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ABSTRACT | Every day a large number of Earth observation

(EO) spaceborne and airborne sensors from many different

countries provide a massive amount of remotely sensed data.

Those data are used for different applications, such as natural

hazard monitoring, global climate change, urban planning,

etc. The applications are data driven and mostly interdisci-

plinary. Based on this it can truly be stated that we are now

living in the age of big remote sensing data. Furthermore,

these data are becoming an economic asset and a new impor-

tant resource in many applications. In this paper, we specifi-

cally analyze the challenges and opportunities that big data

bring in the context of remote sensing applications. Our focus

is to analyze what exactly does big data mean in remote sens-

ing applications and how can big data provide added value in

this context. Furthermore, this paper describes the most chal-

lenging issues in managing, processing, and efficient exploita-

tion of big data for remote sensing problems. In order to

illustrate the aforementioned aspects, two case studies dis-

cussing the use of big data in remote sensing are demon-

strated. In the first test case, big data are used to

automatically detect marine oil spills using a large archive of

remote sensing data. In the second test case, content-based

information retrieval is performed using high-performance

computing (HPC) to extract information from a large database

of remote sensing images, collected after the terrorist attack

to the World Trade Center in New York City. Both cases are

used to illustrate the significant challenges and opportunities

brought by the use of big data in remote sensing

applications.
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I . INTRODUCTION

As moving data generators, human beings create data ev-
eryday. We are all connected by sharing data from social

networks, intelligent devices, etc. Remote sensing de-

vices have been widely used to observe our planet from

various perspectives and to make our lives easier. It is

not exaggerated to say that the whole Earth has now

been made digital. Therefore, the digitized Earth plus

the moving data generators are the main actors for big

data in remote sensing, which can be used to make
governments more efficient (e.g., improving services

like police, healthcare and transportation) and also for

business, i.e., to improve decision making, manufactur-

ing, product innovation, consumer experience and ser-

vice, etc.

As reported by IBM, 2.5 quintillion bytes of data are

now generated every day. In other words, “90% of the

data in the world today has been created in the last two
years alone.”1 We are truly living in the big data age, and

now government leaders, enterprises, and nonprofit orga-

nizations are quickly realizing that it is very important to

1“What is big data?” in http://www-01.ibm.com/software/data/
bigdata/.
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collect big data in different contexts. However, there still
exists a common problem related to how we can gain in-

sights into big data. This problem is a conundrum: On

one hand, a wealth of big data can bring us big opportu-

nities. On the other hand, we still do not know how to

harness such big amount of data with tremendous com-

plexity, diversity, and heterogeneity, yet with high poten-

tial values. This makes the data very difficult to process

and analyze in a reasonable time.2

Big data can be mainly characterized by three fea-

tures: volume, variety, and velocity, defined as three “V”

dimensions by Meta Group (now Gartner) in 2001 [1]. It

is worth noting that “value” is an important quality of

big data, but it is not a defining characteristic. Big re-

mote sensing data can be described by its own dimen-

sions (referred hereinafter as 3Vs).

1) The archived data are characterized by their in-
creasing volume, from terabytes (TB ¼ 1024 GB)

to petabytes (PB ¼ 1024 TB), and even to exa-

bytes (EB ¼ 1024 PB). For instance, a huge

amount of remote sensing data are now freely

available from the NASA Open Government

Initiative.3 Only one of NASA archives, the

Earth Science Data and Information System

(ESDIS), holds 7.5 PB of data with nearly
7000 unique data sets and 1.5 million users in

2013 [2]. This volume only contains in-domain

remote sensing data.

2) In terms of variety, we can see now that big re-

mote sensing data consist of multisource (laser,

radar, optical, etc.), multitemporal (collected on

different dates), and multiresolution (different

spatial resolution) remote sensing data, as well
as data from different disciplines depending on

several application domains [3].

3) The velocity of big data in remote sensing in-

volves not only generation of data at a rapid

growing rate, but also efficiency of data process-

ing and analysis. In other words, the data should

be analyzed in a (nearly) real or a reasonable

time to achieve a given task, e.g., seconds can
save hundreds of thousands of lives in an

earthquake.

Although the 3Vs can describe big data, we consider

that it is not necessary for big data in remote sensing to

satisfy all the three V dimensions. For instance, any one

of volume and velocity, volume and variety, or variety

and velocity can already define a big data problem. Ex-

cept for the common challenges of big data characterized
by the 3Vs, there are other challenges for the remote

sensing applications, such as extensibility to integrating

multiple disparate management systems for different sat-

ellites for a remote sensing data center [4]. Of particular

importance is the value of the data, an important quality
hidden in the big data. Data processing methods can be

utilized to discover such value, and then the value of big

data can be realized in a real remote sensing application.

Therefore, to better understand big data, three per-

spectives should be unified, i.e., owning data, data appli-

cations, and data methods. In the paper, a trinity

framework is proposed to better understand big data in

the context of remote sensing applications. All the facets
of such trinity share common challenges and different

perspectives have individual challenges of its own.

In this work, these common and individual challenges

are discussed in the context of remote sensing applica-

tions. In spite of such big challenges, the potentials of big

remote sensing data are presented in detail. These poten-

tials have been applied to deal with different real-world

problems, such as archaeology [5], crop assessment and
yield forecasting [6], [7], food security [8], human health

[9], [10], land development and use [11], urban planning,

management, and sustainability [12]–[15], forest monitor-

ing [16], war and conflict studies [17], and several others.

To illustrate the effectiveness of big remote sensing

data, two case studies discussing the use of big data in

remote sensing are demonstrated in this paper. In the

first test case, social media data together with remote
sensing images are identified to consist of big remote

sensing data for automatical marine oil spill detection

and then a new data methodology is adopted to deal

with labeling challenges. In the second test case, con-

tent-based information retrieval is performed using

high-performance computing (HPC) to extract informa-

tion from a large database of remote sensing images,

collected after the terrorist attack on the World Trade
Center in New York City on September 11, 2001.

The remainder of the paper is organized as follows.

The next section discusses our understanding on big data

in remote sensing from three different perspectives. Ac-

cording to our view on big data, Section III divides big

data challenges into common challenges for all remote

sensing applications and individual challenges in individ-

ual facets of the so-called trinity of big data. Then, the
potentials of big remote sensing data are presented in

Section IV. Section V presents the aforementioned case

studies of big data in remote sensing. Finally, Section VI

draws some conclusions of the work and discusses future

developments.

II . UNDERSTANDING BIG DATA IN
REMOTE SENSING

From a general perspective, we can understand big data

as having different connotations regarding those who

own the big data, those who can process and analyze the

big data, and those who utilize the big data. Accordingly,

different data methods may be exploited to tackle big

data challenges in order to efficiently derive the value of

2The 462nd Session of the Xiangshan Science Conference, Beijing,
China, May 29–31, 2013.

3http://www.nasa.gov/open/
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those data. In the following, a trinity (three in one) is
discussed for the understanding of big data (with particu-

lar focus on remote sensing applications). Here, we iden-

tify three facets for understanding big data, i.e., owning

data, data methods, and data applications, which contrib-

ute together to a single big data life cycle. The trinity

concept of big data is illustrated in Fig. 1. There are com-

mon and different challenges in the individual facets of

understanding big data, which are detailed next.

A. First Facet: Owning Data
This is an important aspect of big data based on

which we can identify applications and utilize or design

proper data methods to address a real problem (e.g., a

remote sensing problem). The corresponding opportuni-

ties are based on the fact that more diverse data can be

acquired by intelligent devices where most of human be-
ings have access to the internet now to become both in-

dividual and moving data generators. Accordingly, data

values can be derived from those complex, diverse, het-

erogeneous, and high-dimensional remote sensing data

and other data from cyberspace. However, big challenges

arise at each step when obtaining and organizing big

remote sensing data. For instance, remote sensing data

are acquired from satellites, airplanes, or other sensing
devices while the other forms of data are retrieved

from cyberspace. Remote sensing data are preprocessed

by geometric and radiometric correction, georeferen-

cing, noise removal, etc. [18], and the data from cyber-

space should be cleaned to reduce errors and noise, in

which data quality can be improved. Remote sensing

data should be delivered from satellites to ground sta-

tions, and from ground stations to customers. Other re-
lated issues are data compression, data archiving, data

retrieval, data rights and protection, etc. We emphasize

that data are of no value until they are utilized for ap-

plications. The key difference between traditional data

and big data is how to identify the right data sets and

how to combine them to solve a challenging or novel

problem.

B. Second Facet: Big Data Methodologies
A big data methodology should be designed to sys-

tematically address big data problems from different re-

mote sensing domains. Such methodology is used to

design new data methods for big remote sensing data

preparation, data deployment, information extraction,

data modeling, data fusion, data visualization, and data

interpretation. These aspects are particularly crucial in

remote sensing applications, in which preprocessing
steps are as equally important as information extraction

steps. However, data processing and analysis represent a

multistep pipeline and data-driven methods could be sig-

nificantly different from the viewpoint of specific appli-

cations and domains.

Due to the aforementioned heterogeneity and high

dimensionality of big data in remote sensing, we also

face important computational and statistical challenges
related to processing scalability, noise accumulation, spu-

rious correlation, incidental endogeneity, and measure-

ment errors [19], [20]. These challenges require new

computational and statistical techniques in order to

tackle big data analysis and processing. The analysis and

processing techniques are data driven and can benefit

from theories and methods from the fields of statistics,

machine learning, pattern recognition, artificial intelli-
gence, data mining, etc. Domain knowledge is another

crucial aspect that should be tightly linked to data

analysis.

C. Third Facet: Big Data Applications
A main goal in big data applications is to identify the

right data to solve the problems at hand, which are diffi-

cult to be addressed or mostly cannot be manipulated by
traditional remote sensing data. Then, the next problem

is how to collect, organize, and utilize these big data to

deal with real remote sensing problems.

To identify the right data, we should be closely linked

to the first facet of understanding big data. In other

words, to harness big data firstly one should obtain data

from the related data agents (or, in general, data industry

or organization). In order to access the data, collabora-
tion across domains or organization should be taken into

account in an efficient manner. This is one of crucial

challenges in remote sensing applications.

After obtaining the right data, such as remote sensing

data, textual data and pictures from social networks, in-

novative data methodologies should be developed to dis-

cover, realize, and demonstrate the value of big data for

remote sensing applications.

III . BIG DATA, BIG CHALLENGES

The challenges of big data in remote sensing involves not

only dealing with high volumes of data [21]. In particu-

lar, challenges on data acquisition, storage, management,

and analysis are also related to remote sensing problems

Fig. 1. Trinity for understanding big data, i.e., three facets of big

data from different perspectives related to who owns big data,

who has innovative big data methods and methodologies, and

who needs big data applications.
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involving big data. In this section, we particularly ana-

lyze the challenges of big data in remote sensing which

involve the different facets of understanding big data in

the previous section.

From different perspectives of understanding big

data, we are facing big challenges in leveraging the value

that data have to offer. In the three facets, the same

challenges are shared, such as data computing, data col-
laboration, and data methodologies for different applica-

tions; in the meantime, we are facing different

challenges in the individual facets of understanding big

data. Fig. 2 summarizes the common and different chal-

lenges, which are described in detail in subsequent

sections.

A. Common Challenges
In the following, three common challenges, i.e., big

data computing, big data collaboration, and big data

methodologies, are listed according to the trinity of un-

derstanding big data in remote sensing.

1) Big Data Computing: A challenge in the design of

high-performance systems for big data computing is to

develop more heterogeneous systems able to integrate re-
sources in different locations [22]. Although cloud com-

puting systems have been shown to realize a high level

of aggregate performance in remote sensing applications,

there are still challenges remaining regarding the pro-

gressive incorporation of the concept of cloud computing

to remote sensing studies [23]. The ultimate goal should

be making distributed collections of data easy to access

from different users. However, a remaining challenge is
the energy consumption, which is still difficult to lever-

age in massively parallel platforms or even in onboard

processing scenarios. Addressing these challenges will be

important for the full incorporation of big data comput-

ing techniques to remote sensing applications. Literature

for big data in remote sensing mainly focuses on the vo-

luminous issue of big data computing and considers it as

a data-intensive computing problem [24]. Usually, an
HPC paradigm is exploited for (nearly) real-time big data

processing [20], [23], [25].

2) Big Data Collaboration: The ownership of data in re-

mote sensing problems is generally fragmented across

data agents or industries [26]. Accordingly, data access

and connectivity can be an obstacle. Legitimate concerns

can be raised to achieve cross-sector collaboration which
motivates data sharing, such as social text or social me-

dia. However, individuals often resist to sharing personal

data due to security and privacy. This is contradictory to

the idea of data personalization. In addition, numerous

data firms regard big data as proprietary and thus do not

obtain an incentive to share data. Concurrently, it is an

important challenge for government institutions to share

data unless all participants can achieve material benefits
and incentives in data sharing that outweigh the risks

[27]. For instance, even if NASA is now sharing a sig-

nificant amount of remote sensing data under the open

government initiative,4 most high-quality, high-spatial-

resolution images are still unavailable to the public.

Therefore, it is necessary to find new ways of collabo-

ration for improved big data access in remote sensing

problems.

3) Big Data Methodologies: The problem of analyzing

big data in remote sensing can be simply formalized as

follows. Let X be an input data set and let fðXÞ be a

mapping function between an input x 2 X and the out-

put y. Then, a common data analysis task can be formu-

lated as

y ¼ fðXÞ

where the corresponding processing can be carried out

in the memory of a computer containing the data input.

However, big data analysis should generally adopt a

mechanism to partition the data input into a distributed

and/or parallel architecture, i.e., X ¼ fX1;X2; . . . ;XNg,
which means splitting the bigger set X to N smaller data

sets. The adopted data methods or algorithms, i.e., fð�Þ,
should be modified to satisfy the new computing envi-
ronments. Although this is, in general, a simplification

(as the smaller data sets may not be easy to process inde-

pendently and involve some synchronization and/or com-

munication in the associated processing task), an

important challenge for this processing scheme is that

not all exiting algorithms can be distributed or efficiently

implemented in parallel form. Even if data processing

methods can do so, it is challenging to collect the distrib-
uted data and to deliver those data to the right comput-

ing node. As a result, big data processing in general (and

Fig. 2. A summary of the challenges introduced by big data.

4https://www.opengov.com
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in remote sensing in particular) needs new computa-

tional and statistical paradigms with regards to standard

data processing strategies.

B. Individual Challenges
In this section, a few crucial challenges are discussed

in the context of designing a big remote sensing data life

cycle (see Fig. 3). After understanding the business need

(e.g., a remote sensing application involving big data),

some important steps are to identify the right type of

data across different disciplines, to deploy the big data,
to utilize or design innovative data methods, and finally

to visualize and interpret the obtained results. Here, data

methods include data analysis, data modeling, data pro-

cessing, etc.

1) Proper Data Identification: Big remote sensing data

usually include in-domain data and out-domain data. In

the past, those different formats of data have been sel-
dom combined to fulfil remote sensing applications/

tasks. Therefore, the data are of no value unless har-

nessed to accomplish a specific task. Accordingly, the

key difference between traditional remote sensing data

and big remote sensing data lies in how to select and

combine different formats of data to address real-world

problems previously deemed intractable. This is a key

challenge of big data, i.e., how to identify and exploit the
proper data to solve the problem at hand.

In remote sensing, we have many different kinds of

data [28], including optical (e.g., multispectral and hy-

perspectral), radar [e.g., synthetic aperture radar (SAR)],

or laser [e.g., light detection and ranging (LiDAR)] pro-

vided by airplane or satellite or ground sensors. Other

kinds of data sources can also be integrated in remote

sensing problems, i.e., internet textual data (e.g., news,
web logs, etc.) can be used to help labeling data patterns

provided by remote sensors [3], such as through active

learning [29] or crowdsourcing techniques [30], which

involve low or no cost. Also, image data taken by individ-

uals from social networks can be taken into account for

assisting in remote sensing data interpretation tasks.

Other data formats such as census data, meteorological

data, intelligent transportation data, high-fidelity geo-
graphical data, healthcare data, and so on, can be of sig-

nificant help to solve a specific real-world problem, e.g.,

monitoring food security [31].

2) Challenges in Data Possession: After the data have

been transmitted to the ground station, those data should

be stored in a system. A data storage system usually con-

sists of hardware and software components. In the for-
mer, the hardware infrastructure should be flexibly

adapted to different application environments. In terms

of software, the data storage system is usually equipped

with various interfaces, data archives, and queries from

web services for users’ interactions. With the rapid

growth of remote sensing data, traditional structured re-

lated database management systems (RDBMSs) cannot

meet the requirements of managing big data in remote
sensing. Accordingly, it is urgent to adopt or to design a

novel data storage system which can meet the rapid

growth of big remote sensing data in PB scale or larger.

This general discussion on big data storage can be re-

ferred to [32].

Data delivery provides access to remote sensing data

and metadata to users, both at main ground stations or

networks of receiving ground station. Usually, this con-
sists of graphical web portals that provide access to data

and searching of metadata to users. Traditionally, users

download data of interest from a central archive to their

local computers for analysis. This cannot work in big

data applications as the sharp growth of data sizes cannot

allow the current system to deliver the data to users for

local computing. In particular, if an emergency such as

an earthquake occurred, a large amount of data should
be received for data analysis in a very short time, as few

seconds can save many lives by timely warnings. This is

another big challenge for those owning big data, as ex-

tremely diverse and high-dimensional data should be de-

livered and analyzed in a short time interval due to the

volume and velocity properties of big data. Therefore, a

real-time big data analysis platform should be developed

to deal with online remote sensing data together with
offline data in local data center or from distributed data

centers for a real-time application, such as weather fore-

cast, hazard warning, etc.

3) Data Deployment: As discussed in Section III-B1, a

critical challenge is to identify the proper data source to

achieve a specific goal which is difficult to fulfill without

big data. Another challenge of big data is how to deploy
the data for real applications. In the phase of big data ap-

plication, big data deployment encompasses data prepara-

tion, data management technologies, data methods and

techniques, and so on. That is, how to obtain the data,

how to store the data in the computing environment,

and how to build models to get insight of big data should

be carefully designed in the big data deployment step.

Fig. 3. Life cycle to address big data tasks in remote sensing

applications.
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Due to the volume and velocity properties of big data,
traditional methods cannot be used for deployment pur-

poses. Accordingly, new technologies should be taken

into account, such as distributed data management tech-

nologies, schema-less data models, active visualization

techniques and so on, to gain meaningful insights on the

big data.

4) Data Representation: Various sources of remote
sensing data have different spectral and spatial resolu-

tions and usually are acquired on different dates [33].

For instance, in optical data the spectral signature of ev-

ery material is unique in a laboratory measure. However,

spectral signatures of field data are changeable due to

variation of materials, environmental effects, surface

contaminants, adjacency effects by nearby objects, sea-

sonal changes, and so on [34]. This can lead to the phe-
nomenon that similar signatures could denote different

objects, while different signatures might denote the same

object. This phenomenon is similar to the “semantic gap”

observed in computer vision, i.e., the divergence be-

tween the information coming from data and the knowl-

edge interpreted by users [35]. In recent years, deep

neural networks (DNNs) [36] have successfully ad-

dressed the classification problem in computer vision to
fill the semantic gap via automatic feature extraction in a

deep manner [37]. Although DNNs have been adopted

for feature selection and classification tasks when analyz-

ing remote sensing images, in most of the works con-

ducted so far only spectral features or the transformed

spectral features (e.g., principal components) are used as

inputs to the DNNs to generate a “better” representation

of remote sensing images [38]–[40]. In the published
work, usually components from the original feature vec-

tors correspond to the spectral reflectance of land-cover

targets, which means that the feature components have

clear physical meaning. In this regard, remote sensing

images can be interpreted as structured data. Although

classification accuracy and robustness can be slightly im-

proved by incorporating unlabeled samples for feature

learning, it is not clear how much the classification per-
formance can benefit from a “better” feature representa-

tion due to lack of large amounts of training data and

the limited number of layers that can be used in practice

when implementing neural networks. For instance, the

classification accuracy cannot be significantly improved

with more than five layers as described in number of

layers adopted in [40].

Besides, although various types of remote sensing
data (acquired by different sensors, from different loca-

tions in different dates) are acquired and exploited to

deal with a challenging application problem together

with out-of-remote-sensing data, existing data methods

cannot manipulate those data to retrieve the value of

those data. Meanwhile, remote sensing data comprise

different dimensions and spatial resolutions, such as

spaceborne multispectral moderate resolution imaging
spectroradiometer (MODIS) in 36 spectral bands with

ground spatial 250 m (bands 1–2), 500 m (bands 3–7),

and 1000 m (bands 8–36)5 and airborne hyperspectral

reflective optics system imaging spectrometer (ROSIS)

with ground resolution less than 1 m in 115 bands)6 Fur-

thermore, the representations of the out-of-remote-

sensing data could be unstructured (e.g., individual

pictures), which are significantly different from those of
optical or microwave remote sensing data. Therefore, dif-

ferent data representation becomes a big obstacle for the

exploitation of big remote sensing data.

5) Data Fusion: Due to the data representation chal-

lenge discussed in Section III-B4, a follow-up challenge is

how to integrate the data from various sources, where

data features are significantly different (e.g., spectral sig-
natures in optical remote sensing data, electromagnetic

radiation in microwave data, structural features of texts,

unstructured features of images by a digital camera, etc.).

Traditionally, data fusion can be carried out in terms

of pixel-level fusion, feature-level fusion, and decision-

level fusion [41]. However, big data in remote sensing

usually comprise different scales and/or formats. As a re-

sult, traditional approaches cannot be utilized to inte-
grate the information for data fusion. Therefore, new

methods should be developed to tackle the fusion of big

data in remote sensing. For instance, in urban applica-

tions, each pixel can be annotated by photos taken by in-

dividuals from a social network in the same location [3]

by means of a crowdsourcing technique [30]. Measuring

correlation between different sources of data also be-

comes an additional challenge by the aid of artificial in-
telligence, data mining, machine learning, or statistics.

6) Data Visualization and Interpretation: Visualization

not only enables users/decision-makers to gain better in-

sights into big data, but is also important to understand

and analyze big data in remote sensing to bring out data

details relevant for the current aims or objectives. Ac-

cordingly, visualization should be considered early, along
with other upstream tasks shown in Fig. 3, such as data

acquisition and preprocessing. This requires a novel visu-

alization technique with prior interdisciplinary domain

knowledge through closely collaborating with domain ex-

perts who have posed the task to address real problems.

In order to effectively use visualization, remote sens-

ing big data should be aggregated from diverse sources in

a huge volume, and imported to a model which allows
decision making in minutes rather than weeks or

months. This is a big challenge for PB level or larger vol-

ume of data inputs, for instance, in applications related

5http://modis.gsfc.nasa.gov/about/specifications.php
6http://messtec.dlr.de/en/technology/dlr-remote-sensing-technol-

ogy-institute/hyperspectral-systems-airborne-rosis-hyspex/?sid=
3b724ae1718878a22607b4d4b92da16754914a4adcdc3
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with hazard monitoring. Therefore, visualization of big
remote sensing data should deal with challenges of large

data visualization as well as interactive exploration of

data for an improved understanding. Note that data visu-

alization continues throughout the life cycle of big data,

but has individual challenges in different phases.

IV. BIG OPPORTUNITIES

Despite the aforementioned big challenges, the potential

value of big remote sensing data is impressive. Actually,
remote sensing techniques have been successfully used

for different applications, such as agriculture applications

(e.g., food security monitoring, pasture monitoring), oce-

anic applications (e.g., ship detection, oil spill detection),

urban planning, urban monitoring, human settlements

(both urban and rural), food security monitoring, water

quality monitoring, energy assessment, population of dis-

ease, ecosystem assessment, global warming, global
change, global forest resources assessment, ancient site

discovery (archaeology), and so on.

Combined with human activities and data from social

science, remote sensing techniques listed above have be-

come much more powerful tools to significantly improve

the effectiveness of production and operation for human

welfare. In this way, big remote sensing data provides

the capacity to accomplish targets which were hard or
impossible to achieve in traditional ways. For instance, a

hidden relic site can be found by high-resolution remote

sensing data in a dense forest without modern infrastruc-

ture, which is an incredible barrier for field archaeolo-

gists to penetrate. A successful application is on Maya

research in the Petén region of northern Guatemala [5].

In urban planning applications, ground measurements

as well as spaceborne and airborne remote sensing im-
ages are integrated to result in better and timely urban

planning, management, and sustainability [12], [14], [15].

In this context, remote sensing data can be acquired over

a large area in a sequence in a very high resolution (i.e.,

less than 1 m/pixel) using advanced remote sensing tech-

niques. Related projects include the 100 cities project for

urban environmental characterization, monitoring, and

government decision making,7 and global urban footprint
using very high spatial resolution of a total of 180000

TerraSAR-X and TanDEM-X scenes for the worldwide

mapping of settlements.8 Combined with population cen-

sus data, remote sensing data were integrated to under-

stand land development, land use, and urban sprawl in

Puerto Rico [11]. Together with socioeconomic variables,

high-resolution satellite images have been used to ana-

lyze urban population growth which is closely related to
economic growth [13].

Since the early 1990s, remote sensing data have been
used for agricultural applications with regional phenologi-

cal change and associated meteorological factors [6]. In

precision agriculture, the role of remote sensing data be-

comes more and more important in terms of sustainable

agriculture, including food security [8], or assessing crop

condition and yield forecasting [7]. In addition, average

yield gaps are large among nations for major cereal crops,

maize, wheat and rice, etc. Usually, agricultural intensifi-
cation could greatly reduce these yield gaps [42]. In this

case, remote sensing has proved to be of great help for

monitoring crops in a large area, such as mapping the

bioenergy potential of maize crops [43] by incorporating

the effects of climate and soils on yields [44].

In particular, food security is a key factor of intelli-

gent agricultural systems and only remote sensing from

Earth Observing satellites (e.g., Landsat, Resourcesat,
MODIS) can provide consistent, repeated, and high-

quality data for characterizing and mapping key cropland

parameters for global cropland estimation and food secu-

rity analysis in combination with national statistics, field-

plot data, and secondary data [long (50–100 year) records

of precipitation and temperature, soil types, and adminis-

trative boundaries] [31], [45]. Together with demographi-

cal and health survey data, many applications can benefit
from the analysis of remote sensing data [9], [10], and

further the relationship between human health and

environmental changes can be accurately modeled [10].

In addition, remote sensing data analysis can be used to

global insurance markets, such as crop damage and flood

and fire risk assessment [46].

In summary, remote sensing data as well as other do-

main data provide great opportunities for applications in
natural sciences, such as mapping tree density at a global

scale [16], but also on social science, such as urban stud-

ies, demography, archeology, war and conflict studies,

and so on [17].

V. CASE STUDIES

In this section, two case studies demonstrating the effec-
tiveness of big data in remote sensing applications are

described. In both cases, using a new data processing

methodology and powerful computing architectures are

essential. The problems addressed are automatic oil spill

detection and content-based information retrieval from a

large repository of multispectral and hyperspectral re-

mote sensing data and related data from other domains,

respectively.

A. Big Data for Oil Spill Detection
In traditional remote sensing classification applica-

tions, labeled samples are obtained according to ground

surveys, image photointerpretation, or a combination of

the aforementioned strategies [47]. In situ ground sur-

veys can lead to a high accuracy of labeling but these

7http://www.dlr.de/eoc/en/desktopdefault.aspx/tabid-
9628/16557_read-40454/

8http://cesa.asu.edu/urban-systems/100-cities-project/

Vol. 104, No. 11, November 2016 | Proceedings of the IEEE 2213

Chi et al. : Big Data for Remote Sensing: Challenges and Opportunities

http://www.dlr.de/eoc/en/desktopdefault.aspx/tabid-9628/16557_read-40454/
http://www.dlr.de/eoc/en/desktopdefault.aspx/tabid-9628/16557_read-40454/
http://cesa.asu.edu/urban-systems/100-cities-project/


techniques are costly and time consuming. Image photo-

interpretation is fast and cheap, but cannot guarantee a

high labeling quality. Although hybrid solutions can take

advantage of ground surveys and image photointerpreta-
tion in most remote sensing problems, it is still difficult

to label marine oil spills using the hybrid solution in

terms of remote sensing data provided by air/spaceborne

instruments due to oil drift and diffusion. Therefore,

the labeling of marine oil spills brings a great challenge

to the oil spill detection task. In this case study, we first

identify proper data consisting of big remote sensing

data and then tackle the labeling challenge by a novel data
methodology, i.e., by the integration of social media

data with aid of crowdsourcing [3] and active learning

techniques [48], [49].

Specifically, we selected the big oil spill event oc-

curred in the Gulf of Mexico (USA) on 2010 as our study

case as more social media data and other forms of data

can be obtained for big data analysis. The optical remote

sensing data used contain multitemporal and multisource
images, i.e., data from the medium resolution imaging

spectrometer (MERIS), operated by the European Space

Agency (ESA), and the moderate resolution imaging

spectrometer (MODIS), operated by NASA. Other forms

of data in this context include social media data, i.e.,

the pictures from social media and textual description.

For instance, pictures from Panoramio,9 a geolocation-

oriented photosharing site, can be easily obtained and
are often geotagged, in the form of precise coordinates

of the location from where these pictures have been

taken, as well as textual tagging [see Fig. 4(a)]. Also,

the airborne data in the polluted area can be used to label

remote sensing images, such as the oil spills detected by

airborne sensors from an official institute [see Fig. 4(b)].

Those different forms of big data can be used to improve

the oil spill detection accuracy in this specific context.
It should be noted that it is time consuming for the

labeling process to incorporate the idea of crowdsourcing

and the external data cannot cover all pixels in the re-

mote sensing images. Accordingly, it is important to in-

telligently select a reduced number of informative

samples for labeling in order to guarantee the accuracy

of the classification task. Here, the labeling process has

been done through active learning in an iterative way

[48], [49].

After removing data that are heavily corrupted by
clouds, multispectral remote sensing images from differ-

ent dates (i.e., multitemporal images) and images from

different sensors (i.e., multisource images) were

exploited to detect oil spills using machine learning algo-

rithms. Here, we used popular classifiers such as the sup-

port vector machine (SVM) [50]–[52], backpropagation

neural networks [53], [54], and the k-nearest neighbor

classifier [28]. In our experiments, the SVM gave the
best classification accuracies and was also most robust.

The obtained classification map by SVM for the consid-

ered oil spill problem in the Gulf of Mexico is given in

Fig. 5, which shows oil spills spreading around the deep-

water oil rig location.

There are still many open problems for pattern label-

ing when combining remote sensing images and social

media data. For instance, an efficient strategy should be
developed in order to obtain most relevant external data

for a specific task. In the mean time, those external data

such as photos and textual information should be auto-

matically associated with the corresponding samples.

B. Content-Based Image Retrieval From
Hyperspectral Data Repositories

In this second case study, we address a specific case
study of content-based image retrieval (CBIR) applied to

remotely sensed hyperspectral data, which are character-

ized by its high dimensionality in the spectral domain

[55]. The system, introduced in [56], is validated using a

complex hyperspectral image database, and implemented

on a Beowulf cluster at NASA’s Goddard Space Flight

Center. In this context, the main challenge of this case9www.panoramio.com

Fig. 4. External data for oil spill labeling: (a) data provided by a

governmental institute; and (b) images by social media.

Fig. 5. Oil spill detection on multitemporal and multisource

spaceborne remote sensing images using big data in remote

sensing.
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study is to deal with the voluminous challenge of big re-

mote sensing data, which in our experiment comprises a

collection of 154 high-resolution hyperspectral data sets

(more than 20 TB of data) gathered by NASA over the

World Trade Center (WTC) area in New York City dur-

ing the last two weeks of September 2001, just several

days after the terrorist attacks that collapsed the two
main towers and other buildings in the WTC complex.

The spatial resolution of the data is 3.7 m/pixel, and the

spectral resolution is 224 narrow spectral bands between

0.4 and 2.5 �m. Fig. 6 shows a false color composite of

one of such images, with 614 � 512 pixels and 224

bands. The false color composition has been formed

using the 1682-, 1107-, and 655-nm channels, displayed
as red, green, and blue, respectively. Vegetated areas ap-

pear green in Fig. 6, while burned areas appear dark

gray. Smoke coming from the WTC area appears bright

blue due to high spectral reflectance in the 655-nm

channel. The area used as input query in our experiment

is shown in a red rectangle, and is centered at the region

where the towers collapsed.

Using the search area in the rightmost part of Fig. 6
as input query, the proposed parallel CBIR system suc-

cessfully retrieved all image instances containing the

WTC complex across the database, with no false positive

detections. For illustrative purposes, Fig. 7 shows the

seven full image flightlines in the considered AVIRIS da-

tabase that contain the searched area centered at the

WTC complex.

To investigate the parallel properties of the proposed
CBIR system, we have evaluated its performance when

implemented on NASA’s Thunderhead Beowulf cluster, a

system composed of 256 dual 2.4-GHz Intel Xeon nodes,

each with 1 GB of memory and 80 GB of main memory,

interconnected with 2-GHz optical fiber Myrinet. Using

256 processors on Thunderhead, the system was able to

search the most similar scenes across the full database of

154 images (with precomputed metadata) in only 4 s, re-
sulting in a total processing of approximately 10 s to cata-

log and fully describe a new entry in the database. This

represents a significant improvement over the implemen-

tation of the same CBIR process on a single Thunderhead

processor, which took over 1 h of computation for the

same operation.

Fig. 6. AVIRIS hyperspectral image collected over the World

Trade Center (left) and detail of the area used as input query

(right).

Fig. 7. Full flightlines collected by the AVIRIS sensor over the World Trade Center area which contain the search area in Fig. 6.

Typically, each flightline contains five to seven hyperspectral images (each with 224 spectral bands).
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VI. CONCLUSION

In this paper, the connotations of big remote sensing

data have been discussed. Big data in remote sensing can
contain a variety of remotely sensed data from different

spectral reflectance, different ground spatial resolutions,

and different locations (such as optical, radar, micro-

wave, etc.), as well as the data from other domains, such

as archeology, demographics, economics (which refers to

the “variety” of the three V properties of big data). As a

result, the big remote sensing data have the same three

V characteristics as big data in general [1] with the in-
creasingly accumulated volume of remote sensing data

from TB to PB and even to EB scale. With the volumi-

nous data, on one hand, the tasks which are difficult to

be attacked can be achieved in a reasonable time (which

refers to the “velocity” of the three V and results in big

opportunities); on the other hand, the big remote sens-

ing data with any of 2Vs or 3Vs bring big challenges for

those owning big data, analyzing big data and utilizing
big data, respectively.

Then, a trinity framework for understanding big data

in remote sensing has been proposed for those who own

big data, those who can provide data methods, and those

who need to exploit big data to solve real-world prob-

lems. In terms of the framework, common and individual

challenges of big data have been discussed in the context

of remote sensing applications. As a key common chal-
lenge, big remote sensing data should first be identified

to cope with real remote sensing applications. Then, it is

necessary to have the capability for highly efficient com-

putations in order to deal with voluminous data. In addi-

tion, novel data methods or even completely new data

methodologies should be developed to attack the com-

plexities of big remote sensing data. Of course, there ex-

ist other common challenges when dealing with big
remote sensing data, such as how to manipulate data

quality from different perspectives by individual data

providers and data recipients.

Except for the common challenges of big data in re-

mote sensing, individual challenges should be taken into

account from the three perspectives of the trinity of big

data. For those who own big remote sensing data, three

critical factors should be carefully designed, i.e., data
transmission from air/satellite-borne sensing system to a

ground station, then data storage to a system, and data

delivery to users of interest. For those who exploit big

data to remote sensing applications, the key challenges

are the identification of the right data to achieve the

given task, the deployment of the big data for later data
processing and analysis, and the interpretation of the re-

sults provided by data methods. For those who are capa-

ble of developing novel data methods and/or data

methodologies for remote sensing applications, data rep-

resentation should first be managed due to the diversity

of multisource and multitemporal remote sensing data

and the data from other domains. Then, the data de-

scribed in different attribute formats should be inte-
grated to better analyze and process the big data. After

that, the results provided by data analysis techniques

need to be well visualized for improved data analysis and

data interpretation.

Although the potential of big remote sensing data has

already been anticipated, it is important to note that the

data often come from heterogeneous sources and require

significant computational efforts in terms of interpreta-

tion. Therefore, the big opportunity is to integrate re-

mote sensing data together with other external data to

transfer these potentials to reality. In this context, we

can benefit from large-scale, consistent, repeated, and

high-quality big remote sensing data in order to address

applications related to monitoring food security, urbani-

zation progress, population density, etc. This can be fur-

ther used to address other relevant applications related

with human health, environmental changes, or human

activities in general.

In order to benefit from remote sensing in big

data, proper data from different sources should be first

identified to solve a specific application. Except for

multitemporal, multiresolution, multiradiometric re-
mote sensing data, how to identify related complemen-

tary out-of-domain data and how to obtain those data

sets represent the biggest challenge for big remote

sensing data application. Then, a novel data methodol-

ogy should be carefully designed for data processing,

data fusion, and so on. Although there are many appli-

cations combining remote sensing data and data com-

ing from other domains, most of the works available
are based on a sampling technique for estimation, even

for the recent work to globally estimate tree population

estimation based on 429775 ground-sourced measure-

ments of tree density from every continent on Earth

[16]. How can we use all the data available deserves

further study for big remote sensing data task. Last but

not the least, how to evaluate the performance and

how to guarantee data quality are other interesting re-
search lines to be further explored. h
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