
Anomaly Detection for
Dummies
Unsupervised Anomaly Detection for
Univariate & Multivariate Data.
Susan Li

Anomaly detection is the process of identifying
unexpected items or events in data sets, which differ from
the norm. And anomaly detection is often applied on
unlabeled data which is known as unsupervised anomaly
detection. Anomaly detection has two basic assumptions:

Anomalies only occur very rarely in the data.
Their features differ from the normal instances
significantly.

Univariate Anomaly Detection
Before we get to Multivariate anomaly detection, I think
its necessary to work through a simple example of
Univariate anomaly detection method in which we detect
outliers from a distribution of values in a single feature
space.

We are using the Super Store Sales data set that can be
downloaded from here, and we are going to find patterns
in Sales and Profit separately that do not conform to

https://towardsdatascience.com/@actsusanli?source=post_page-----15f148e559c1----------------------
https://en.wikipedia.org/wiki/Anomaly_detection
https://community.tableau.com/docs/DOC-1236
https://community.tableau.com/docs/DOC-1236


expected behavior. That is, spotting outliers for one
variable at a time.

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import matplotlib
from sklearn.ensemble import IsolationForest

Distribution of the Sales

df = pd.read_excel("Superstore.xls")
df['Sales'].describe()

Figure 1

plt.scatter(range(df.shape[0]), np.sort(df['Sales'].values))
plt.xlabel('index')
plt.ylabel('Sales')



plt.title("Sales distribution")
sns.despine()

Figure 2

sns.distplot(df['Sales'])
plt.title("Distribution of Sales")
sns.despine()



Figure 3

print("Skewness: %f" % df['Sales'].skew())
print("Kurtosis: %f" % df['Sales'].kurt())

The Superstore’s sales distribution is far from a normal
distribution, and it has a positive long thin tail, the mass
of the distribution is concentrated on the left of the figure.
And the tail sales distribution far exceeds the tails of the
normal distribution.

There are one region where the data has low probability
to appear which is on the right side of the distribution.

Distribution of the Profit

df['Profit'].describe()



Figure 4

plt.scatter(range(df.shape[0]), np.sort(df['Profit'].values))
plt.xlabel('index')
plt.ylabel('Profit')
plt.title("Profit distribution")
sns.despine()



Figure 5

sns.distplot(df['Profit'])
plt.title("Distribution of Profit")
sns.despine()

Figure 6

print("Skewness: %f" % df['Profit'].skew())
print("Kurtosis: %f" % df['Profit'].kurt())

The Superstore’s Profit distribution has both a positive
tail and negative tail. However, the positive tail is longer
than the negative tail. So the distribution is positive
skewed, and the data are heavy-tailed or profusion of
outliers.



There are two regions where the data has low probability
to appear: one on the right side of the distribution,
another one on the left.

Univariate Anomaly Detection on
Sales

Isolation Forest is an algorithm to detect outliers that
returns the anomaly score of each sample using the
IsolationForest algorithm which is based on the fact that
anomalies are data points that are few and different.
Isolation Forest is a tree-based model. In these trees,
partitions are created by first randomly selecting a feature
and then selecting a random split value between the
minimum and maximum value of the selected feature.

The following process shows how IsolationForest behaves
in the case of the Susperstore’s sales, and the algorithm
was implemented in Sklearn and the code was largely
borrowed from this tutorial

Trained IsolationForest using the Sales data.
Store the Sales in the NumPy array for using in our
models later.
Computed the anomaly score for each observation.
The anomaly score of an input sample is computed as
the mean anomaly score of the trees in the forest.
Classified each observation as an outlier or non-
outlier.
The visualization highlights the regions where the

https://dzone.com/articles/spotting-outliers-with-isolation-forest-using-skle


outliers fall.

sales_IsolationForest.py

Figure 7

According to the above results and visualization, It seems
that Sales that exceeds 1000 would be definitely
considered as an outlier.

Visually investigate one anomaly

df.iloc[10]



Figure 8

This purchase seems normal to me expect it was a larger
amount of sales compared with the other orders in the
data.

Univariate Anomaly Detection on
Profit

Trained IsolationForest using the Profit variable.
Store the Profit in the NumPy array for using in our
models later.
Computed the anomaly score for each observation.
The anomaly score of an input sample is computed as
the mean anomaly score of the trees in the forest.



Classified each observation as an outlier or non-
outlier.
The visualization highlights the regions where the
outliers fall.

profit_IsolationForest.py

Figure 9

Visually investigate some of the
anomalies

According to the above results and visualization, It seems
that Profit that below -100 or exceeds 100 would be
considered as an outlier, let’s visually examine one
example each that determined by our model and to see
whether they make sense.

df.iloc[3]



Figure 10

Any negative profit would be an anomaly and should be
further investigate, this goes without saying

df.iloc[1]



Figure 11

Our model determined that this order with a large profit
is an anomaly. However, when we investigate this order, it
could be just a product that has a relatively high margin.

The above two visualizations show the anomaly scores
and highlighted the regions where the outliers are. As
expected, the anomaly score reflects the shape of the
underlying distribution and the outlier regions correspond
to low probability areas.

However, Univariate analysis can only get us thus far. We
may realize that some of these anomalies that determined
by our models are not the anomalies we expected. When
our data is multidimensional as opposed to univariate,
the approaches to anomaly detection become more



computationally intensive and more mathematically
complex.

Multivariate Anomaly Detection
Most of the analysis that we end up doing are
multivariate due to complexity of the world we are living
in. In multivariate anomaly detection, outlier is a
combined unusual score on at least two variables.

So, using the Sales and Profit variables, we are going to
build an unsupervised multivariate anomaly detection
method based on several models.

We are using PyOD which is a Python library for
detecting anomalies in multivariate data. The library was
developed by Yue Zhao.

Sales & Profit

When we are in business, we expect that Sales & Profit
are positive correlated. If some of the Sales data points
and Profit data points are not positive correlated, they
would be considered as outliers and need to be further
investigated.

sns.regplot(x="Sales", y="Profit", data=df)
sns.despine();

https://pyod.readthedocs.io/en/latest/
https://www.yuezhao.me/


Figure 12

From the above correlation chart, we can see that some of
the data points are obvious outliers such as extreme low
and extreme high values.

Cluster-based Local Outlier Factor
(CBLOF)

The CBLOF calculates the outlier score based on cluster-
based local outlier factor. An anomaly score is computed
by the distance of each instance to its cluster center
multiplied by the instances belonging to its cluster. PyOD
library includes the CBLOF implementation.

The following code are borrowed from PyOD tutorial
combined with this article.

Scaling Sales and Profit to between zero and one.
Arbitrarily set outliers fraction as 1% based on trial

https://pyod.readthedocs.io/en/latest/index.html
https://pyod.readthedocs.io/en/latest/pyod.models.html#module-pyod.models.cblof
https://github.com/yzhao062/pyod/blob/master/notebooks/Compare%20All%20Models.ipynb
https://www.analyticsvidhya.com/blog/2019/02/outlier-detection-python-pyod/


and best guess.
Fit the data to the CBLOF model and predict the
results.
Use threshold value to consider a data point is inlier
or outlier.
Use decision function to calculate the anomaly score
for every point.

CBLOF.py

Figure 13

Histogram-based Outlier Detection



(HBOS)

HBOS assumes the feature independence and calculates
the degree of anomalies by building histograms. In
multivariate anomaly detection, a histogram for each
single feature can be computed, scored individually and
combined at the end. When using PyOD library, the code
are very similar with the CBLOF.

HBOS.py

Figure 14

Isolation Forest



Isolation Forest is similar in principle to Random Forest
and is built on the basis of decision trees. Isolation Forest
isolates observations by randomly selecting a feature and
then randomly selecting a split value between the
maximum and minimum values of that selected feature.

The PyOD Isolation Forest module is a wrapper of Scikit-
learn Isolation Forest with more functionalities.

IsolationForest.Py

Figure 15

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.IsolationForest.html


K - Nearest Neighbors (KNN)

KNN is one of the simplest methods in anomaly
detection. For a data point, its distance to its kth nearest
neighbor could be viewed as the outlier score.

KNN.py

Figure 16

The anomalies predicted by the above four algorithms
were not very different.



Visually investigate some of the
anomalies

We may want to investigate each of the outliers that
determined by our model, for example, let’s look in
details for a couple of outliers that determined by KNN,
and try to understand what make them anomalies.

df.iloc[1995]

Figure 17

For this particular order, a customer purchased 5 products
with total price at 294.62 and profit at lower than -766,
with 80% discount. It seems like a clearance. We should
be aware of the loss for each product we sell.



df.iloc[9649]

Figure 18

For this purchase, it seems to me that the profit at around
4.7% is too small and the model determined that this
order is an anomaly.

df.iloc[9270]



Figure 19

For the above order, a customer purchased 6 product at
4305 in total price, after 20% discount, we still get over
33% of the profit. We would love to have more of these
kind of anomalies.

Jupyter notebook for the above analysis can be found on
Github. Enjoy the rest of the week.

https://github.com/susanli2016/Machine-Learning-with-Python/blob/master/Anomaly_Detection_for_Dummies.ipynb
https://github.com/susanli2016/Machine-Learning-with-Python/blob/master/Anomaly_Detection_for_Dummies.ipynb

