[Modified slides from] Visualization Analysis & Design Full-Day Tutorial

Tamara Munzner

Department of Computer Science

University of British Columbia

Sanger Institute / European Bioinformatics Institute June 2014, Cambridge UK

http://www.cs.ubc.ca/~tmm/talks.html#minicourse | 4

Outline

- Visualization Analysis Framework
 Session I 9:30-10:45am
 - Introduction: Definitions
 - Analysis: What, Why, How
 - Marks and Channels

- Idiom Design Choices, Part 2 Session 3 1:15pm-2:45pm
 - Manipulate: Change, Select, Navigate
 - Facet: Juxtapose, Partition, Superimpose
 - Reduce: Filter, Aggregate, Embed

- Idiom Design Choices
 Session 2 11:00am-12:15pm
 - Arrange Tables
 - Arrange Spatial Data
 - Arrange Networks and Trees
 - -Map Color
- Guidelines and Examples
 Session 4 3-4:30pm
 - Rules of Thumb
 - Validation
 - BioVis Analysis Example

How?

Encode

→ Express

→ Order

→ Use

What? Why? How?

Map

from categorical and ordered attributes

→ Color

→ Size, Angle, Curvature, ...

→ Motion Direction, Rate, Frequency, ...

Manipulate

Facet

Reduce

→ Change

→ Filter

→ Select

→ Partition

Aggregate

→ Navigate

→ Superimpose

→ Embed

Arrange tables

Express Values

- **→** Separate, Order, Align Regions
 - → Separate

→ Order

→ Align

→ Axis Orientation

→ Rectilinear

→ Parallel

→ Radial

→ Layout Density

→ Dense

→ Space-Filling

→ 1 Key List

→ 2 Keys
Matrix

→ 3 Keys Volume

→ Many Keys
Recursive Subdivision

Keys and values

- key
 - -independent attribute
 - -used as unique index to look up items
 - simple tables: I key
 - -multidimensional tables: multiple keys
- value
 - -dependent attribute, value of cell
- classify arrangements by key count
 - -0, 1, 2, many...

→ 3 Keys
Volume

→ Tables

→ Multidimensional Table

→ Many Keys

Recursive Subdivision

Idiom: scatterplot

- express values
 - quantitative attributes
- no keys, only values
 - data
 - 2 quant attribs
 - -mark: points
 - channels
 - horiz + vert position
 - -tasks
 - find trends, outliers, distribution, correlation, clusters
 - scalability
 - hundreds of items

Some keys: Categorical regions

→ Separate → Order → Align

- regions: contiguous bounded areas distinct from each other
 - -using space to separate (proximity)
 - -following expressiveness principle for categorical attributes
- use ordered attribute to order and align regions

Idiom: bar chart

- one key, one value
 - data
 - I categ attrib, I quant attrib
 - mark: lines
 - channels
 - length to express quant value
 - spatial regions: one per mark
 - separated horizontally, aligned vertically
 - ordered by quant attrib
 - » by label (alphabetical), by length attrib (data-driven)
 - -task
 - compare, lookup values
 - scalability
 - dozens to hundreds of levels for key attrib

Idiom: stacked bar chart

- one more key
 - data
 - 2 categ attrib, I quant attrib
 - mark: vertical stack of line marks
 - glyph: composite object, internal structure from multiple marks
 - channels
 - length [quant]
 - color hue [categ]
 - spatial regions: one per glyph [categ]
 - aligned: full glyph, lowest bar component
 - unaligned: other bar components
 - -task
 - part-to-whole relationship
 - scalability

[Using Visualization to Understand the Behavior of Computer Systems. Bosch. Ph.D. thesis, Stanford Computer Science, 2001.]

ldiom: streamgraph

- generalized stacked graph
 - emphasizing horizontal continuity
 - vs vertical items
 - data
 - I categ key attrib (artist)
 - I ordered key attrib (time)
 - I quant value attrib (counts)
 - derived data
 - geometry: layers, where height encodes counts
 - I quant attrib (layer ordering)
 - scalability
 - hundreds of time keys
 - dozens to hundreds of artist keys
 - more than stacked bars, since most layers don't extend across whole chart

[Stacked Graphs Geometry & Aesthetics. Byron and Wattenberg. IEEE Trans. Visualization and Computer Graphics (Proc. InfoVis 2008) 14(6): 1245–1252, (2008).]

Idiom: line chart

- one key, one value
 - data
 - 2 quant attribs
 - mark: points
 - line connection marks between them
 - channels
 - aligned lengths to express quant value
 - separated and ordered by key attrib into horizontal regions
 - -task
 - find trend
 - connection marks emphasize ordering of items along key axis by explicitly showing relationship between one item and the next

Choosing bar vs line charts

- depends on type of key attrib
 - bar charts if categorical
 - -line charts if ordered
- do not use line charts for categorical key attribs
 - -violates expressiveness principle
 - implication of trend so strong that it overrides semantics!
 - "The more male a person is, the taller he/she is"

after [Bars and Lines: A Study of Graphic Communication. Zacks and Tversky. Memory and Cognition 27:6 (1999), 1073–1079.]

Idiom: heatmap

- two keys, one value
 - data
 - 2 categ attribs (gene, experimental condition)
 - I quant attrib (expression levels)
 - marks: area
 - separate and align in 2D matrix
 - indexed by 2 categorical attributes
 - -channels
 - color by quant attrib
 - (ordered diverging colormap)
 - -task
 - find clusters, outliers
 - scalability
 - IM items, 100s of categ levels, ~10 quant attrib levels

ldiom: cluster heatmap

- in addition
 - -derived data
 - 2 cluster hierarchies
 - dendrogram
 - parent-child relationships in tree with connection line marks
 - leaves aligned so interior branch heights easy to compare
 - heatmap
 - marks (re-)ordered by cluster hierarchy traversal

Axis Orientation

→ Rectilinear

→ Parallel

→ Radial

Idioms: scatterplot matrix, parallel coordinates

- scatterplot matrix (SPLOM)
 - rectilinear axes, point mark
 - -all possible pairs of axes
 - scalability
 - one dozen attribs
 - dozens to hundreds of items
- parallel coordinates
 - parallel axes, jagged line representing item
 - -rectilinear axes, item as point
 - axis ordering is major challenge (or opportunity!)
 - scalability
 - dozens of attribs

Table

Math	Physics	Dance	Drama
85	95	70	65
90	80	60	50
65	50	90	90
50	40	95	80
40	60	80	90

Task: Correlation

- scatterplot matrix
 - positive correlation
 - diagonal low-to-high
 - negative correlation
 - diagonal high-to-low
 - uncorrelated
- parallel coordinates
 - positive correlation
 - parallel line segments
 - negative correlation
 - all segments cross at halfway point
 - uncorrelated
 - scattered crossings

[A layered grammar of graphics.Wickham. Journ. Computational and Graphical Statistics 19:1 (2010), 3–28.]

Figure 3. Parallel Coordinate Plot of Six-Dimensional Data Illustrating Correlations of $\rho=1,.8,.2,0,-.2,-.8$, and -1.

ldioms: radial bar chart, star plot

- radial bar chart
 - radial axes meet at central ring, line mark
- star plot
 - radial axes, meet at central point, line mark
- bar chart
 - rectilinear axes, aligned vertically
- accuracy
 - -length unaligned with radial
 - less accurate than aligned with rectilinear

Idioms: radar chart

- radar plot
 - radial axes, meet at central point
- what is the mark?
- how does it effect expressiveness?

Idioms: pie chart, polar area chart

- pie chart
 - -area marks with angle channel
 - -accuracy: angle/area much less accurate than line length
- polar area chart
 - -area marks with length channel
 - -more direct analog to bar charts
- data
 - I categ key attrib, I quant value attrib
- task
 - part-to-whole judgements

Idioms: normalized stacked bar chart

- task
 - part-to-whole judgements
- normalized stacked bar chart
 - stacked bar chart, normalized to full vert height
 - -single stacked bar equivalent to full pie
 - high information density: requires narrow rectangle
- pie chart
 - information density: requires large circle

Further reading

- Visualization Analysis and Design. Munzner. AK Peters / CRC Press, Oct 2014.
 - Chap 7: Arrange Tables
- Visualizing Data. Cleveland. Hobart Press, 1993.
- A Brief History of Data Visualization. Friendly. 2008. http://www.datavis.ca/milestones