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Introduction and approach 

Background 

This book began as a series of weekend workshops created by Ajit 
Jaokar and Dan Howarth in the “Data Science for Internet of 
Things” meetup in London. The idea was to work with a specific 
(longish) program such that we explore as much of it as possible in 
one weekend. This book is an attempt to take this idea online. We 
first experimented on Data Science Central in a small way and con-
tinued to expand and learn from our experience. The best way to 
use this book is to work with the code as much as you can. The 
code has comments. But you can extend the comments by the con-
cepts explained here. 

The code is 

Regression 
https://colab.research.google.com/drive/14m95e5A3AtzM_3e7IZL
s2dd0M4Gr1y1W 

Classification 
https://colab.research.google.com/drive/1qrj5B5XkI-PkDN-
S8XOddlvqOBEggnA9 

https://colab.research.google.com/drive/14m95e5A3AtzM_3e7IZLs2dd0M4Gr1y1W
https://colab.research.google.com/drive/14m95e5A3AtzM_3e7IZLs2dd0M4Gr1y1W
https://colab.research.google.com/drive/1qrj5B5XkI-PkDN-S8XOddlvqOBEggnA9
https://colab.research.google.com/drive/1qrj5B5XkI-PkDN-S8XOddlvqOBEggnA9
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This document also includes the code in a plain text format in the 
appendix. The book also includes an online forum where you are 
free to post questions relating to this book 

link of forum 

Community for the book 

https://www.datasciencecentral.com/group/ai-deep-learning-
machine-learning-coding-in-a-week 

Finally, the book is part of a series. Future books planned in the 
same style are 

 
"AI as a service: An introduction through Azure in a week-
end" 
"AI as a service: An introduction through Google Cloud Plat-
form in a weekend" 

Tools 

We use Colab from Google. The code should also work on Ana-
conda. There are four main Python libraries that you should know: 
numpy, pandas, mathplotlib and sklearn 

NumPy 

The Python built-in list type does not allow for efficient array ma-
nipulation. The NumPy package is concerned with manipulation 
of multi-dimensional arrays. NumPy is at the foundation of almost 
all the other packages covering the Data Science aspects of Python. 

https://www.datasciencecentral.com/group/ai-deep-learning-machine-learning-coding-in-a-week
https://www.datasciencecentral.com/group/ai-deep-learning-machine-learning-coding-in-a-week
https://medium.com/dair-ai/primer-for-learning-google-colab-bb4cabca5dd6
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From a Data Science perspective, collections of Data types like 
Documents, Images, Sound etc. can be represented as an array of 
numbers. Hence, the first step in analysing data is to transform 
data into an array of numbers. NumPy functions are used for 
transformation and manipulation of data as numbers – especially 
before the model building stage – but also in the overall process of 
data science. 

Pandas 

The Pandas library in Python provides two data structures: The 
DataFrame and the Series object. The Pandas Series Object is a 
one-dimensional array of indexed data which can be created from 
a list or array. The Pandas DataFrames objects are essentially mul-
tidimensional arrays with attached row and column labels. A Data-
Frame is roughly equivalent to a ‘Table’ in SQL or a spreadsheet. 
Through the Pandas library, Python implements a number of pow-
erful data operations similar to database frameworks and spread-
sheets. While the NumPy’s ndarray data structure provides fea-
tures for numerical computing tasks, it does not provide flexibility 
that we see in Tale structures (such as attaching labels to data, 
working with missing data, etc.). The Pandas library thus provides 
features for data manipulation tasks. 

Matplotlib 

The Matplotlib library is used for data visualization in Python built 
on numpy. Matplotlib works with multiple operating systems and 
graphics backends. 
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Scikit-Learn 

The Scikit-Learn package provides efficient implementations of a 
number of common machine learning algorithms. It also includes 
modules for cross validation, grid search and feature engineering 

 

(original pdf in attached zip) 

Philosophy 

The book is based on the philosophy of deliberate practise to learn 
coding. This concept originated in the old Soviet Union athletes. It 
is also associated with a diverse range of people including Golf 
(Ben Hogan), Shaolin Monks, Benjamin Franklin etc. For the pur-
poses of learning coding for machine learning, we apply the fol-
lowing elements of deliberate practice 
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• Break down key ideas in simple, small steps. In this case, us-
ing a mindmap and a glossary 

• Work with micro steps 
• Keep the big picture in mind 
• Encourage reflection/feedback 

What you will learn from this book? 

This book covers regression and classification in an end-to-end 
mode. We first start with explaining specific elements of regres-
sion. Then we move to classification where we cover elements of 
classification which differ (for example evaluation metrics). We 
then discuss a set of techniques that help to improve a baseline 
model for both regression and classification. 
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Components for book 

The book comprises of the following components as part of the 
online zip 

Regression: 
https://colab.research.google.com/drive/14m95e5A3AtzM_3e7IZL
s2dd0M4Gr1y1W 

Classification: 
https://colab.research.google.com/drive/1qrj5B5XkI-PkDN-
S8XOddlvqOBEggnA9 

Community for book: 
https://www.datasciencecentral.com/group/ai-deep-learning-
machine-learning-coding-in-a-week 

Glossary: Attached as part of zip also HERE 

Mindmap: Attached as part of the zip also HERE 

https://colab.research.google.com/drive/14m95e5A3AtzM_3e7IZLs2dd0M4Gr1y1W
https://colab.research.google.com/drive/14m95e5A3AtzM_3e7IZLs2dd0M4Gr1y1W
https://colab.research.google.com/drive/1qrj5B5XkI-PkDN-S8XOddlvqOBEggnA9
https://colab.research.google.com/drive/1qrj5B5XkI-PkDN-S8XOddlvqOBEggnA9
https://www.datasciencecentral.com/group/ai-deep-learning-machine-learning-coding-in-a-week
https://www.datasciencecentral.com/group/ai-deep-learning-machine-learning-coding-in-a-week
https://storage.ning.com/topology/rest/1.0/file/get/1030381124?profile=original
https://st1.ning.com/topology/rest/1.0/file/get/1028923913?profile=original
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Big Picture Diagram 

As below 
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Code outline 

Regression code outline 

https://colab.research.google.com/drive/14m95e5A3AtzM_3e7IZL
s2dd0M4Gr1y1W 

The steps for the code are 
Load and describe the data 
Exploratory Data Analysis 

Exploratory data analysis – numerical 
Exploratory data analysis - visual 
Analyse the target variable 
compute the correlation 

Pre-process the data 
Dealing with missing values 
Treatment of categorical values 
Remove the outliers 
Normalise the data 

Split the data 
Choose a Baseline algorithm 

defining / instantiating the baseline model 
fitting the model we have developed to our training set 
Define the evaluation metric 
predict scores against our test set and assess how good it is 

Refine our dataset with additional columns 

https://colab.research.google.com/drive/14m95e5A3AtzM_3e7IZLs2dd0M4Gr1y1W
https://colab.research.google.com/drive/14m95e5A3AtzM_3e7IZLs2dd0M4Gr1y1W
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Test Alternative Models 
Choose the best model and optimise its parameters 

Gridsearch 

Classification Code Outline 

https://colab.research.google.com/drive/1qrj5B5XkI-PkDN-
S8XOddlvqOBEggnA9 
 
Load the data 
Exploratory data analysis 
  Analyse the target variable 
  Check if the data is balanced 
  Check the co-relations 
Split the data 
Choose a Baseline algorithm 
Train and Test the Model 
Choose an evaluation metric 
Refine our dataset 
Feature engineering 
Test Alternative Models 
Ensemble models 
Choose the best model and optimise its parameters 

https://colab.research.google.com/drive/1qrj5B5XkI-PkDN-S8XOddlvqOBEggnA9
https://colab.research.google.com/drive/1qrj5B5XkI-PkDN-S8XOddlvqOBEggnA9
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Exploratory data analysis 

Numeric Descriptive statistics 

Overview 

The pandas dataframe structure is a way of storing and operating 
on tabular data. Pandas has a lot of functionality to assist with ex-
ploratory data analysis. describe() provides summary statistics on 
all numeric columns. describe() function gives descriptive statistics 
for any numeric columns using describe. For each feature, we can 
see the `count`, or number of data entries, the `mean` value, and 
the `standard deviation`, `min`, `max` and `quartile` values. de-
scribe() function excludes the character columns. To include both 
numeric and character columns, we add include='all'. We can also 
see the shape of the data using the .shape attribute. Keys() method 
in Python Dictionary, returns a view object that displays a list of all 
the keys in the dictionary 

Numeric descriptive statistics 

Standard deviation represents how measurements for a group are 
spread out from the average (mean). A low standard deviation im-
plies that most of numbers are close to the average. A high stand-
ard deviation means that the numbers are spread out. The standard 
deviation is affected by outliers because the standard deviation is 
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based on the distance from the mean. The mean is also affected by 
outliers. 

Interpreting descriptive statistics 

What actions can you take from the output of the describe func-
tion at regression problem? 

For each feature, we can see the count, or number of data en-
tries, the mean value, and the standard deviation, min, max and 
quartile values. We can see that the range of values for each feature 
differs quite a lot, so we can start to think about whether to apply 
normalization to the data. We can also see that the CHAS feature is 
either a (1,0) value. If we look back at our description, we can see 
that this is an example of a categorical variable. These are values 
used to describe non-numeric data. In this case, a 1 indicates the 
house borders near the river, and a 0 that it doesn't. 

Source: 
• http://www.datasciencemadesimple.com/descriptive-

summary-statistics-python-pandas/ 
• https://pandas.pydata.org/pandas-docs/stable/reference/api/ 

pandas.Series.describe.htmlSource 
• https://www.dataz.io/display/Public/2013/03/20/Describing+

Data%3A+Why+median+and+IQR+are+often+better+ 
than+mean+and+standard+deviation 

• https://www.quora.com/What-is-the-relation-between-the-
Range-IQR-and-standard-deviation 

We can build on this analysis by plotting the distribution and box-
plots for each column 

http://www.datasciencemadesimple.com/descriptive-summary-statistics-python-pandas/
http://www.datasciencemadesimple.com/descriptive-summary-statistics-python-pandas/
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.describe.htmlSource
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.describe.htmlSource
https://www.dataz.io/display/Public/2013/03/20/Describing+Data%3A+Why+median+and+IQR+are+often+better+than+mean+and+standard+deviation
https://www.dataz.io/display/Public/2013/03/20/Describing+Data%3A+Why+median+and+IQR+are+often+better+than+mean+and+standard+deviation
https://www.dataz.io/display/Public/2013/03/20/Describing+Data%3A+Why+median+and+IQR+are+often+better+than+mean+and+standard+deviation
https://www.quora.com/What-is-the-relation-between-the-Range-IQR-and-standard-deviation
https://www.quora.com/What-is-the-relation-between-the-Range-IQR-and-standard-deviation
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Graphical descriptive statistics 

Histogram and Boxplots – understanding the distribution 

Histograms are used to represent data which is in groups. X-axis 
represents bin ranges. The Y-axis represents the frequency of the 
bins. For example, to represent age-wise population in form of 
graph, then the histogram represents the number of people in age 
buckets. The bins parameter represents the number of buckets that 
your data will be divided into. You can specify it as an integer or as 
a list of bin edges. Interpretation of histograms and box plots and 
the action taken from it A `histogram` tells is the number of times, 
or frequency, a value occurs within a `bin`, or bucket, that splits 
the data (and which we defined). A histogram shows the frequency 
with which values occur within each of these bins, and can tell us 
about the distribution of data. A `boxplot` captures within the box 
the `interquartile range`, the range of values from Q1/25th percen-
tile to Q3/75th percentile, and the median value. It also captures 
the `min` and `max` values of each feature. Together, these charts 
show us the distribution of values for each feature. We can start to 
make judgements about how to treat the data, for example whether 
we want to deal with outliers; or whether we want to normalize the 
data. The subplot is a utility wrapper that makes it convenient to 
create common layouts in a single call. 

References: 
https://matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.subp
lots 
https://towardsdatascience.com/understanding-boxplots-
5e2df7bcbd51 

https://matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.subplots
https://matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.subplots
https://towardsdatascience.com/understanding-boxplots-5e2df7bcbd51
https://towardsdatascience.com/understanding-boxplots-5e2df7bcbd51
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Boxplots and IQR 

An alternative to mean and standard deviation are median and 
interquartile range (IQR). IQR is the difference between the third 
and first quartiles (75th and 25th quantiles). IQR is often reported 
using the "five-number summary," which includes: minimum, first 
quartile, median, third quartile and maximum. IQR tells you where 
the middle 50% of the data is located while Standard Deviation 
tells you about the spread of the data. Median and IQR measure 
the central tendency and spread, respectively, but are robust 
against outliers and non-normal data. IQR makes outlier identifi-
cation easy to do an initial estimate of outliers by looking at values 
more than one-and-a-half times the IQR distance below the first 
quartile or above the third quartile. Skewness: Comparing the me-
dian to the quartile values shows whether data is skewed. 

 

https://towardsdatascience.com/understanding- 
boxplots-5e2df7bcbd51?gi=730efa1b7da5 

https://towardsdatascience.com/understanding-boxplots-5e2df7bcbd51?gi=730efa1b7da5
https://towardsdatascience.com/understanding-boxplots-5e2df7bcbd51?gi=730efa1b7da5
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Correlation 

Correlation is a statistical measure that describes the association 
between random variables. There are several methods for calculat-
ing the correlation coefficient, each measuring different types of 
strength of association. Correlation values range between -1 and 1. 
Pandas dataframe.corr() gives the pairwise correlation of all col-
umns in the dataframe. Three of the most widely used methods. 

1. Pearson Correlation Coefficient 
2. Spearman's Correlation 
3. Kendall's Tau 

Pearson is the most widely used correlation coefficient. Pearson cor-
relation measures the linear association between continuous varia-
bles. In other words, this coefficient quantifies the degree to which a 
relationship between two variables can be described by a line. 

 

In this formulation, raw observations are centered by subtracting 
their means and re-scaled by a measure of standard deviations. 

Source: 
• https://www.datascience.com/blog/introduction-to-

correlation-learn-data-science-tutorials 
• https://www.geeksforgeeks.org/python-pandas-dataframe-

corr/ 

https://www.datascience.com/blog/introduction-to-correlation-learn-data-science-tutorials
https://www.datascience.com/blog/introduction-to-correlation-learn-data-science-tutorials
https://www.geeksforgeeks.org/python-pandas-dataframe-corr/
https://www.geeksforgeeks.org/python-pandas-dataframe-corr/
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heatmaps for co-relation 

A heatmap is a two-dimensional graphical representation of data 
where the individual values are represented as colors. The seaborn 
python package enables the creation of annotated heatmaps. This 
heat map works by correlation. This shows you which variables are 
correlated to each other from a scale of 1 being the most correlated 
and -1 is not correlated at all. However, you cannot correlate 
strings. You can only correlate numerical features. 

Range from -1 to 1: 
• +1.00 means perfect positive relationship (Both variables are 

moving in the same direction) 
• 0.00 means no relationship 
• -1.00 means perfect negative relationship (As one variable 

increases the other decreases) 
Source: 
• https://seaborn.pydata.org/generated/seaborn.heatmap.html 
• https://statisticsbyjim.com/basics/correlations/ 

Source: 
• https://www.datascience.com/blog/introduction-to-

correlation-learn-data-science-tutorials 

Analysing the target variable 
There are a number of ways to analyse the target variable we can 
plot a histogram using binning to find the grouping of the house 
prices we can plot a boxplot of the target variable we can do is plot 
a boxplot of one variable against the target variable we can extend 
the analysis by creating a heatmap this shows the correlation be-
tween the features and target 

https://seaborn.pydata.org/generated/seaborn.heatmap.html
https://statisticsbyjim.com/basics/correlations/
https://www.datascience.com/blog/introduction-to-correlation-learn-data-science-tutorials
https://www.datascience.com/blog/introduction-to-correlation-learn-data-science-tutorials
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Pre-processing data 

Dealing with missing values 

Dealing with missing values, where we identify what, if, any miss-
ing data we have and how to deal with it. For example, we may 
replace missing values with the mean value for that feature, or by 
the average of the neighbouring values. pandas` has a number of 
options for filling in missing data that is worth exploring. We can 
also use `k-nearest neighbour`to help us predict what the missing 
values should be, or `sklearn Imputer` function (amongst other 
ways) 

Treatment of categorical values 

Treat categorical values, by converting them into a numerical rep-
resentation that can be modelled. There are a number of different 
ways to do this in `sklearn` and `pandas` 

Normalise the data 

The terms normalization and standardization are sometimes used 
interchangeably, but they usually refer to different things. Normal-
ization usually means to scale a variable to have a value between 0 
and 1, while standardization transforms data to have a mean of 
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zero and a standard deviation of 1. (source: statisticshowto). 
Rescaling data in this way is a common pre-processing task in ma-
chine learning because many of algorithms assume that all features 
are on the same scale, typically 0 to 1 or -1 to 1. We need to rescale 
the values of numerical feature to be between two values. We have 
several methods to do that. In skicit learn, the commonly used 
methods are MinMaxScaler and StandardScaler. 

MinMaxScaler: Normalization shrinks the range of the data such 
that the range is fixed between 0 and 1. It works better for cases in 
which the standardization might not work so well. If the distribu-
tion is not Gaussian or the standard deviation is very small, the 
min-max scaler works better. Normalization makes training less 
sensitive to the scale of features, so we can better solve for coeffi-
cients. 

Normalization is typically done via the following equation: 

 

The StandardScaler: Standardization is used to transform the data 
such that it has a mean of 0 and a standard deviation of 1. Specifi-
cally, each element in the feature is transformed. The mean and 
standard deviation are separately calculated for the feature, and the 
feature is then scaled based on: 
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Source: 
• https://www.statisticshowto.datasciencecentral.com/normali

zed/ 
• https://scikit-learn.org/stable/modules/generated 

/sklearn.preprocessing.StandardScaler.html 
• https://datascience.stackexchange.com/questions/12321/diffe

rence-between-fit-and-fit-transform-in-scikit-learn-models 
• https://medium.com/@zaidalissa/standardization-vs-

normalization-da7a3a308c64 
• https://pandas.pydata.org/pandas-docs/stable/reference/api/ 

pandas.DataFrame.drop.html 
• https://docs.scipy.org/doc/numpy/reference/generated/num

py.ravel.html 
• https://jovianlin.io/feature-scaling/ 
• https://scikit-learn.org/stable/modules/generated/ 

sklearn.preprocessing.StandardScaler.html 
• https://jovianlin.io/feature-scaling/ 
• https://scikitlearn.org/stable/modules/generated/sklearn.pre

processing.StandardScaler.html 
• https://scikitlearn.org/stable/modules/generated/sklearn.pre

processing.StandardScaler.html 
• https://datascience.stackexchange.com/questions/12321/diffe

rence-between-fit-and-fit-transform-in-scikit-learn-models 
• https://medium.com/@zaidalissa/standardization-vs-

normalization-da7a3a308c64 

https://www.statisticshowto.datasciencecentral.com/normalized/
https://www.statisticshowto.datasciencecentral.com/normalized/
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html
https://datascience.stackexchange.com/questions/12321/difference-between-fit-and-fit-transform-in-scikit-learn-models
https://datascience.stackexchange.com/questions/12321/difference-between-fit-and-fit-transform-in-scikit-learn-models
https://medium.com/@zaidalissa/standardization-vs-normalization-da7a3a308c64
https://medium.com/@zaidalissa/standardization-vs-normalization-da7a3a308c64
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.drop.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.drop.html
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ravel.html
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ravel.html
https://jovianlin.io/feature-scaling/
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html
https://jovianlin.io/feature-scaling/
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html
https://datascience.stackexchange.com/questions/12321/difference-between-fit-and-fit-transform-in-scikit-learn-models
https://datascience.stackexchange.com/questions/12321/difference-between-fit-and-fit-transform-in-scikit-learn-models
https://medium.com/@zaidalissa/standardization-vs-normalization-da7a3a308c64
https://medium.com/@zaidalissa/standardization-vs-normalization-da7a3a308c64
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Split the data 

The original dataset should be split up into training and testing 
data. Training: This data is used to build your model. E.g. finding 
the optimal coefficients in a Linear Regression model; or using the 
CART algorithm to create a Decision Tree. Testing: This data is 
used to see how the model performs on unseen data, as it would in 
a real-world situation. This data should be left completely unseen 
until you would like to test your model to evaluate performance. 

Model Selection contains 4 groups of lists. You can check the links 
(https://scikit-learn.org/stable/modules/classes.html#module- 
sklearn.model_selection) for details. Splitter Classes, Splitter 
Functions, Hyper-parameter optimizers and Model validation. 
The module is mainly used for splitting the dataset. It includes 14 
different classes and two functions for that purpose. It also pro-
vides some functions for model validation and hyper-parameter 
optimization. 

Source 
https://scikit-learn.org/stable/modules/generated/ 
sklearn.model_selection.ShuffleSplit.html#sklearn.model_selection
.ShuffleSplit 

https://scikit-learn.org/stable/modules/classes.html#module-sklearn.model_selection
https://scikit-learn.org/stable/modules/classes.html#module-sklearn.model_selection
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.ShuffleSplit.html#sklearn.model_selection.ShuffleSplit
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.ShuffleSplit.html#sklearn.model_selection.ShuffleSplit
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.ShuffleSplit.html#sklearn.model_selection.ShuffleSplit




 
 
 

 
– 29 – 

Choose a Baseline algorithm 

Defining / instantiating the baseline model 

A baseline is a method that uses heuristics, simple summary statis-
tics, randomness, or machine learning to create predictions for a 
dataset. You can use these predictions to measure the baseline's 
performance (e.g., accuracy). This metric will then become what 
you compare any other machine learning algorithm against. For 
example, your algorithm may be 75% accurate. You would want 
your 75% accuracy to be higher than any baseline you have run on 
the same data. 

Source: 
https://datascience.stackexchange.com/questions/30912/what-
does-baseline-mean-in-the-context-of-machine-learning 

Fitting the model we have developed 
to our training set 

Linear models are among the oldest and most interpretable model-
ling methods. A linear model uses a linear function to map a set of 
values to a set of normal distributions. Linear models are widely 
useful because the normal distribution occurs frequently in the 

https://datascience.stackexchange.com/questions/30912/what-does-baseline-mean-in-the-context-of-machine-learning
https://datascience.stackexchange.com/questions/30912/what-does-baseline-mean-in-the-context-of-machine-learning
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natural world and any continuous function can be approximated 
well with a straight line over a short distance. 

Fitting your model to (i.e. using the fit() method on the training 
data is the training part of the modelling process. After it is 
trained, the model can be used to make predictions, with a pre-
dict() method call. Model fitting is a procedure that takes three 
steps: 

1. First you need a function that takes in a set of parameters 
and returns a predicted data set. 

2. Second you need an 'error function' that provides a number 
representing the difference between your data and the mod-
el's prediction for any given set of model parameters. This is 
usually either the sums of squared error (SSE) or maximum 
likelihood. 

3. Third you need to find the parameters that minimize this dif-
ference. 

Source: 
https://courses.washington.edu/matlab1/ModelFitting.html 
http://garrettgman.github.io/model-fitting/ 
Source: 
https://courses.washington.edu/matlab1/ModelFitting.html 

Define the evaluation metric 

The most commonly used metric for regression tasks is RMSE 
(root-mean-square error). This is defined as the square root of the 
average squared distance between the actual score and the predict-
ed score: 

https://courses.washington.edu/matlab1/ModelFitting.html
http://garrettgman.github.io/model-fitting/
https://courses.washington.edu/matlab1/ModelFitting.html
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Here, yi denotes the true score for the ith data point, and yi de-
notes the predicted value. One intuitive way to understand this 
formula is that it is the Euclidean distance between the vector of 
the true scores and the vector of the predicted scores, averaged by 
n, where n is the number of data points. 

Mean Squared Error is difference between of the estimated values 
and what you get as a result. The predicted value is based on some 
equation and tell what you will expect as an average but the result 
you get might differ from this prediction which is a slight error 
from the estimated value. This difference is called MSE. This de-
termines how good is the estimation based on your equation. 

Mean Absolute Error is the measure of the difference between the 
two continuous variables. The MAE is the average vertical distance 
between each actual value and the line that best matches the data. 
MAE is also the average horizontal distance between each data 
point and the best matching line. 

R^2 is (coefficient of determination) regression score function. It 
is also called as coefficient of determination. R² gives us a measure 
of how well the actual outcomes are replicated by the model or the 
regression line. This is based on the total variation of prediction 
explained by the model. R² is always between 0 and 1 or between 
0% to 100%. 
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Source: 
• https://stats.stackexchange.com/questions/131267/how-to-

interpret-error-measures 
• https://stats.stackexchange.com/questions/118/why-square-

the-difference-instead-of-taking-the-absolute-value-in-
standard-devia 

Predict scores against our test 
set and assess how good it is 

as above 

https://stats.stackexchange.com/questions/131267/how-to-interpret-error-measures
https://stats.stackexchange.com/questions/131267/how-to-interpret-error-measures
https://stats.stackexchange.com/questions/118/why-square-the-difference-instead-of-taking-the-absolute-value-in-standard-devia
https://stats.stackexchange.com/questions/118/why-square-the-difference-instead-of-taking-the-absolute-value-in-standard-devia
https://stats.stackexchange.com/questions/118/why-square-the-difference-instead-of-taking-the-absolute-value-in-standard-devia
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Evaluation metrics for classification 

Previously, we considered evaluation metrics for Regression. In 
this section, we consider the evaluation metrics for Classification. 
Evaluating the performance of a machine learning model is a fun-
damental requirement. Essentially, we are exploring two questions: 
How can I measure the success of this algorithm and when do I 
know that I have succeeded i.e. should not improve the algorithm 
more. Different machine learning algorithms have varying evalua-
tion metrics. We have seen evaluation metrics for regression – we 
now explore the evaluation metrics for classification 

For classification, the most common metric is Accuracy. Accu-
racy simply measures how often the classifier makes the correct 
prediction. It’s the ratio between the number of correct predictions 
and the total number of predictions 

 

While accuracy is easy to understand, the accuracy metric is not 
suited for unbalanced classes. Hence, we also need to explore other 
metrics for classification. A confusion matrix is a structure to rep-
resent classification and it forms the basis of many classification 
metrics. 
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Image source: thalus-ai 

There are 4 important terms: 
True Positives: The cases in which we predicted YES and the actual 
output was also YES. 
True Negatives: The cases in which we predicted NO and the actu-
al output was NO. 
False Positives: The cases in which we predicted YES and the actual 
output was NO. 
False Negatives: The cases in which we predicted NO and the actu-
al output was YES. 
Accuracy for the matrix can be calculated by taking average of the 
values lying across the “main diagonal” i.e. 

 

https://medium.com/thalus-ai/performance-metrics-for-classification-problems-in-machine-learning-part-i-b085d432082b
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Area Under Curve 

One of the widely used metrics for binary classification is the Area 
Under Curve(AUC) AUC represents the probability that the clas-
sifier will rank a randomly chosen positive example higher than a 
randomly chosen negative example. The AUC is based on a plot of 
the false positive rate vs the true positive rate which are defined as: 

 

 

The area under the curve represents the area under the curve when 
the false positive rate is plotted against the True positive rate as 
below. 
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AUC has a range of [0, 1]. The greater the value, the better is the 
performance of the model because the closer the curve is towards 
the True positive rate. The AUC shows the correct positive classifi-
cations can be gained as a trade-off between more false positives. 
The advantage of considering the AUC i.e. the area under a curve .. 
as opposed to the whole curve is that – it is easier to compare the 
area (a number) with other similar scenarios. Another metric 
commonly used is Precision-Recall. The Precision metric repre-
sents “Out of the items that the classifier predicted to be relevant, 
how many are truly relevant? The recall answers the question, “Out 
of all the items that are truly relevant, how many are found by the 
ranker/classifier?”. Similar to the AUC, we need a numeric value to 
compare similar scenarios. A single number that combines the 
precision and recall is the F1 score which is represented by the 
harmonic mean of the precision and recall. 

 

For unbalanced classes and outliers, we need other considerations 
which are explained HERE 

Source: 
1. Evaluating machine learning models by Alice Zheng - 

https://www.oreilly.com/ideas/evaluating-machine-learning-
models 

2. https://towardsdatascience.com/metrics-to-evaluate-your-
machine-learning-algorithm-f10ba6e38234 

3. https://medium.com/thalus-ai/performance-metrics-for-
classification-problems-in-machine-learning-part-i-
b085d432082b 

https://towardsdatascience.com/what-metrics-should-we-use-on-imbalanced-data-set-precision-recall-roc-e2e79252aeba
https://www.oreilly.com/ideas/evaluating-machine-learning-models
https://www.oreilly.com/ideas/evaluating-machine-learning-models
https://towardsdatascience.com/metrics-to-evaluate-your-machine-learning-algorithm-f10ba6e38234
https://towardsdatascience.com/metrics-to-evaluate-your-machine-learning-algorithm-f10ba6e38234
https://medium.com/thalus-ai/performance-metrics-for-classification-problems-in-machine-learning-part-i-b085d432082b
https://medium.com/thalus-ai/performance-metrics-for-classification-problems-in-machine-learning-part-i-b085d432082b
https://medium.com/thalus-ai/performance-metrics-for-classification-problems-in-machine-learning-part-i-b085d432082b
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Improving a model – from 
baseline models to final models 

Once we have a baseline model, we can enhance it further. There 
are a number of steps we could take to achieve this. The baseline 
model represents the simplest possible prediction. From this point 
on, you employ a series of techniques to improve the algorithm 
evaluation metrics. The baseline may be a poor result but it should 
be seen as a starting point for improvement. 

In this document, the strategies we use to improve the baseline 
model are: 

a) Feature engineering – by adding extra columns and trying to 
understand if it improves the model 

b) Regularization to prevent overfitting 
c) Ensembles – typically for classification 
d) Test alternative models 
e) Hyperparameter tuning 

References: 
https://machinelearningmastery.com/how-to-get-baseline-results-
and-why-they-matter/ 

https://machinelearningmastery.com/how-to-get-baseline-results-and-why-they-matter/
https://machinelearningmastery.com/how-to-get-baseline-results-and-why-they-matter/
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Understanding cross validation 

Cross validation is a technique commonly used In Data Science. 
Most people think that it plays a small part in the data science 
pipeline, i.e. while training the model. However, it has a broader 
application in model selection and hyperparameter tuning. 

Let us first explore the process of cross validation itself and then 
see how it applies to different parts of the data science pipeline. 

Cross-validation is a resampling procedure used to evaluate 
machine learning models on a limited data sample. In k-fold 
cross-validation, the original sample is randomly partitioned into 
k equal sized subsamples. Of the k subsamples, a single subsample 
is retained as the validation data for testing the model, and the 
remaining k − 1 subsamples are used as training data. 

In the model training phase, Cross-validation is primarily used in 
applied machine learning to estimate the skill of a machine learn-
ing model on unseen data to overcome situations like overfitting. 
The choice of k is usually 5 or 10, but there is no formal rule. Cross 
validation is implemented through KFold() scikit-learn class. Tak-
en to one extreme, for k = 1, we get a single train/test split is creat-
ed to evaluate the model. There are also other forms of cross vali-
dation ex stratified cross validation 

 

https://www.datasciencecentral.com/profiles/blogs/%E2%80%A2%09https:/stats.stackexchange.com/questions/49540/understanding-stratified-cross-validation
https://storage.ning.com/topology/rest/1.0/file/get/2512793552?profile=original
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Image source 
https://towardsdatascience.com/cross-validation-70289113a072 

Now, let’s recap the end to end steps for classification based on 
THIS classification code which we use in the – learn machinelearn-
ing coding basics in a weekend 

Classification code outline 
Load the data 
Exploratory data analysis 

Analyse the target variable 
Check if the data is balanced 
Check the co-relations 

Split the data 
Choose a Baseline algorithm 
Train and Test the Model 
Choose an evaluation metric 
Refine our dataset 
Feature engineering 
Test Alternative Models 

https://towardsdatascience.com/cross-validation-70289113a072
https://colab.research.google.com/drive/1qrj5B5XkI-PkDN-S8XOddlvqOBEggnA9
https://www.datasciencecentral.com/profiles/blogs/learn-machinelearning-coding-basics-in-a-weekend-a-new-approach
https://www.datasciencecentral.com/profiles/blogs/learn-machinelearning-coding-basics-in-a-weekend-a-new-approach
https://storage.ning.com/topology/rest/1.0/file/get/2512834733?profile=original
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Ensemble models 
Choose the best model and optimise its parameters 

In this context, we outline below two more cases where we can use 
cross validation 

1. In choice of alternate models and 
2. In hyperparameter tuning 

we explain these below 

1) Choosing alternate models: 
If we have two models, and we want to see which one is better, we 
can use cross validation to compare the two for a given dataset. For 
the code listed above, this is shown in the following section. 
"""### Test Alternative Models 
logistic = LogisticRegression() 
cross_val_score(logistic, X, y, cv=5, scoring="accuracy").mean() 
rnd_clf = RandomForestClassifier() 
cross_val_score(rnd_clf, X, y, cv=5, scoring="accuracy").mean() 

2) hyperparameter tuning 
Finally, cross validation is also used in hyperparameter tuning 
As per cross validation parameter tuning grid search 

“In machine learning, two tasks are commonly done at the 
same time in data pipelines: cross validation and (hy-
per)parameter tuning. Cross validation is the process of train-
ing learners using one set of data and testing it using a different 
set. Parameter tuning is the process to selecting the values for a 
model’s parameters that maximize the accuracy of the model.” 

So, to conclude, cross validation is a technique used in multiple 
parts of the data science pipeline 

https://chrisalbon.com/machine_learning/model_evaluation/cross_validation_parameter_tuning_grid_search/
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Feature engineering 

Feature engineering is a key part of the machine learning pipeline. 
We refine our dataset with additional columns with the objective 
that some combination of features better represents the problems 
space and so is an indicator of the target variable. we are using 
pandas functionality to add a new column called LSTAT_2, which 
will feature values that are the square of LSTAT values 
boston_X['LSTAT_2'] = boston_X['LSTAT'].map(lambda x: x**2) 
we can now run the same code as before on our refined dataset to 
see if things have improved 
lm.fit(X_train, Y_train) 
Y_pred = lm.predict(X_test) 
evaluate(Y_test, Y_pred) 
lambda operator or lambda function is used for creating small, 
one-time and anonymous function objects in Python. 

Regularization to prevent overfitting 

In machine learning, regularization is the process of adding infor-
mation in order to solve an ill-posed problem or to prevent overfit-
ting. Regularization applies to objective functions in ill-posed op-
timization problems. It can be depicted as below. 

 
https://en.wikipedia.org/wiki/Regularization_(mathematics) 

https://en.wikipedia.org/wiki/Regularization_(mathematics)
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The green and blue functions both incur zero loss on the given 
data points. A learned model can be induced to prefer the green 
function, which may generalize better to more points drawn from 
the underlying unknown distribution, by adjusting lambda, the 
weight of the regularization term. 

A regularization term R(f) is added to a loss function: 

 

where V is an underlying loss function that describes the cost of 

predicting f(x) when the label is y.λ is a parameter which controls 
the importance of the regularization term. The regularization func-
tion is typically chosen to impose a penalty on the complexity of 
f(x). A theoretical justification for regularization is that it attempts 
to impose Occam's razor (i.e. the simplest feasible solution) (as 
depicted in the figure above, where the green function, the simpler 
one, may be preferred). From a Bayesian point of view, many regu-
larization techniques correspond to imposing certain prior distri-
butions on model parameters. Regularization helps in avoiding 
overfitting and also increasing model interpretability. 

Regularization, significantly reduces the variance of the model, 
without substantial increase in its bias. So, the tuning parameter λ, 
used in the regularization techniques described above, controls the 
impact on bias and variance. As the value of λ rises, it reduces the 
value of coefficients and thus reducing the variance. 

Regularization is particularly important in deep learning where 
we have a large number of parameters to optimise. Ian Goodfellow 
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describes regularization as “any modification we make to the learn-
ing algorithm that is intended to reduce the generalization error, 
but not its training error”. 

Generalization in machine learning refers to how well the concepts 
learned by the model apply to examples which were not seen dur-
ing training. The goal of most machine learning models is to gen-
eralize well from the training data, in order to make good predic-
tions in the future for unseen data. Overfitting happens when the 
models learns too well the details and the noise from training data, 
but it doesn’t generalize well, so the performance is poor for testing 
data. A number of regularization techniques are used in deep 
learning including Dataset augmentation, Early stopping, Dropout 
layer, Weight penalty L1 and L2 

Sources: 
https://towardsdatascience.com/regularization-an-important-
concept-in-machine-learning-5891628907ea 
https://chatbotslife.com/regularization-in-deep-learning-
f649a45d6e0 
https://en.wikipedia.org/wiki/Regularization_(mathematics) 

Ensembles – typically for classification 

What is ensemble learning? 
Ensemble learning is a machine learning paradigm where mul-

tiple models (often called “weak learners”) are trained to solve the 
same problem and combined to get better results. The main hy-
pothesis is that when weak models are correctly combined we can 
obtain more accurate and/or robust models. 

https://towardsdatascience.com/regularization-an-important-concept-in-machine-learning-5891628907ea
https://towardsdatascience.com/regularization-an-important-concept-in-machine-learning-5891628907ea
https://chatbotslife.com/regularization-in-deep-learning-f649a45d6e0
https://chatbotslife.com/regularization-in-deep-learning-f649a45d6e0
https://en.wikipedia.org/wiki/Regularization_(mathematics)
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Then, the idea of ensemble methods is to try reducing bias and/or 
variance of such weak learners by combining several of them to-
gether in order to create a strong learner (or ensemble model) that 
achieves better performances. 

In order to set up an ensemble learning method, we first need to 
select our base models to be aggregated. One important point is 
that our choice of weak learners should be coherent with the way 
we aggregate these models. If we choose base models with low bias 
but high variance, it should be with an aggregating method that 
tends to reduce variance whereas if we choose base models with 
low variance but high bias, it should be with an aggregating meth-
od that tends to reduce bias. 

There are three major kinds of meta-algorithms that aims at com-
bining weak learners: 

bagging, that often considers homogeneous weak learners, learns 
them independently from each other in parallel and combines 
them following some kind of deterministic averaging process 

boosting, that often considers homogeneous weak learners, learns 
them sequentially in an adaptive way (a base model depends on the 
previous ones) and combines them following a deterministic strat-
egy 

stacking, that often considers heterogeneous weak learners, learns 
them in parallel and combines them by training a meta-model to 
output a prediction based on the different weak models predictions 

Weak learners can be combined to get a model with better perfor-
mances. The way to combine base models should be adapted to 
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their types. Low bias and high variance weak models should be 
combined in a way that makes the strong model more robust 
whereas low variance and high bias base models better be com-
bined in a way that makes the ensemble model less biased. 

Source: 
https://towardsdatascience.com/ensemble-methods-bagging-
boosting-and-stacking-c9214a10a205 

Test alternative models 

As per the section on cross validation, if we have two models, and 
we want to see which one is better, we can use cross validation to 
compare the two for a given dataset. For the code listed above, this 
is shown in the following section. 
"""### Test Alternative Models 
logistic = LogisticRegression() 
cross_val_score(logistic, X, y, cv=5, 
scoring="accuracy").mean() 
rnd_clf = RandomForestClassifier() 
cross_val_score(rnd_clf, X, y, cv=5, 
scoring="accuracy").mean() 

Hyperparameter tuning 

In this section, we introduce Hyperparameters and how they de-
termine a model’s performance. The process of learning Parame-
ters involves taking the input data and using a function to generate 
a model. In this case, the model parameters tell how to transform 
input data into desired output whereas, the hyperparameters of the 
model are used to determine the structure of the model itself. The 
performance of the model depends heavily on the hyperparameter 

https://towardsdatascience.com/ensemble-methods-bagging-boosting-and-stacking-c9214a10a205
https://towardsdatascience.com/ensemble-methods-bagging-boosting-and-stacking-c9214a10a205
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values selected. The goal of hyperparameter tuning is to search 
across various hyperparameter configurations to find a configura-
tion that will result in the best performance. Hyperparameters help 
answer questions like: the depth of the decision tree or how many 
layers should a neural network have etc. There are mainly three 
methods to perform hyperparameter tuning: Grid search, Random 
search and Bayesian optimisation 

Source: 
https://www.analyticsindiamag.com/what-are-hyperparameters-
and-how-do-they-determine-a-models-performance/ 
https://towardsdatascience.com/hyperparameter-tuning-the-
random-forest-in-python-using-scikit-learn-28d2aa77dd74 

https://www.analyticsindiamag.com/what-are-hyperparameters-and-how-do-they-determine-a-models-performance/
https://www.analyticsindiamag.com/what-are-hyperparameters-and-how-do-they-determine-a-models-performance/
https://towardsdatascience.com/hyperparameter-tuning-the-random-forest-in-python-using-scikit-learn-28d2aa77dd74
https://towardsdatascience.com/hyperparameter-tuning-the-random-forest-in-python-using-scikit-learn-28d2aa77dd74
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Conclusion 

We hope you have learnt from this book. Please post your com-
ments at Community for the book: 

https://www.datasciencecentral.com/group/ai-deep-learning-
machine-learning-coding-in-a-week 

https://www.datasciencecentral.com/group/ai-deep-learning-machine-learning-coding-in-a-week
https://www.datasciencecentral.com/group/ai-deep-learning-machine-learning-coding-in-a-week
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Appendix 

In this section, the code is provided in a python text format based 
on a .py file exported and simplified from colab 

Regression Code 

import pandas as pd 
import numpy as np 
import matplotlib.pyplot as plt 
import seaborn as sns 
 
# rather than importing the whole sklearn library, 
we will import certain modules 
from sklearn.linear_model import LinearRegression 
from sklearn.ensemble import RandomForestRegressor 
from sklearn.datasets import load_boston 
from sklearn import model_selection 
from sklearn.preprocessing import StandardScaler 
from sklearn import metrics 
 
# we load the dataset and save it as the variable 
boston 
boston = load_boston() 
 
# if we want to know what sort of detail is 
provided with this dataset, we can call .keys() 
boston.keys() 
 
# the info at the .DESCR key will tell us more 
print(boston.DESCR) 
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# we can use pandas to create a dataframe, which is 
basically a way of storing and operating on tabular 
data 
# here we pass in both the data and the column 
names as variables 
boston_X = pd.DataFrame(boston.data, columns = 
boston.feature_names) 
 
# we can then look at the top of the dataframe to 
see the sort of values it contains 
boston_X.head() 
 
# pandas has a lot of functionality to assist with 
exploratory data analysis 
# .describe() provide summary statistics on all 
numeric columns 
print(boston_X.describe()) 
 
# we can also see the shape of the data 
print(boston_X.shape) 
 
"""* For each feature, we can see the `count`, or 
number of data entries, the `mean` value, and the 
`standard deviation`, `min`, `max` and `quartile` 
values. 
* We can see that the range of values for each 
feature differs quite a lot, so we can start to 
think about whether to apply normalization to the 
data. 
* We can also see that the `CHAS` faeture is either 
a `(1,0)` value. If we look back at our 
description, we can see that this is an example of 
a `categorical` variable. These are values used to 
describe non-numeric data. In this case, a `1` 
indicates the house borders near the river, and a 
`0` that it doesn't. 
""" 
 
# we can build on this analysis by plotting the 
distribution and boxplots for each column 
 
# we loop through all the columns 
for col in boston_X.columns: 
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    # and for each column we create space for one 
row with 2 charts 
    f, axes = plt.subplots(1, 2, figsize=(12, 6)) 
    # our first chart is a histogram and we set the 
title 
    boston_X[col].hist(bins = 30, ax = axes[0]) 
    axes[0].set_title('Distribution of '+ col) 
    # our second column is the boxplot 
    boston_X.boxplot(column = col, ax = axes[1]) 
    # we then use this to command to display the 
charts 
    plt.show() 
 
"""* A `histogram` tells is the number of times, or 
frequency, a value occurs within a `bin`, or 
bucket, that splits the data (and which we 
defined). A histogram shows the frequency with 
which values occur within each of these bins, and 
can tell us about the distribution of data. 
* A `boxplot` captures within the box the 
`interquartile range`, the range of values from 
Q1/25th percentile to Q3/75th percentile, and the 
median value. It also captures the `min` and `max` 
values of each feature. 
* Together, these charts show us the distribution 
of values for each feature. We can start to make 
judgements about how to treat the data, for example 
whether we want to deal with outliers; or whether 
we want to normalize the data. 
""" 
 
# we can now look at our target variable 
boston_y = boston.target 
 
# we can plot a histogram in a slightly different 
way 
plt.hist(boston_y, bins = 40) 
plt.title('Housing price distribution, $K') 
plt.show() 
 
# and the same for the boxplot 
plt.boxplot(boston_y) 
plt.title('Box plot for housing price.') 
plt.show() 
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# another thing we can do is plot a boxplot of one 
variable against the target variable 
# it is interesting to see how house value 
distribution differs by CHAS, the categorical 
variable 
 
# here we create a grouped dataframe that includes 
the target variable 
grouped_df = boston_X.copy()   # note we create a 
copy of the data here so that any changes don't 
impact the original data 
grouped_df['target'] = boston_y.copy() 
 
# we then plot it here 
f, axes = plt.subplots(1, 1, figsize=(10, 5)) 
grouped_df.boxplot(column='target', by = 'CHAS', 
ax = axes) 
plt.show() 
 
"""* The `interquartile range`for houses next to 
the river is higher than for those houses not next 
to the river, and the `min` and `max` values differ 
too. 
* This suggests this could be an important variable 
for us to include in our model, given that as it 
differs, the target value distribution changes. 
""" 
 
# we can extend this sort of analysis by creating a 
heatmap 
# this shows the correlation between the features 
and target 
 
# first we compute the correlation 
corr = grouped_df.corr(method='pearson') 
# and plot our figure size 
plt.figure(figsize = (15, 10)) 
# and use seaborn to fill this figure with a 
heatmap 
sns.heatmap(corr, annot = True) 
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"""* We will let you review this heatmap to see 
what features are important for modelling and 
why.""" 
 
# OPTIONAL: below is code that generate a pairplot 
using seaborn 
# look up what a pairplot is and see if you can 
interpret the output of the code below 
 
#sns.pairplot(grouped_df) 
 
"""#### Preprocess the data 
* We proprocess the data to ensure it is a suitable 
state for modelling. The sort of things that we do 
to preprocess the data includes: 
  * *Dealing with missing values*, where we 
identify what, if, any missing data we have and how 
to deal with it. For example, we may replace 
missing values with the mean value for that 
feature, or by the average of the neighbouring 
values. 
    * `pandas` has a number of options for filling 
in missing data that is worth exploring 
    * We can also use `k-nearest neighbour`to help 
us predict what the missing values should be, or 
`sklearn Imputer` function (amongst other ways) 
  * *Treat categorical values*, by converting them 
into a numerical representation that can be 
modelled. 
    * There are a number of different ways to do 
this in `sklearn` and `pandas` 
  * *Normalise the data*, for example by ensuring 
the data is, for example all on the scale (such as 
within two defined values); normally distributed; 
has a zero-mean, etc. This is sometimes necessary 
for the ML models to work, and can also help speed 
up the time it takes for the models to run.  
    * Again, `sklearn` and `pandas` have in-built 
functions to help you do this. 
* In this notebook, we will look to remove 
`outliers`, which are values that might be 
erroneous and which can over-influence the model, 
and `normalize` the data 
""" 
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# lets start by removing outliers 
 
# here we define the columns where we have 
identified there could be outliers 
numeric_columns = ['CRIM', 'ZN', 'INDUS', 'NOX', 
'RM', 'AGE', 'DIS', 'RAD', 'TAX', 'PTRATIO', 'B', 
'LSTAT'] 
 
# this function can be used on any dataset to 
return a list of index values for the outliers 
def get_outliers(data, columns): 
    # we create an empty list 
    outlier_idxs = [] 
    for col in columns: 
        elements = data[col] 
        # we get the mean value for each column 
        mean = elements.mean() 
        # and the standard deviation of the column 
        sd = elements.std() 
        # we then get the index values of all 
values higher or lower than the mean +/- 2 standard 
deviations 
        outliers_mask = data[(data[col] > mean + 
3*sd) | (data[col]  < mean  - 3*sd)].index 
        # and add those values to our list 
        outlier_idxs  += [x for x in outliers_mask] 
    return list(set(outlier_idxs)) 
 
# we call the function we just created on the 
boston dataset 
boston_outliers = get_outliers(boston_X, 
numeric_columns) 
 
# and drop those values from our feature and target 
values 
boston_X = boston_X.drop(boston_outliers, axis = 0) 
boston_y = 
pd.DataFrame(boston_y).drop(boston_outliers, axis = 
0).values.ravel() 
 
# we can check that this code has worked by looking 
at the shape of our data 
print (boston_X.shape) 
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print (boston_y.shape) 
 
# we can also create a function to normalize our 
data 
# first lets look at the data before normalisation 
boston_X[0:10] 
 
# this function loops through columns in a data set 
and defines a predefined scaler to each 
def scale_numeric(data, numeric_columns, scaler): 
    for col in numeric_columns: 
        data[col] = 
scaler.fit_transform(data[col].values.reshape(-1, 
1)) 
    return data 
 
# we can now define the scaler we want to use and 
apply it to our dataset 
 
# a good exercise would be to research waht 
StandardScaler does - it is from the scikit learn 
library 
scaler = StandardScaler() 
boston_X = scale_numeric(boston_X, numeric_columns, 
scaler) 
 
# here we can see the result 
boston_X[0:10] 
 
"""###  : Split the data 
* In order to train our model and see how well it 
performs, we need to split our data into training 
and testing sets. 
* We can then train our model on the training set, 
and test how well it has generalised to the data on 
the test set. 
* There are a number of options for how we can 
split the data, and for what proportion of our 
original data we set aside for the test set. 
""" 
 
# a common way for splitting our dataset is using 
train_test_split 
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# as an exercise, go to the scikit learn 
documentation to learn more about this function and 
the parameters available 
X_train, X_test, Y_train, Y_test = 
model_selection.train_test_split(boston_X, 
boston_y, test_size = 0.2, random_state = 5) 
 
# get shape of test and training sets 
print('Training Set:') 
print('Number of datapoints: ', X_train.shape[0]) 
print('Number of features: ', X_train.shape[1]) 
print('\n') 
print('Test Set:') 
print('Number of datapoints: ', X_test.shape[0]) 
print('Number of features: ', X_test.shape[1]) 
 
"""###  Choose a Baseline algorithm 
# linear regression is a fairly simple algorithm 
compared to more complicate regression options, so 
provides a good baseline 
lm = LinearRegression() 
 
"""### Train and Test the Model""" 
 
# fitting the model to the data means to train our 
model on the data 
# the fit function takes both the X and y variables 
of the training data 
lm.fit(X_train, Y_train) 
 
# from this, we can generate a set of predictions 
on our unseen features, X_test 
Y_pred = lm.predict(X_test) 
 
"""### : Choose an evaluation metric 
* We then need to compare these predictions with 
the actual result and measure them in some way. 
* This is where the selection of evaluation metric 
is important. For regression, we measure the 
distance between the predicted and actual answers 
in some way. The shorter the distance, the more 
correct the model is. 
* We cover three common metrics below: 
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  * `Mean Absolute Error`: which provides a mean 
score for all the predicted versus actual values as 
an absolute value 
  * `Means Squared Error`: which provides a mean 
score for all the predicted versus actual values as 
a square of the absolute value 
  * `R2`: which we recommend you research as an 
exercise to grow your knowledge. WIkipedia and 
`sklearn` document are a great place to start! 
""" 
 
def evaluate(Y_test, Y_pred): 
    # this block of code returns all the metrics we 
are interested in 
    mse = metrics.mean_squared_error(Y_test, 
Y_pred) 
    msa = metrics.mean_absolute_error(Y_test, 
Y_pred) 
    r2 = metrics.r2_score(Y_test, Y_pred) 
 
    print("Mean squared error: ", mse) 
    print("Mean absolute error: ", msa) 
    print("R^2 : ", r2) 
     
    # this creates a chart plotting predicted and 
actual 
    plt.scatter(Y_test, Y_pred) 
    plt.xlabel("Prices: $Y_i$") 
    plt.ylabel("Predicted prices: $\hat{Y}_i$") 
    plt.title("Prices vs Predicted prices: $Y_i$ vs 
$\hat{Y}_i$") 
 
evaluate(Y_test, Y_pred) 
 
# we can explore how metrics are dervied in a 
little more detail by looking at MAE 
# here we will implement MAE using numpy, building 
it up step by step 
 
# with MAE, we get the absolute values of the error 
- as you can see this is of the difference between 
the actual and predicted values 
np.abs(Y_test - Y_pred) 
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# we will then sum them up 
np.sum(np.abs(Y_test - Y_pred)) 
 
# then divide by the total number of 
predictions/actual values 
# as you will see, we get to the same score 
implemented above 
np.sum(np.abs(Y_test - Y_pred))/len(Y_test) 
 
"""### : Refine our dataset 
* This step allows us to add or modify features of 
the datatset. We might do this if, for example, 
some combination of features better represents the 
problems space and so is an indicator of the target 
variable. 
* Here, we create one additional feature as an 
example, but you should reflect on our EDA earlier 
and see whether there are other features that can 
be added to our dataset. 
""" 
 
# here we are using pandas functionality to add a 
new column called LSTAT_2, which will feature 
values that are the square of LSTAT values 
boston_X['LSTAT_2'] = boston_X['LSTAT'].map(lambda 
x: x**2) 
 
# we can run our train_test_split function and see 
that we have an additional features 
X_train, X_test, Y_train, Y_test = 
model_selection.train_test_split(boston_X, 
boston_y, test_size = 0.2, random_state = 5) 
 
print('Number of features after dataset refinement: 
', X_train.shape[1]) 
 
# we can now run the same code as before on our 
refined dataset to see if things have improved 
lm.fit(X_train, Y_train) 
 
Y_pred = lm.predict(X_test) 
 
evaluate(Y_test, Y_pred) 
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"""### Step 8: Test Alternative Models 
* Once we got a nice baseline model working for 
this dataset, we also can try something more 
sophisticated and rather different, e.g. 
RandomForest Regressor. So, let's do so and also 
evaluate the result. 
""" 
 
# as you can see, its very similar code to 
instantiate the model 
# we are able to pass in additional parameters as 
the model is created, so optionally you can view 
the documentation and play with these values 
 
rfr = RandomForestRegressor() 
rfr.fit(X_train, Y_train) 
Y_pred = rfr.predict(X_test) 
 
evaluate(Y_test, Y_pred) 
 
"""### : Choose the best model and optimise its 
parameters 
* We can see that we have improved our model as we 
have added features and trained new models. 
* At the point that we feel comfortable with a good 
model, we can start to tune the parameters of the 
model. 
* There are a number of ways to do this, and a 
common way is shown below 
""" 
 
## grid search is a 'brute force' search, one that 
will explore every possible combination of 
parameters that you provide it 
 
# we first define the parameters we want to search 
as a dictionary. Explore the documentation to what 
other options are avaiable 
params = {'n_estimators': [100, 200], 'max_depth' : 
[2, 10, 20]} 
 
# we then create a grid search object with our 
chosen model and paramters. We also use cross 
validation here - explored more in Day 2 
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grid = model_selection.GridSearchCV(rfr, params, 
cv=5) 
 
# we fit our model to the data as before 
grid.fit(X_train, Y_train) 
 
# one output of the grid search function is that we 
can get the best_estimator - the model and 
parameters that scored best on the training data - 
#  and save it as a new a model 
best_model = grid.best_estimator_ 
 
# and use it to predict and evaluate as before 
Y_pred = best_model.predict(X_test) 
 
evaluate(Y_test, Y_pred) 

Classification Code 

# -*- coding: utf-8 -*- 
 
# import main data analysis libraries 
import pandas as pd 
import numpy as np 
import seaborn as sns 
import matplotlib.pyplot as plt 
# note we use scipy for generating a uniform 
distribution in the model optimization step 
from scipy.stats import uniform 
 
# note that because of the different dataset and 
algorithms, we use different sklearn libraries from 
Day 1 
from sklearn.datasets import load_breast_cancer 
from sklearn.linear_model import LogisticRegression 
from sklearn.ensemble import RandomForestClassifier 
from sklearn.ensemble import VotingClassifier 
from sklearn.tree import DecisionTreeClassifier 
from sklearn.model_selection import 
train_test_split 
from sklearn.model_selection import 
RandomizedSearchCV 
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from sklearn.model_selection import cross_val_score 
from sklearn.dummy import DummyClassifier 
from sklearn import metrics 
from sklearn.metrics import accuracy_score 
from sklearn.svm import SVC 
 
# hide warnings 
import warnings 
warnings.filterwarnings('ignore') 
 
# we load the dataset and save it as the variable 
data 
data = load_breast_cancer() 
 
# if we want to know what sort of detail is 
provided with this dataset, we can call .keys() 
data.keys() 
 
# the info at the .DESCR key will tell us more 
print (data.DESCR) 
 
#### Analyze the Data 
X = pd.DataFrame(data.data, columns = 
data.feature_names) 
 
# we can then look at the top of the dataframe to 
see the sort of values it contains 
X.describe(include = 'all') 
 
# we can now look at our target variable 
y = data.target 
 
# we can see that it is a list of 0s and 1s, with 
1s matching to the Benign class y 
 
# we can analyse the data in more detail by 
understanding how the features and target variables 
interact 
# we can do this by grouping the features and the 
target into the same dataframe 
# note we create a copy of the data here so that 
any changes don't impact the original data 
 
full_dataset = X.copy() 



Ajit Jaokar – Dan Howarth 

 
– 62 – 

full_dataset['target'] = y.copy() 
 
# let's take a look at the first few lines of the 
dataset 
full_dataset.head() 
 
# lets see how balanced the classes are (and if 
that matches to our expectation) 
full_dataset['target'].value_counts() 
 
# let's evaluate visually how well our classes are 
differentiable on the pairplots 
# can see two classes being present on a two 
variables charts? 
# the pairplot function is an excellent way of 
seeing how variables inter-relate, but 30 feature 
can make studying each combination difficult! 
sns.pairplot(full_dataset, hue = 'target') 
 
"""* We can clearly see the presence of two clouds 
with different colors, representing our target 
classes. 
* Of course, they are still mixed to some extent, 
but if we were to visualise the variables in multi-
dimentional space they would become more separable. 
* Now let's check the Pearson's correlation between 
pairs of our features and also between the features 
and our target. 
""" 
 
# we can again use seaborn to easily create a 
visually interesting chart 
plt.figure(figsize = (15, 10)) 
 
# we can add the annot=True parameter to the 
sns.heatmap arguments if we want to show the 
correlation values 
sns.heatmap(full_dataset.corr(method='pearson')) 
 
"""* Dark red colours are positilvey correlated 
with the corresponding feature, dark blue features 
are negatively correlated. 
* We can see that some values are negatively 
correlated with our target variable. 
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* This information could help us with feature 
engineering. 
 
###  Split the data 
* In order to train our model and see how well it 
performs, we need to split our data into training 
and testing sets. 
* We can then train our model on the training set, 
and test how well it has generalised to the data on 
the test set. 
* There are a number of options for how we can 
split the data, and for what proportion of our 
original data we set aside for the test set. 
""" 
 
# Because our classes are not absolutely equal in 
number, we can apply stratification to the split 
# and be sure that the ratio of the classes in both 
train and test will be the same 
# you can learn about the other parameters by 
looking at the documentation 
X_train, X_test, y_train, y_test = 
train_test_split(X, y, test_size = 0.2, stratify = 
y, shuffle=True) 
 
# as with Day 1, we can get shape of test and 
training sets 
print('Training Set:') 
print('Number of datapoints: ', X_train.shape[0]) 
print('Number of features: ', X_train.shape[1]) 
print('\n') 
print('Test Set:') 
print('Number of datapoints: ', X_test.shape[0]) 
print('Number of features: ', X_test.shape[1]) 
 
# and we can verify the stratifications using 
np.bincount 
print('Labels counts in y:', np.bincount(y)) 
print('Percentage of class zeroes in 
class_y',np.round(np.bincount(y)[0]/len(y)*100)) 
 
print("\n") 
print('Labels counts in y_train:', 
np.bincount(y_train)) 
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print('Percentage of class zeroes in 
y_train',np.round(np.bincount(y_train)[0]/len(y_tra
in) *100)) 
 
print("\n") 
print('Labels counts in y_test:', 
np.bincount(y_test)) 
print('Percentage of class zeroes in 
y_test',np.round(np.bincount(y_test)[0]/len(y_test)
*100)) 
 
"""### : Choose a Baseline algorithm 
* Building a model in `sklearn` involves: 
## we can create a baseline model to benchmark our 
other estimators against 
## this can be a simple estimator or we can use a 
dummy estimator to make predictions in a random 
manner 
# this creates our dummy classifier, and the value 
we pass in to the strategy parameter dtermn 
dummy = DummyClassifier(strategy='uniform', 
random_state=1) 
 
"""### : Train and Test the Model""" 
# "Train" model 
dummy.fit(X_train, y_train) 
 
# from this, we can generate a set of predictions 
on our unseen features, X_test 
dummy_predictions = dummy.predict(X_test) 
 
"""### : Choose an evaluation metric 
* We then need to compare these predictions with 
the actual result and measure them in some way. 
This is where the selection of evaluation metric is 
important. 
* Classification metrics include: 
  * `accuracy`: this assess how often the model 
selects the best class. This can be more useful 
when there are balanced classes (i.e. there are a 
similar number of instances of each class we are 
trying to predict). 
    * There are some limits to this metric. For 
example, if we think about something like credit 
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card fraud, where the instances of fraudulent 
transactions might be 0.5%, then a model that 
*always* predicts that a transaction is not 
fraudulent will be 99.5% accurate! So we often need 
metrics that can tell us how a model performs in 
more detail. 
  * `f1 score`: 
  * `roc_auc`: 
  * `recall`: 
  * We recommend you research these metrics to 
improve your understanding of how they work. Try to 
look up an explanation or two (for example on 
wikipedia and scikit-learn documentation) and write 
a one line summary in the space provided above. 
Then, below, when we implement a scoring function, 
select these different metrics and try to explain 
what is happening. This will help cement you 
knowledge. 
""" 
 
|def evaluate(y_test, y_pred): 
    # this block of code returns all the metrics we 
are interested in 
    accuracy = metrics.accuracy_score(y_test, 
y_pred) 
    f1 = metrics.f1_score(y_test, y_pred) 
    auc = metrics.roc_auc_score(y_test, y_pred) 
 
    print ("Accuracy", accuracy) 
    print ('F1 score: ', f1) 
    print ('ROC_AUC: ' , auc) 
 
# we can call the function on the actual results 
versus the predictions 
# we will see that the metrics are what we'd expect 
from a random model 
evaluate(y_test, dummy_predictions) 
 
"""### Test Alternative Models 
 
## here we fit a new estimator and use 
cross_val_score to get a score based on a defined 
metric 
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# instantiate logistic regression classifier 
logistic = LogisticRegression() 
 
# we pass our estimator and data to the method. we 
also specify the number of folds (default is 3) 
# the default scoring method is the one associated 
with the estimator we pass in 
# we can use the scoring parameter to pass in 
different scoring methods. Here we use f1. 
cross_val_score(logistic, X, y, cv=5, scoring="f1") 
 
# we can see that this returns a score for all the 
five folds of the cross_validation 
# if we want to return a mean, we can store as a 
variable and calculate the mean, or do it directly 
on the function 
# this time we will use accuracy 
cross_val_score(logistic, X, y, cv=5, 
scoring="accuracy").mean() 
 
# lets do this again with a different model 
rnd_clf = RandomForestClassifier() 
 
# and pass that in 
cross_val_score(rnd_clf, X, y, cv=5, 
scoring="accuracy").mean() 
 
 
 
"""#### Ensemble models 
 
* Let's take this opportunity to explore ensemble 
methods. 
* The goal of ensemble methods is to combine 
different classifiers into a meta-classifier that 
has better generalization performance than each 
individual classifier alone. 
* There are several different approaches to achieve 
this, including **majority voting** ensemble 
methods, which we select the class label that has 
been predicted by the majority of classifiers. 
* The ensemble can be built from different 
classification algorithms, such as decision trees, 
support vector machines, logistic regression 
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classifiers, and so on. Alternatively, we can also 
use the same base classification algorithm, fitting 
different subsets of the training set. 
* Indeed, Majority voting will work best if the 
classifiers used are different from each other 
and/or trained on different datasets (or subsets of 
the same data) in order for their errors to be 
uncorrelated. 
""" 
 
# lets instantiate an additional model to make an 
ensemble of three models 
dt_clf = DecisionTreeClassifier() 
 
# and an ensemble of them 
voting_clf = VotingClassifier(estimators=[('lr', 
logistic), ('rf', rnd_clf), ('dc', dt_clf)], 
                              # here we select soft 
voting, which returns the argmax of the sum of 
predicted probabilities 
                              voting='soft') 
 
# here we can cycle through the individual 
estimators 
# for clf in (log_clf, rnd_clf, svm_clf, 
voting_clf): 
 
for clf in (log_clf, rnd_clf, dt_clf, voting_clf): 
    
    # fit them to the training data 
    clf.fit(X_train, y_train) 
     
    # get a prediction 
    y_pred = clf.predict(X_test) 
     
    # and print the prediction 
    print(clf.__class__.__name__, 
accuracy_score(y_test, y_pred)) 
 
"""* We can see that `voting classifier` in this 
the case does have a slight edge on the other 
models (note that this could vary depending on how 
the data is split at training time). 
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* This is an interesting approach and one to 
consider when you are developing your models. 
 
### Step 9: Choose the best model and optimise its 
parameters 
* We can see that we have improved our model as we 
have added features and trained new models. 
* At the point that we feel comfortable with a good 
model, we can start to tune the parameters of the 
model. 
* There are a number of ways to do this. We applied 
`GridSearchCV` to identify the best hyperparameters 
for our models on Day 1. 
* There are other methods available to use that 
don't take the brute force approach of 
`GridSearchCV`. 
* We will cover an implementation of 
`RandomizedSearchCV` below, and use the exercise 
for you to implement it on the other datatset. 
* We use this method to search over defined 
hyperparameters, like `GridSearchCV`, however a 
fixed number of parameters are sampled, as defined 
by `n_iter` parameter. 
""" 
 
# we will optimise logistics regression 
# we can create hyperparameters as a list, as in 
type regularization penalty 
penalty = ['l1', 'l2'] 
 
# or as a distribution of values to sample from -
'C' is the hyperparameter controlling the size of 
the regularisation penelty 
C = uniform(loc=0, scale=4) 
 
# we need to pass these parameters as a dictionary 
of {param_name: values} 
hyperparameters = dict(C=C, penalty=penalty) 
 
# we instantiate our model 
randomizedsearch = RandomizedSearchCV(logistic, 
hyperparameters, random_state=1, 
            n_iter=100, cv=5, verbose=0, n_jobs=-1) 
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# and fit it to the data 
best_model = randomizedsearch.fit(X, y) 
 
# from this, we can generate a set of predictions 
on our unseen features, X_test 
best_predictions = best_model.predict(X_test) 
 
# and evaluate model performance 
evaluate(y_test, best_predictions) 
 
# and we can call this method to return the best 
parameters the search returned 
best_model.best_estimator_ 
 
# and - we can evaluate the model using the cross 
validation method discussed above 
cross_val_score(best_model, X, y, cv=5, 
scoring="accuracy").mean() 
 
"""* evaluation of the scores 
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