” The American Economic Review, 1991, 1041–67.

Bogen, Miranda, and Aaron Rieke. “Help wanted: an examination of hiring algorithms, equity, and
bias.” Technical report, Upturn, 2018.

Bongers, Stephan, Jonas Peters, Bernhard Schölkopf, and Joris M. Mooij. “Theoretical Aspects of Cyclic
Structural Causal Models.” arXiv.org Preprint arXiv:1611.06221v2 (2018).

Bonham, Vence L, Shawneequa L Callier, and Charmaine D Royal. “Will Precision Medicine Move Us
Beyond Race?” The New England Journal of Medicine 374, no. 21 (2016): 2003.

Bouk, Dan. How Our Days Became Numbered: Risk and the Rise of the Statistical Individual. University of
Chicago Press, 2015.

Bowker, Geoffrey C., and Susan Leigh Star. Sorting Things Out: Classification and Its Consequences. MIT
Press, 2000.

Buolamwini, Joy, and Timnit Gebru. “Gender Shades: Intersectional Accuracy Disparities in Commercial
Gender Classification.” In Conference on Fairness, Accountability and Transparency, 77–91, 2018.

Buranyi, Stephen. “How to Persuade a Robot That You Should Get the Job.” Guardian, 2018.



fairness in machine learning 169

Calders, Toon, Faisal Kamiran, and Mykola Pechenizkiy. “Building Classifiers with Independency Con-
straints.” In In Proc. IEEE ICDMW, 13–18, 2009.

Caliskan, Aylin, Joanna J. Bryson, and Arvind Narayanan. “Semantics Derived Automatically from
Language Corpora Contain Human-Like Biases.” Science 356, no. 6334 (2017): 183–86.

Campolo, Alex, Madelyn Sanfilippo, Meredith Whittaker, and Kate Crawford. “AI Now 2017 Report.”
AI Now Institute at New York University, 2017.

Cartwright, Nancy. Hunting Causes and Using Them, Too. Cambridge University Press, 2006.
Caruana, Rich, Yin Lou, Johannes Gehrke, Paul Koch, Marc Sturm, and Noemie Elhadad. “Intelligible

Models for Healthcare: Predicting Pneumonia Risk and Hospital 30-Day Readmission.” In Proc. 21st ACM
SIGKDD, 1721–30, 2015.

Chaney, Allison JB, Brandon M Stewart, and Barbara E Engelhardt. “How Algorithmic Confounding in
Recommendation Systems Increases Homogeneity and Decreases Utility.” In Proceedings of the 12th Acm
Conference on Recommender Systems, 224–32. ACM, 2018.

Chen, Le, Alan Mislove, and Christo Wilson. “Peeking Beneath the Hood of Uber.” In Proceedings of the
2015 Internet Measurement Conference, 495–508. ACM, 2015.

Chiappa, Silvia. “Path-Specific Counterfactual Fairness.” In Proc. 33rd Aaai, 33:7801–8, 2019.
Chiappa, Silvia, and William S. Isaac. “A Causal Bayesian Networks Viewpoint on Fairness.” Arxiv.org

arXiv:1907.06430 (2019).
Chouldechova, Alexandra. “Fair Prediction with Disparate Impact: A Study of Bias in Recidivism Pre-

diction Instruments.” In Proc. 3rd FATML, 2016.
Chouldechova, Alexandra, Diana Benavides-Prado, Oleksandr Fialko, and Rhema Vaithianathan. “A

Case Study of Algorithm-Assisted Decision Making in Child Maltreatment Hotline Screening Decisions.”
In Conference on Fairness, Accountability and Transparency, 134–48, 2018.

Cleary, T Anne. “Test Bias: Prediction of Grades of Negro and White Students in Integrated Colleges.”
Journal of Educational Measurement 5, no. 2 (1968): 115–24.

———. “Test Bias: Validity of the Scholastic Aptitude Test for Negro and White Students in Integrated
Colleges.” ETS Research Bulletin Series 1966, no. 2 (1966): i–23.

Coltrane, Scott, and Melinda Messineo. “The Perpetuation of Subtle Prejudice: Race and Gender Im-
agery in 1990s Television Advertising.” Sex Roles 42, nos. 5-6 (2000): 363–89.

Corbett-Davies, Sam, Emma Pierson, Avi Feller, Sharad Goel, and Aziz Huq. “Algorithmic Decision
Making and the Cost of Fairness.” arXiv Preprint arXiv:1701.08230, 2017.

Crawford, Kate. “The Hidden Biases in Big Data.” Harvard Business Review 1 (2013).
———. “The Trouble with Bias.” NIPS Keynote https://www.youtube.com/watch?v=fMym_BKWQzk, 2017.
Danesi, Marcel. Dictionary of Media and Communications. Routledge, 2014.
Danziger, Shai, Jonathan Levav, and Liora Avnaim-Pesso. “Extraneous Factors in Judicial Decisions.”

Proceedings of the National Academy of Sciences 108, no. 17 (2011): 6889–92.
Darlington, Richard B. “Another Look at ‘Cultural Fairness’.” Journal of Educational Measurement 8, no. 2

(1971): 71–82.
Dastin, Jeffrey. “Amazon Scraps Secret Ai Recruiting Tool That Showed Bias Against Women.” Reuters,

2018.
Datta, Amit, Michael Carl Tschantz, and Anupam Datta. “Automated Experiments on Ad Privacy Set-

tings.” Proc. Privacy Enhancing Technologies (PET) 2015, no. 1 (2015): 92–112.
Dawes, Robyn M, David Faust, and Paul E Meehl. “Clinical Versus Actuarial Judgment.” Science 243, no.

4899 (1989): 1668–74.

https://www.youtube.com/watch?v=fMym_BKWQzk


170 solon barocas, moritz hardt, arvind narayanan

De-Arteaga, Maria, Alexey Romanov, Hanna Wallach, Jennifer Chayes, Christian Borgs, Alexandra
Chouldechova, Sahin Geyik, Krishnaram Kenthapadi, and Adam Tauman Kalai. “Bias in Bios: A Case
Study of Semantic Representation Bias in a High-Stakes Setting.” In Proceedings of the Conference on Fairness,
Accountability, and Transparency, 120–28. ACM, 2019.

Deaton, Angus, and Nancy Cartwright. “Understanding and Misunderstanding Randomized Controlled
Trials.” Social Science & Medicine 210 (2018): 2–21.

Deng, J., W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. “ImageNet: A Large-Scale Hierarchical Image
Database.” In Proc. CVPR, 2009.

Dieterich, William, Christina Mendoza, and Tim Brennan. “COMPAS Risk Scales: Demonstrating Accu-
racy Equity and Predictive Parity,” 2016. https://www.documentcloud.org/documents/2998391-ProPublica-Commentary-Final-070616.
html.

Dillon, Eleanor Wiske, and Jeffrey Andrew Smith. “The Determinants of Mismatch Between Students
and Colleges.” National Bureau of Economic Research, 2013.

Dobbie, Will, Jacob Goldin, and Crystal Yang. “The Effects of Pre-Trial Detention on Conviction, Fu-
ture Crime, and Employment: Evidence from Randomly Assigned Judges.” National Bureau of Economic
Research, 2016.

D’Onfro, Jillian. “Google Tests Changes to Its Search Algorithm; How Search Works.” https://www.

cnbc.com/2018/09/17/google-tests-changes-to-its-search-algorithm-how-search-works.html, 2019.
Duda, Richard O., Peter E. Hart, and David G. Stork. Pattern Classification. John Wiley & Sons, 2012.
Dwork, Cynthia, Moritz Hardt, Toniann Pitassi, Omer Reingold, and Richard Zemel. “Fairness Through

Awareness.” In Proc. 3rd ITCS, 214–26, 2012.
Edelman, Benjamin, Michael Luca, and Dan Svirsky. “Racial Discrimination in the Sharing Economy:

Evidence from a Field Experiment.” American Economic Journal: Applied Economics 9, no. 2 (2017): 1–22.
Einhorn, Hillel J, and Alan R Bass. “Methodological Considerations Relevant to Discrimination in Em-

ployment Testing.” Psychological Bulletin 75, no. 4 (1971): 261.
Ensign, Danielle, Sorelle A Friedler, Scott Neville, Carlos Scheidegger, and Suresh Venkatasubramanian.

“Runaway Feedback Loops in Predictive Policing.” arXiv Preprint arXiv:1706.09847, 2017.
Eren, Ozkan, and Naci Mocan. “Emotional Judges and Unlucky Juveniles.” American Economic Journal:

Applied Economics 10, no. 3 (2018): 171–205.
Eubanks, Virginia. Automating Inequality: How High-Tech Tools Profile, Police, and Punish the Poor. St. Mar-

tin’s Press, 2018.
Feldman, Michael, Sorelle A Friedler, John Moeller, Carlos Scheidegger, and Suresh Venkatasubrama-

nian. “Certifying and Removing Disparate Impact.” In Proc. 21st SIGKDD. ACM, 2015.
Fields, Karen E., and Barbara J. Fields. Racecraft: The Soul of Inequality in American Life. Verso, 2014.
Forrester, Jay W. “Counterintuitive Behavior of Social Systems.” Technological Forecasting and Social

Change 3 (1971): 1–22.
———. “System Dynamics, Systems Thinking, and Soft or.” System Dynamics Review 10, nos. 2-3 (1994):

245–56.
———. “Urban Dynamics.” IMR; Industrial Management Review (Pre-1986) 11, no. 3 (1970): 67.
Freeman, Jonathan B, Andrew M Penner, Aliya Saperstein, Matthias Scheutz, and Nalini Ambady.

“Looking the Part: Social Status Cues Shape Race Perception.” PloS One 6, no. 9 (2011): e25107.
Friedman, Batya, and Helen Nissenbaum. “Bias in Computer Systems.” ACM Transactions on Information

Systems (TOIS) 14, no. 3 (1996): 330–47.
Frucci, Adam. “HP Face-Tracking Webcams Don’t Recognize Black People.” https://gizmodo.com/

https://www.documentcloud.org/documents/2998391-ProPublica-Commentary-Final-070616.html
https://www.documentcloud.org/documents/2998391-ProPublica-Commentary-Final-070616.html
https://www.cnbc.com/2018/09/17/google-tests-changes-to-its-search-algorithm-how-search-works.html
https://www.cnbc.com/2018/09/17/google-tests-changes-to-its-search-algorithm-how-search-works.html
https://gizmodo.com/hp-face-tracking-webcams-dont-recognize-black-people-5431190
https://gizmodo.com/hp-face-tracking-webcams-dont-recognize-black-people-5431190


fairness in machine learning 171

hp-face-tracking-webcams-dont-recognize-black-people-5431190, 2009.
Garvie, Clare, Alvaro Bedoya, and Jonathan Frankle. “The Perpetual Line-up.” Georgetown Law: Center

on Privacy and Technology., 2016.
Ge, Yanbo, Christopher R Knittel, Don MacKenzie, and Stephen Zoepf. “Racial and Gender Discrimina-

tion in Transportation Network Companies.” National Bureau of Economic Research, 2016.
Gillespie, Tarleton. Custodians of the Internet: Platforms, Content Moderation, and the Hidden Decisions That

Shape Social Media. Yale University Press, 2018.
———. “The Politics of ‘Platforms’.” New Media & Society 12, no. 3 (2010): 347–64.
Glasgow, Joshua, Sally Haslanger, Chike Jeffers, and Quayshawn Spencer. “What Is Race?: Four Philo-

sophical Views,” 2019.
Glymour, Clark. “Comment: Statistics and Metaphysics.” Journal of the American Statistical Association 81,

no. 396 (1986): 964–66.
Glymour, M Maria. “Using Causal Diagrams to Understand Common Problems in Social Epidemiol-

ogy.” Methods in Social Epidemiology, 2006, 393–428.
Golebiewski, M, and D Boyd. “Data Voids: Where Missing Data Can Easily Be Exploited.” Data & Soci-

ety 29 (2018).
Green, Lisa J. African American English: A Linguistic Introduction. Cambridge University Press, 2002.
Greiner, D. James, and Donald B. Rubin. “Causal Effects of Perceived Immutable Characteristics.” The

Review of Economics and Statistics 93, no. 3 (2011): 775–85.
Hacking, Ian. “Making up People.” London Review of Books 28, no. 16 (2006).
———. The Social Construction of What? Harvard University Press, 2000.
Hall, Anna B. AND Cook, Joshua D. AND O’Connell. “Predictors of Student Productivity in Biomedical

Graduate School Applications.” PLOS ONE 12, no. 1 (January 2017): 1–14.
Halligan, Steve, Douglas G. Altman, and Susan Mallett. “Disadvantages of Using the Area Under the

Receiver Operating Characteristic Curve to Assess Imaging Tests: A Discussion and Proposal for an Alter-
native Approach.” European Radiology 25, no. 4 (April 2015): 932–39.

Hanna, Rema N, and Leigh L Linden. “Discrimination in Grading.” American Economic Journal: Economic
Policy 4, no. 4 (2012): 146–68.

Hannak, Aniko, Piotr Sapiezynski, Arash Molavi Kakhki, Balachander Krishnamurthy, David Lazer,
Alan Mislove, and Christo Wilson. “Measuring Personalization of Web Search.” In Proceedings of the 22nd
International Conference on World Wide Web, 527–38. ACM, 2013.

Hardt, Moritz. “How Big Data Is Unfair.” https://medium.com/@mrtz/how-big-data-is-unfair-9aa544d739de,
2014.

Hardt, Moritz, Eric Price, and Nati Srebro. “Equality of Opportunity in Supervised Learning.” In
Proc. 29th NIPS, 3315–23, 2016.

Harvey, Adam, and Jules LaPlace. “MegaPixels: Origins, Ethics, and Privacy Implications of Publicly
Available Face Recognition Image Datasets,” 2019. https://megapixels.cc/.

Haslanger, Sally. Resisting Reality: Social Construction and Social Critique. Oxford University Press, 2012.
Hastie, Trevor, Robert Tibshirani, and Jerome Friedman. The Elements of Statistical Learning. Springer,

2009.
Hern, Alex. “Flickr Faces Complaints over ‘Offensive’auto-Tagging for Photos.” The Guardian 20 (2015).
Hernán, Miguel A, David Clayton, and Niels Keiding. “The Simpson’s paradox unraveled.” International

Journal of Epidemiology 40, no. 3 (March 2011): 780–85. https://doi.org/10.1093/ije/dyr041.
Hernán, Miguel, and James Robins. Causal Inference. Boca Raton: Chapman & Hall/CRC, forthcoming,

https://gizmodo.com/hp-face-tracking-webcams-dont-recognize-black-people-5431190
https://gizmodo.com/hp-face-tracking-webcams-dont-recognize-black-people-5431190
https://medium.com/@mrtz/how-big-data-is-unfair-9aa544d739de
https://megapixels.cc/
https://doi.org/10.1093/ije/dyr041


172 solon barocas, moritz hardt, arvind narayanan

2019.
Hirschman, Daniel, and Isaac Ariail Reed. “Formation Stories and Causality in Sociology.” Sociological

Theory 32, no. 4 (2014): 259–82.
Holland, Paul W. “Statistics and Causal Inference.” Journal of the American Statistical Association (JASA) 81

(1986): 945–70.
Humphrey, Linda L., Benjamin K. S. Chan, and Harold C. Sox. “Postmenopausal Hormone Replacement

Therapy and the Primary Prevention of Cardiovascular Disease.” Annals of Internal Medicine 137, no. 4

(August 2002): 273–84.
Huq, Aziz Z. “Racial Equity in Algorithmic Criminal Justice.” Duke LJ 68 (2018): 1043.
Hutson, Jevan A, Jessie G Taft, Solon Barocas, and Karen Levy. “Debiasing Desire: Addressing Bias &

Discrimination on Intimate Platforms.” Proceedings of the ACM on Human-Computer Interaction 2, no. CSCW
(2018): 73.

Imbens, Guido W., and Donald B. Rubin. Causal Inference for Statistics, Social, and Biomedical Sciences.
Cambridge University Press, 2015.

Ingold, David, and Spencer Soper. “Amazon Doesn’t Consider the Race of Its Customers. Should It?”
https://www.bloomberg.com/graphics/2016-amazon-same-day/, 2016.

Jackson, John W., and Tyler J. VanderWeele. “Decomposition Analysis to Identify Intervention Targets
for Reducing Disparities.” Epidemiology, 2018, 825–35.

Jaquette, Ozan, and Karina Salazar. “Opinion | Colleges Recruit at Richer, Whiter High Schools - the
New York Times.” https://www.nytimes.com/interactive/2018/04/13/opinion/college-recruitment-rich-white.

html, 2018.
Joachims, Thorsten, Adith Swaminathan, and Tobias Schnabel. “Unbiased Learning-to-Rank with Biased

Feedback.” In Proc. 10th International Conference on Web Search and Data Mining, 781–89. ACM, 2017.
Kaggle. “The Hewlett Foundation: Automated Essay Scoring.” https://www.kaggle.com/c/asap-aes,

2012.
Kalantari, Nima Khademi, and Ravi Ramamoorthi. “Deep High Dynamic Range Imaging of Dynamic

Scenes.” ACM Trans. Graph 36, no. 4 (2017): 144.
Kamiran, Faisal, and Toon Calders. “Classifying Without Discriminating.” In Proc. 2nd International

Conference on Computer, Control and Communication, 2009.
Kang, Sonia K, Katherine A DeCelles, András Tilcsik, and Sora Jun. “Whitened Resumes: Race and

Self-Presentation in the Labor Market.” Administrative Science Quarterly 61, no. 3 (2016): 469–502.
Kaufman, Liad, Dani Lischinski, and Michael Werman. “Content-Aware Automatic Photo Enhance-

ment.” In Computer Graphics Forum, 31:2528–40. 8. Wiley Online Library, 2012.
Kay, Matthew, Cynthia Matuszek, and Sean A Munson. “Unequal Representation and Gender Stereo-

types in Image Search Results for Occupations.” In Proc. 33rd Conference on Human Factors in Computing
Systems, 3819–28. ACM, 2015.

Kilbertus, Niki, Mateo Rojas-Carulla, Giambattista Parascandolo, Moritz Hardt, Dominik Janzing, and
Bernhard Schölkopf. “Avoiding Discrimination Through Causal Reasoning.” In Proc. 30th NIPS, 656–66,
2017.

Kiritchenko, Svetlana, and Saif M Mohammad. “Examining Gender and Race Bias in Two Hundred
Sentiment Analysis Systems.” arXiv Preprint arXiv:1805.04508, 2018.

Kleinberg, Jon M., Sendhil Mullainathan, and Manish Raghavan. “Inherent Trade-Offs in the Fair Deter-
mination of Risk Scores.” Proc. 8th ITCS, 2017.

Klonick, Kate. “The New Governors: The People, Rules, and Processes Governing Online Speech.” Harv.

https://www.bloomberg.com/graphics/2016-amazon-same-day/
https://www.nytimes.com/interactive/2018/04/13/opinion/college-recruitment-rich-white.html
https://www.nytimes.com/interactive/2018/04/13/opinion/college-recruitment-rich-white.html
https://www.kaggle.com/c/asap-aes


fairness in machine learning 173

L. Rev. 131 (2017): 1598.
Kohler-Hausmann, Issa. “Eddie Murphy and the Dangers of Counterfactual Causal Thinking About

Detecting Racial Discrimination.” Nw. UL Rev. 113 (2018): 1163.
———. “Eddie Murphy and the Dangers of Counterfactual Causal Thinking About Detecting Racial

Discrimination.” SSRN, 2019.
Krieger, Nancy. “Discrimination and Health Inequities.” International Journal of Health Services 44, no. 4

(2014): 643–710.
———. “Epidemiology and the People’s Health: Theory and Context,” 2011.
———. “On the Causal Interpretation of Race.” Epidemiology 25, no. 6 (2014): 937.
Kusner, Matt J., Joshua R. Loftus, Chris Russell, and Ricardo Silva. “Counterfactual Fairness.” In Proc. 30th

NIPS, 4069–79, 2017.
Lakens, Daniel. “Impossibly Hungry Judges.” https://daniellakens.blogspot.com/2017/07/impossibly-hungry-judges.

html, 2017.
Lakkaraju, Himabindu, Jon Kleinberg, Jure Leskovec, Jens Ludwig, and Sendhil Mullainathan. “The Se-

lective Labels Problem: Evaluating Algorithmic Predictions in the Presence of Unobservables.” In Proceed-
ings of the 23rd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, 275–84. ACM,
2017.

Lambrecht, Anja, and Catherine Tucker. “Algorithmic Bias? An Empirical Study of Apparent Gender-
Based Discrimination in the Display of Stem Career Ads.” Management Science, 2019.

Lee, Min Kyung, Daniel Kusbit, Evan Metsky, and Laura Dabbish. “Working with Machines: The Impact
of Algorithmic and Data-Driven Management on Human Workers.” In Proceedings of the 33rd Annual Acm
Conference on Human Factors in Computing Systems, 1603–12. ACM, 2015.

Levy, Karen, and Solon Barocas. “Designing Against Discrimination in Online Markets.” Berkeley Tech. LJ
32 (2017): 1183.

Lewis, Mary A. “A Comparison of Three Models for Determining Test Fairness.” Federal Aviation Ad-
ministration Washington DC Office of Aviation Medicine, 1978.

Liu, Lydia T., Sarah Dean, Esther Rolf, Max Simchowitz, and Moritz Hardt. “Delayed Impact of Fair
Machine Learning.” In Proc. 35th ICML, 3156–64, 2018.

Liu, Zicheng, Cha Zhang, and Zhengyou Zhang. “Learning-Based Perceptual Image Quality Improve-
ment for Video Conferencing.” In Multimedia and Expo, 2007 Ieee International Conference on, 1035–8. IEEE,
2007.

Lum, Kristian, and William Isaac. “To Predict and Serve?” Significance 13, no. 5 (2016): 14–19.
Mallon, Ron. “‘Race’: Normative, Not Metaphysical or Semantic.” Ethics 116, no. 3 (2006): 525–51.
———. The Construction of Human Kinds. Oxford University Press, 2018.
Manthorpe, Rowland. “The Beauty.ai Robot Beauty Contest Is Back.” Wired UK. https://www.wired.

co.uk/article/robot-beauty-contest-beauty-ai, 2017.
Martineau, Paris. “Cities Examine Proper—and Improper—Uses of Facial Recognition | Wired.” https:

//www.wired.com/story/cities-examine-proper-improper-facial-recognition/, 2019.
McEntegart, Jane. “Kinect May Have Issues with Dark-Skinned Users | Tom’s Guide.” https://www.

tomsguide.com/us/Microsoft-Kinect-Dark-Skin-Facial-Recognition,news-8638.html, 2010.
Meadows, Donella H., Jorgan Randers, and Dennis Meadows. The Limits to Growth: The 30-Year Update.

Routledge, 2012.
Mehrotra, Rishabh, Ashton Anderson, Fernando Diaz, Amit Sharma, Hanna Wallach, and Emine Yilmaz.

“Auditing Search Engines for Differential Satisfaction Across Demographics.” In Proceedings of the 26th

https://daniellakens.blogspot.com/2017/07/impossibly-hungry-judges.html
https://daniellakens.blogspot.com/2017/07/impossibly-hungry-judges.html
https://www.wired.co.uk/article/robot-beauty-contest-beauty-ai
https://www.wired.co.uk/article/robot-beauty-contest-beauty-ai
https://www.wired.com/story/cities-examine-proper-improper-facial-recognition/
https://www.wired.com/story/cities-examine-proper-improper-facial-recognition/
https://www.tomsguide.com/us/Microsoft-Kinect-Dark-Skin-Facial-Recognition,news-8638.html
https://www.tomsguide.com/us/Microsoft-Kinect-Dark-Skin-Facial-Recognition,news-8638.html


174 solon barocas, moritz hardt, arvind narayanan

International Conference on World Wide Web Companion, 626–33, 2017.
Miller, George A. “WordNet: A Lexical Database for English.” Communications of the ACM 38, no. 11

(1995): 39–41.
Moneta-Koehler, Abigail M. AND Petrie, Liane AND Brown. “The Limitations of the Gre in Predicting

Success in Biomedical Graduate School.” PLOS ONE 12, no. 1 (January 2017): 1–17.
Morgan, Stephen L., and Christopher Winship. Counterfactuals and Causal Inference. Cambridge Univer-

sity Press, 2014.
Munoz, Cecilia, Megan Smith, and D Patil. “Big Data: A Report on Algorithmic Systems, Opportunity,

and Civil Rights.” Executive Office of the President. The White House, 2016.
Muthukumar, Vidya, Tejaswini Pedapati, Nalini Ratha, Prasanna Sattigeri, Chai-Wah Wu, Brian Kings-

bury, Abhishek Kumar, Samuel Thomas, Aleksandra Mojsilovic, and Kush R Varshney. “Understanding
Unequal Gender Classification Accuracy from Face Images.” arXiv Preprint arXiv:1812.00099, 2018.

Nabi, Razieh, and Ilya Shpitser. “Fair Inference on Outcomes.” In Proc. 32nd AAAI, 1931–40, 2018.
Neckerman, Kathryn M, and Joleen Kirschenman. “Hiring Strategies, Racial Bias, and Inner-City Work-

ers.” Social Problems 38, no. 4 (1991): 433–47.
Noble, Safiya Umoja. Algorithms of Oppression: How Search Engines Reinforce Racism. NYU Press, 2018.
Norton, Helen. “The Supreme Court’s Post-Racial Turn Towards a Zero-Sum Understanding of Equal-

ity.” Wm. & Mary L. Rev. 52 (2010): 197.
Obermeyer, Ziad, Brian Powers, Christine Vogeli, and Sendhil Mullainathan. “Dissecting Racial Bias in

an Algorithm Used to Manage the Health of Populations.” Science 366, no. 6464 (2019): 447–53.
Ojala, Markus, and Gemma C Garriga. “Permutation Tests for Studying Classifier Performance.” Journal

of Machine Learning Research 11, no. Jun (2010): 1833–63.
O’Neil, Cathy. Weapons of Math Destruction: How Big Data Increases Inequality and Threatens Democracy.

Broadway Books, 2016.
O’TOOLE, ALICE J, KENNETH DEFFENBACHER, Hervé Abdi, and JAMES C BARTLETT. “Simulating

the ‘Other-Race Effect’as a Problem in Perceptual Learning.” Connection Science 3, no. 2 (1991): 163–78.
Pager, Devah. “The Use of Field Experiments for Studies of Employment Discrimination: Contributions,

Critiques, and Directions for the Future.” The Annals of the American Academy of Political and Social Science
609, no. 1 (2007): 104–33.

Pager, Devah, and Hana Shepherd. “The Sociology of Discrimination: Racial Discrimination in Employ-
ment, Housing, Credit, and Consumer Markets.” Annu. Rev. Sociol 34 (2008): 181–209.

Pariser, Eli. The Filter Bubble: What the Internet Is Hiding from You. Penguin UK, 2011.
Pasquale, Frank. The Black Box Society: The Secret Algorithms That Control Money and Information. Harvard

University Press, 2015.
Passi, Samir, and Solon Barocas. “Problem Formulation and Fairness.” In Proceedings of the Conference on

Fairness, Accountability, and Transparency, 39–48. ACM, 2019.
Pearl, Judea. Causality. Cambridge University Press, 2009.
Pearl, Judea, Madelyn Glymour, and Nicholas P. Jewell. Causal Inference in Statistics: A Primer. Wiley,

2016.
Pearl, Judea, and Dana Mackenzie. The Book of Why: The New Science of Cause and Effect. Basic Books,

2018.
Pedreshi, Dino, Salvatore Ruggieri, and Franco Turini. “Discrimination-Aware Data Mining.” In Proc. 14th

SIGKDD. ACM, 2008.
Peschard, Isabelle F., and Bas C. Van Fraassen. The Experimental Side of Modeling. University of Minnesota



fairness in machine learning 175

Press, 2018.
Peters, Jonas, Dominik Janzing, and Bernhard Schölkopf. Elements of Causal Inference. MIT Press, 2017.
Phelps, Edmund S. “The Statistical Theory of Racism and Sexism.” The American Economic Review 62, no.

4 (1972): 659–61.
Pischke, Jorn-Steffen. “Empirical Methods in Applied Economics: Lecture Notes,” 2005.
Plaugic, Lizzie. “FaceApp’s Creator Apologizes for the App’s Skin-Lightening ’Hot’ Filter.” The Verge.

https://www.theverge.com/2017/4/25/15419522/faceapp-hot-filter-racist-apology, 2017.
Pleiss, Geoff, Manish Raghavan, Felix Wu, Jon Kleinberg, and Kilian Q Weinberger. “On Fairness and

Calibration.” In Proc. 30th NIPS, 2017.
Posselt, Julie R. Inside Graduate Admissions. Harvard University Press, 2016.
Quillian, Lincoln, Devah Pager, Ole Hexel, and Arnfinn H Midtbøen. “Meta-Analysis of Field Experi-

ments Shows No Change in Racial Discrimination in Hiring over Time.” Proceedings of the National Academy
of Sciences 114, no. 41 (2017): 10870–5.

Raghavan, Manish, Solon Barocas, Jon Kleinberg, and Karen Levy. “Mitigating Bias in Algorithmic Em-
ployment Screening: Evaluating Claims and Practices.” arXiv Preprint arXiv:1906.09208, 2019.

Ramineni, Chaitanya, and David Williamson. “Understanding Mean Score Differences Between the
e-rater Automated Scoring Engine and Humans for Demographically Based Groups in the GRE General
Test.” ETS Research Report Series 2018, no. 1 (2018): 1–31.

Recht, Benjamin, Rebecca Roelofs, Ludwig Schmidt, and Vaishaal Shankar. “Do ImageNet Classifiers
Generalize to ImageNet?” In Proc. 36th ICML, 2019.

Reisman, Dillon, Jason Schultz, Kate Crawford, and Meredith Whittaker. “Algorithmic Impact As-
sessments: A Practical Framework for Public Agency Accountability.” https://ainowinstitute.org/

aiareport2018.pdf, 2018.
Rivera, Lauren A. Pedigree: How Elite Students Get Elite Jobs. Princeton University Press, 2016.
Robertson, Ronald E, Shan Jiang, Kenneth Joseph, Lisa Friedland, David Lazer, and Christo Wilson.

“Auditing Partisan Audience Bias Within Google Search.” Proceedings of the ACM on Human-Computer Inter-
action 2, no. CSCW (2018): 148.

Rock, David, and Heidi Grant. “Why Diverse Teams Are Smarter.” Harvard Business Review. https:
//hbr.org/2016/11/why-diverse-teams-are-smarter, 2016.

Rosenblatt, Frank. “The Perceptron: A Probabilistic Model for Information Storage and Organization in
the Brain.” Psychological Review, 1958, 65–386.

Roth, Alvin E. “The Origins, History, and Design of the Resident Match.” Jama 289, no. 7 (2003): 909–12.
Roth, Lorna. “Looking at Shirley, the Ultimate Norm: Colour Balance, Image Technologies, and Cogni-

tive Equity.” Canadian Journal of Communication 34, no. 1 (2009): 111.
Russell, Chris, Matt J. Kusner, Joshua R. Loftus, and Ricardo Silva. “When Worlds Collide: Integrating

Different Counterfactual Assumptions in Fairness.” In Proc. 30th NIPS, 6417–26, 2017.
Salganik, Matthew. Bit by Bit: Social Research in the Digital Age. Princeton University Press, 2019.
Sandvig, C., K. Hamilton, K. Karahalios, and C. Langbort. “Auditing Algorithms: Research Methods for

Detecting Discrimination on Internet Platforms.” ICA Pre-Conference on Data and Discrimination, 2014.
Sap, Maarten, Dallas Card, Saadia Gabriel, Yejin Choi, and Noah A Smith. “The Risk of Racial Bias

in Hate Speech Detection.” In Proceedings of the 57th Annual Meeting of the Association for Computational
Linguistics, 1668–78, 2019.

Shankar, Shreya, Yoni Halpern, Eric Breck, James Atwood, Jimbo Wilson, and D. Sculley. “No Classifica-
tion Without Representation: Assessing Geodiversity Issues in Open Data Sets for the Developing World.”

https://www.theverge.com/2017/4/25/15419522/faceapp-hot-filter-racist-apology
https://ainowinstitute.org/aiareport2018.pdf
https://ainowinstitute.org/aiareport2018.pdf
https://hbr.org/2016/11/why-diverse-teams-are-smarter
https://hbr.org/2016/11/why-diverse-teams-are-smarter


176 solon barocas, moritz hardt, arvind narayanan

In NIPS 2017 Workshop: Machine Learning for the Developing World, 2017.
Simoiu, Camelia, Sam Corbett-Davies, and Sharad Goel. “The Problem of Infra-Marginality in Outcome

Tests for Discrimination.” The Annals of Applied Statistics 11, no. 3 (2017): 1193–1216.
Simonite, Tom. “When It Comes to Gorillas, Google Photos Remains Blind.” Wired, January 13 (2018).
Simpson, Edward H. “The Interpretation of Interaction in Contingency Tables.” Journal of the Royal Sta-

tistical Society: Series B (Methodological) 13, no. 2 (1951): 238–41.
Singer-Vine, Jeremy, Jennifer Valentino-DeVries, and Ashkan Soltani. “How the Journal Tested Prices

and Deals Online.” Wall Street Journal. http://blogs.%20wsj.%20com/digits/2012/12/23/how-the-journal-tested-prices-and-deals-online,
2012.

Solaiman, Irene, Miles Brundage, Jack Clark, Amanda Askell, Ariel Herbert-Voss, Jeff Wu, Alec Rad-
ford, and Jasmine Wang. “Release Strategies and the Social Impacts of Language Models.” arXiv Preprint
arXiv:1908.09203, 2019.

Spirtes, Peter, Clark N Glymour, Richard Scheines, David Heckerman, Christopher Meek, Gregory
Cooper, and Thomas Richardson. Causation, Prediction, and Search. MIT press, 2000.

Sprietsma, Maresa. “Discrimination in Grading: Experimental Evidence from Primary School Teachers.”
Empirical Economics 45, no. 1 (2013): 523–38.

Susser, Daniel, Beate Roessler, and Helen Nissenbaum. “Online Manipulation: Hidden Influences in a
Digital World.” Available at SSRN 3306006, 2018.

Sweeney, Latanya. “Discrimination in Online Ad Delivery.” Queue 11, no. 3 (March 2013): 10:10–10:29.
Tatman, Rachael. “Gender and Dialect Bias in YouTube’s Automatic Captions.” In Proceedings of the First

ACL Workshop on Ethics in Natural Language Processing, 53–59. Valencia, Spain: Association for Computa-
tional Linguistics, 2017. https://doi.org/10.18653/v1/W17-1606.

Thebault-Spieker, Jacob, Loren Terveen, and Brent Hecht. “Toward a Geographic Understanding of
the Sharing Economy: Systemic Biases in Uberx and Taskrabbit.” ACM Transactions on Computer-Human
Interaction (TOCHI) 24, no. 3 (2017): 21.

The Federal Reserve Board. “Report to the Congress on Credit Scoring and Its Effects on the Availability
and Affordability of Credit.” https://www.federalreserve.gov/boarddocs/rptcongress/creditscore/,
2007.

Thorndike, Robert L. “Concepts of Culture-Fairness.” Journal of Educational Measurement 8, no. 2 (1971):
63–70.

Tjaden, Jasper Dag, Carsten Schwemmer, and Menusch Khadjavi. “Ride with Me—Ethnic Discrimina-
tion, Social Markets, and the Sharing Economy.” European Sociological Review 34, no. 4 (2018): 418–32.

Torralba, Antonio, and Alexei A Efros. “Unbiased Look at Dataset Bias.” In Proc. CVPR, 1521–8. IEEE,
2011.

Tripodi, Francesca. “Searching for Alternative Facts: Analyzing Scriptural Inference in Conservative
News Practices.” Data & Society, 2018.

Turow, Joseph, Jennifer King, Chris Jay Hoofnagle, Amy Bleakley, and Michael Hennessy. “Americans
Reject Tailored Advertising and Three Activities That Enable It.” Available at SSRN 1478214, 2009.

Valentino-Devries, Jennifer, Jeremy Singer-Vine, and Ashkan Soltani. “Websites Vary Prices, Deals Based
on Users’ Information.” Wall Street Journal 10 (2012): 60–68.

VanderWeele, Tyler J., and Whitney R. Robinson. “On Causal Interpretation of Race in Regressions
Adjusting for Confounding and Mediating Variables.” Epidemiology, 2014.

Venkatadri, Giridhari, Elena Lucherini, Piotr Sapiezynski, and Alan Mislove. “Investigating Sources
of Pii Used in Facebook’s Targeted Advertising.” Proceedings on Privacy Enhancing Technologies 2019, no. 1

http://blogs.%20wsj.%20com/digits/2012/12/23/how-the-journal-tested-prices-and-deals-online
https://doi.org/10.18653/v1/W17-1606
https://www.federalreserve.gov/boarddocs/rptcongress/creditscore/


fairness in machine learning 177

(2019): 227–44.
Vries, Terrance de, Ishan Misra, Changhan Wang, and Laurens van der Maaten. “Does Object Recog-

nition Work for Everyone?” In Proceedings of the Ieee Conference on Computer Vision and Pattern Recognition
Workshops, 52–59, 2019.

Wasserman, Larry. All of Statistics: A Concise Course in Statistical Inference. Springer, 2010.
Weinshall-Margel, Keren, and John Shapard. “Overlooked Factors in the Analysis of Parole Decisions.”

Proceedings of the National Academy of Sciences 108, no. 42 (2011): E833–E833.
Wienk, Ronald E, Clifford E. Reid, John C. Simonson, and Frederick J. Eggers. “Measuring Racial Dis-

crimination in American Housing Markets: The Housing Market Practices Survey.” 1979.
Williams, Wendy M, and Stephen J Ceci. “National Hiring Experiments Reveal 2: 1 Faculty Preference

for Women on Stem Tenure Track.” Proceedings of the National Academy of Sciences 112, no. 17 (2015): 5360–5.
Wilson, Benjamin, Judy Hoffman, and Jamie Morgenstern. “Predictive Inequity in Object Detection.”

arXiv Preprint arXiv:1902.11097, 2019.
Wilson, James F, Michael E Weale, Alice C Smith, Fiona Gratrix, Benjamin Fletcher, Mark G Thomas,

Neil Bradman, and David B Goldstein. “Population Genetic Structure of Variable Drug Response.” Nature
Genetics 29, no. 3 (2001): 265.

Woodworth, Blake E., Suriya Gunasekar, Mesrob I. Ohannessian, and Nathan Srebro. “Learning Non-
Discriminatory Predictors.” In Proc. 30th COLT, 1920–53, 2017.

Wu, Tim. The Master Switch: The Rise and Fall of Information Empires. Vintage, 2010.
Yao, Sirui, and Bert Huang. “Beyond Parity: Fairness Objectives for Collaborative Filtering.” In Advances

in Neural Information Processing Systems, 2921–30, 2017.
Zafar, Muhammad Bilal, Isabel Valera, Manuel Gómez Rodriguez, and Krishna P. Gummadi. “Fairness

Beyond Disparate Treatment & Disparate Impact: Learning Classification Without Disparate Mistreat-
ment.” In Proc. 26th WWW, 2017.

Zemel, Richard S., Yu Wu, Kevin Swersky, Toniann Pitassi, and Cynthia Dwork. “Learning Fair Repre-
sentations.” In Proc. 30th ICML, 2013.

Zhang, Junzhe, and Elias Bareinboim. “Fairness in Decision-Making — the Causal Explanation For-
mula.” In Proc. 32nd AAAI, 2018.

Zhang, Lu, Yongkai Wu, and Xintao Wu. “A Causal Framework for Discovering and Removing Direct
and Indirect Discrimination.” In Proc. 26th IJCAI, 3929–35, 2017.





List of Figures

1 The machine learning loop 15

2 Toy example: a hiring classifier that predicts job performance (not shown) based on GPA and interview
score, and then applies a cutoff. 27

3 Plot of the body mass index. 40

4 Halley’s life table (1693) 41

5 Example of an ROC curve. Each point on the solid curve is realized by thresholding the score function at
some value. The dashed line shows the trade-offs achieved by randomly accepting an instance irrespec-
tive of its features with some probability p ∈ [0, 1]. 43

6 On the left, we see the distribution of a single feature that differs only very slightly between the two groups.
In both groups the feature follows a normal distribution. Only the means are slightly different in each group.
Multiple features like this can be used to build a high accuracy group membership classifier. On the right,
we see how the accuracy grows as more and more features become available. 44

7 ROC curve by group. 49

8 Intersection of area under the curves. 50

9 Calibration by gender on UCI adult data. A straight diagonal line would correspond to perfect calibration. 53

10 Calibration by race on UCI adult data. 53

11 Directed graphical model for the variables in Scenario I 58

12 Directed graphical model for the variables in Scenario II 59

13 Cumulative density of scores by group. 63

14 ROC curve of credit score by group. 64

15 ROC curve of credit score by group zoomed in on region of large differences. 64

16 ROC curves with thresholds induced by different criteria. 66

17 Calibration values of credit score by group. 66

18 Causal diagrams for the heart disease examples. 87

19 Example of a fork. 88

20 Example of a chain. 88

21 Example of a collider. 89

22 Graph before and after substitution. 90

23 Two cases of unobserved confounding. 93

24 Possible causal graph for the UC Berkeley graduate admissions scenario. 95

25 Alternative causal graph for the UC Berkeley graduate admissions scenario showing influence of residence. 96



180 solon barocas, moritz hardt, arvind narayanan

26 Alternative causal graph for the UC Berkeley graduate admissions scenario where department preferences
are shaped by fear of discrimination. 97

27 Causal diagram for our traffic scenario. 99

28 Causal graph with mediator Z. 105

29 Religion as a root node. 111

30 Religion as ancestor. 112

31 (from Danziger et al.): fraction of favorable rulings over the course of a day. The dotted lines indicate food
breaks. 128

32 Hypothetical probability density of loan default for two groups, women (orange) and men (blue). 132



List of Tables

1 Common classification criteria 39

2 Additional classification criteria 39

3 Non-discrimination criteria 45

4 Credit score distribution by ethnicity 62

5 Census data 69

6 List of demographic fairness criteria 75

7 UC Berkeley admissions data from 1973. 81

9 Possible noise settings after observing evidence 100

10 Traffic example in the potential outcomes model 103

11 Traffic data in the potential outcomes model 103

12 Summary of traditional tests and methods, highlighting the relationship to fairness, the observational and
experimental access required by the researcher, and limitations. 134

13 Four types of NLP tasks and the types of unfairness that can result. Note that the traditional tests dis-
cussed in Part 1 operate in the context of predicting outcomes (row 3 in this table). 141


	About the book
	Why now?
	How did the book come about?
	Who is this book for?
	What's in this book?
	About the authors
	Thanks and acknowledgements

	Introduction
	Demographic disparities
	The machine learning loop
	The state of society
	The trouble with measurement
	From data to models
	The pitfalls of action
	Feedback and feedback loops
	Getting concrete with a toy example
	Other ethical considerations
	Our outlook: limitations and opportunities
	Bibliographic notes and further reading

	Classification
	Supervised learning
	Sensitive characteristics
	Formal non-discrimination criteria
	Calibration and sufficiency
	Relationships between criteria
	Inherent limitations of observational criteria
	Case study: Credit scoring
	Problem set: Criminal justice case study
	Problem set: Data modeling of traffic stops
	What is the purpose of a fairness criterion?
	Bibliographic notes and further reading

	Legal background and normative questions
	Causality
	The limitations of observation
	Causal models
	Causal graphs
	Interventions and causal effects
	Confounding
	Graphical discrimination analysis
	Counterfactuals
	Counterfactual discrimination analysis
	Validity of causal models
	Problem set
	Bibliographic notes and further reading

	Testing Discrimination in Practice
	Part 1: Traditional tests for discrimination
	Audit studies
	Testing the impact of blinding
	Revealing extraneous factors in decisions
	Testing the impact of decisions and interventions
	Purely observational tests
	Summary of traditional tests and methods
	Taste-based and statistical discrimination
	Studies of decision making processes and organizations
	Part 2: Testing discrimination in algorithmic systems
	Fairness considerations in applications of natural language processing
	Demographic disparities and questionable applications of computer vision
	Search and recommendation systems: three types of harms
	Understanding unfairness in ad targeting
	Fairness considerations in the design of online marketplaces
	Mechanisms of discrimination
	Fairness criteria in algorithmic audits
	Information flow, fairness, privacy
	Comparison of research methods
	Looking ahead

	Appendix — Technical background
	Random variables and conditional probabilities
	Building predictive models from data
	A note on representation
	A note on optimization
	A note on generalization
	Bibliographic notes and further reading

	Bibliography

