Anomaly Detection for
Dummies

Unsupervised Anomaly Detection for
Univariate & Multivariate Data.

Susan Li

Anomaly detection is the process of identifying

unexpected items or events in data sets, which differ from
the norm. And anomaly detection is often applied on
unlabeled data which is known as unsupervised anomaly
detection. Anomaly detection has two basic assumptions:

e Anomalies only occur very rarely in the data.
e Their features differ from the normal instances
significantly.

Univariate Anomaly Detection

Before we get to Multivariate anomaly detection, I think
its necessary to work through a simple example of
Univariate anomaly detection method in which we detect
outliers from a distribution of values in a single feature
space.

We are using the Super Store Sales data set that can be

downloaded from here, and we are going to find patterns
in Sales and Profit separately that do not conform to

https://towardsdatascience.com/@actsusanli?source=post_page-----15f148e559c1----------------------
https://en.wikipedia.org/wiki/Anomaly_detection
https://community.tableau.com/docs/DOC-1236
https://community.tableau.com/docs/DOC-1236

expected behavior. That is, spotting outliers for one

variable at a time.

import
import
import
import
import

pandas as pd

numpy as np
matplotlib.pyplot as plt
seaborn as sns
matplotlib

from sklearn.ensemble import IsolationForest

Distribution of the Sales

df = pd.read_excel("Superstore.xls")
df['Sales'].describe()

count 9994 .000000
mean 229.858001
std 623.245101
min ©.444000
25% 17.280000
507% 54.490000
75% 209.940000
max 22638.480000

Name: Sales, dtype: floaté64

Figure 1

plt.scatter(range(df.shapel@]), np.sort(df['Sale:
plt.xlabel("'index")
plt.ylabel('Sales"')

plt.title("Sales distribution")
sns.despine()

Sales distribution

-
20000 -
@
15000 A
-
v
v
& 10000 l
3
5000 A
0 -
0 2000 4000 6000 8000 10000
index
Figure 2

sns.distplot(df['Sales'])
plt.title("Distribution of Sales")
sns.despine()

Distribution of Sales
0.00200 -

0.00175 A
0.00150 A1
0.00125 A
0.00100 A
0.00075 A
0.00050 A1

0.00025 A \\\—

0.00000

—

T

0 5000 10000 15000 20000
Sales

Figure 3

print("Skewness: %f" % df['Sales'].skew())
print("Kurtosis: %f" % df['Sales'].kurt())

The Superstore’s sales distribution is far from a normal
distribution, and it has a positive long thin tail, the mass
of the distribution is concentrated on the left of the figure.
And the tail sales distribution far exceeds the tails of the
normal distribution.

There are one region where the data has low probability
to appear which is on the right side of the distribution.

Distribution of the Profit

df ['Profit'].describe()

count 9994 ., 000000

mean 28.656896
std 234.260108
min -6599.978000
25% 1.728750
507% 8.666500
75% 29.364000
max 8399.976000

Name: Profit, dtype: floaté4d

Figure 4

plt.scatter(range(df.shapel0]), np.sort(df['Prof:
plt.xlabel('index"')

plt.ylabel('Profit"')

plt.title("Profit distribution")

sns.despine()

Profit distribution
8000 -

6000

4000 -

2000 -

Profit

-2000 -

-4000 -

—-6000 A

2000 4000 6000 8000 10000
index

o -

Figure 5

sns.distplot(df['Profit'])
plt.title("Distribution of Profit")
sns.despine()

Distribution of Profit
0.005 A

0.004 -
0.003 A
0.002 A

0.001 A

0.000 ‘/ L

-6000 -4000 -2000 0 2000 4000 6000 8000
Profit

Figure 6

print("Skewness: %f" % df['Profit'].skew())
print("Kurtosis: %f" % df['Profit'].kurt())

The Superstore’s Profit distribution has both a positive
tail and negative tail. However, the positive tail is longer
than the negative tail. So the distribution is positive
skewed, and the data are heavy-tailed or profusion of
outliers.

There are two regions where the data has low probability
to appear: one on the right side of the distribution,
another one on the left.

Univariate Anomaly Detection on
Sales

Isolation Forest is an algorithm to detect outliers that
returns the anomaly score of each sample using the
IsolationForest algorithm which is based on the fact that
anomalies are data points that are few and different.
Isolation Forest is a tree-based model. In these trees,
partitions are created by first randomly selecting a feature
and then selecting a random split value between the
minimum and maximum value of the selected feature.

The following process shows how IsolationForest behaves
in the case of the Susperstore’s sales, and the algorithm
was implemented in Sklearn and the code was largely
borrowed from this tutorial

e Trained IsolationForest using the Sales data.

e Store the Sales in the NumPy array for using in our
models later.

e Computed the anomaly score for each observation.
The anomaly score of an input sample is computed as
the mean anomaly score of the trees in the forest.

e (Classified each observation as an outlier or non-
outlier.

e The visualization highlights the regions where the

https://dzone.com/articles/spotting-outliers-with-isolation-forest-using-skle

outliers fall.

sales_lsolationForest.py

- anomaly score
0 outlier region

anomaly score
&

5

0 5000 10000 15000 20000
Sales

Figure 7

According to the above results and visualization, It seems
that Sales that exceeds 1000 would be definitely
considered as an outlier.

Visually investigate one anomaly

df.iloc[10]

Row ID 11

Order ID CA-2014-115812
Order Date 2014-06-09 00:00:00
Ship Date 2014-06-14 00:00:00
Ship Mode Standard Class
Customer ID BH-11710
Customer Name Brosina Hoffman
Segment Consumer
Country United States
City Los Angeles
State California
Postal Code 90032
Region West
Product ID FUR-TA-10001539
Category Furniture
Sub-Category Tables
Product Name Chromcraft Rectangular Conference Tables
Sales 1706.18
Quantity 9
Discount 0.2
Profit 85.3092

Name: 10, dtype: object

Figure 8

This purchase seems normal to me expect it was a larger
amount of sales compared with the other orders in the
data.

Univariate Anomaly Detection on
Profit

e Trained IsolationForest using the Profit variable.

e Store the Profit in the NumPy array for using in our
models later.

e Computed the anomaly score for each observation.
The anomaly score of an input sample is computed as
the mean anomaly score of the trees in the forest.

e (lassified each observation as an outlier or non-

outlier.
e The visualization highlights the regions where the

outliers fall.

profit_IsolationForest.py

0.2 1
-~ anomaly score

outlier region
0.1 1

0.0 1

anomaly score
|
o
et

-6000 ~4000 ~2000 0 2000 4000 6000 8000
Profit

Figure 9

Visually investigate some of the
anomalies

According to the above results and visualization, It seems
that Profit that below -100 or exceeds 100 would be
considered as an outlier, let’s visually examine one
example each that determined by our model and to see
whether they make sense.

df.iloc[3]

Row ID

Order 1ID
Order Date
Ship Date
Ship Mode
Customer ID
Customer Name
Segment
Country

City

State

Postal Code
Region
Product ID
Category
Sub-Category
Product Name
Sales
Quantity
Discount
Profit
outlier

Name: 3, dtype: object

Figure 10

4
US-2015-108966
2015-10-11 00:00:00
2015-10-18 00:00:00
Standard Class
S0-20335

Sean 0'Donnell
Consumer

United States

Fort Lauderdale
Florida

33311

South
FUR-TA-10000577
Furniture

Tables

Bretford CR4500 Series Slim Rectangular Table

957.577
5

0.45
-383.031
(%)

Any negative profit would be an anomaly and should be

further investigate, this goes without saying

df.iloc[1]

Row ID 2

Order ID CA-2016-152156
Order Date 2016-11-08 00:00:00
Ship Date 2016-11-11 ©00:00:00
Ship Mode Second Class
Customer ID CG-12520
Customer Name Claire Gute
Segment Consumer
Country United States
City Henderson
State Kentucky
Postal Code 42420
Region South
Product ID FUR-CH-10000454
Category Furniture
Sub-Category Chairs
Product Name Hon Deluxe Fabric Upholstered Stacking Chairs,...
Sales 731.94
Quantity 3
Discount 0
Profit 219.582

Name: 1, dtype: object

Figure 11

Our model determined that this order with a large profit
is an anomaly. However, when we investigate this order, it
could be just a product that has a relatively high margin.

The above two visualizations show the anomaly scores
and highlighted the regions where the outliers are. As
expected, the anomaly score reflects the shape of the
underlying distribution and the outlier regions correspond
to low probability areas.

However, Univariate analysis can only get us thus far. We
may realize that some of these anomalies that determined
by our models are not the anomalies we expected. When
our data is multidimensional as opposed to univariate,
the approaches to anomaly detection become more

computationally intensive and more mathematically
complex.

Multivariate Anomaly Detection

Most of the analysis that we end up doing are
multivariate due to complexity of the world we are living
in. In multivariate anomaly detection, outlier is a
combined unusual score on at least two variables.

So, using the Sales and Profit variables, we are going to
build an unsupervised multivariate anomaly detection
method based on several models.

We are using PyOD which is a Python library for
detecting anomalies in multivariate data. The library was
developed by Yue Zhao.

Sales & Profit

When we are in business, we expect that Sales & Profit
are positive correlated. If some of the Sales data points
and Profit data points are not positive correlated, they
would be considered as outliers and need to be further
investigated.

sns.regplot(x="Sales", y="Profit", data=df)
sns.despine();

https://pyod.readthedocs.io/en/latest/
https://www.yuezhao.me/

8000 -

6000 -

4000 A

2000 A

Profit

-2000 A

-4000 -

-6000 -

0 5000 10000 15000 20000
Sales

Figure 12

From the above correlation chart, we can see that some of
the data points are obvious outliers such as extreme low
and extreme high values.

Cluster-based Local Outlier Factor
(CBLOF)

The CBLOF calculates the outlier score based on cluster-
based local outlier factor. An anomaly score is computed
by the distance of each instance to its cluster center
multiplied by the instances belonging to its cluster. PyOD
library includes the CBLOF implementation.

The following code are borrowed from PyOD tutorial

combined with this article.

® Scaling Sales and Profit to between zero and one.
® Arbitrarily set outliers fraction as 1% based on trial

https://pyod.readthedocs.io/en/latest/index.html
https://pyod.readthedocs.io/en/latest/pyod.models.html#module-pyod.models.cblof
https://github.com/yzhao062/pyod/blob/master/notebooks/Compare%20All%20Models.ipynb
https://www.analyticsvidhya.com/blog/2019/02/outlier-detection-python-pyod/

and best guess.

e Fit the data to the CBLOF model and predict the
results.

e Use threshold value to consider a data point is inlier
or outlier.

e Use decision function to calculate the anomaly score
for every point.

CBLOF.py

OUTLIERS: 100 INLIERS: 9894

10 Cluster-based Local Outlier Factor (CBLOF)

0.8 1

02 - o ---- |earned decision function
o inliers
« outliers

0.0

o
'

0.0

Figure 13

Histogram-based Outlier Detection

(HBOS)

HBOS assumes the feature independence and calculates
the degree of anomalies by building histograms. In
multivariate anomaly detection, a histogram for each
single feature can be computed, scored individually and
combined at the end. When using PyOD library, the code
are very similar with the CBLOE

HBOS.py

OUTLIERS: 90 INLIERS: 9904

Histogram-base Outlier Detection (HBOS)

10 -

0.8 1

0.6 1

0.4 FCREE

02 - learned decision function
inliers
outliers
0060 02 04 06 08 10
Figure 14

Isolation Forest

Isolation Forest is similar in principle to Random Forest
and is built on the basis of decision trees. Isolation Forest
isolates observations by randomly selecting a feature and
then randomly selecting a split value between the
maximum and minimum values of that selected feature.

The PyOD Isolation Forest module is a wrapper of Scikit-
learn Isolation Forest with more functionalities.

IsolationForest.Py

OUTLIERS: 100 INLIERS: 9894

Isolation Forest

10

0.8 1

‘------------

0.6 1

0.4 XESEE

02 ---- |learned decision function
o inliers
« outliers

Figure 15

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.IsolationForest.html

K - Nearest Neighbors (KNN)

KNN is one of the simplest methods in anomaly
detection. For a data point, its distance to its kth nearest
neighbor could be viewed as the outlier score.

KNN.py

OUTLIERS: 91 INLIERS: 9903

Lo K Nearest Neighbors (KNN)

-
08 4
. L]
L]
[]
L J
&
. -
L]
L]
L]
.
&
-
02 o ---- learned decision function
° inliers
« outliers
0.0 - T
00 02 04 06 08 10
Figure 16

The anomalies predicted by the above four algorithms
were not very different.

Visually investigate some of the
anomalies

We may want to investigate each of the outliers that
determined by our model, for example, let’s look in
details for a couple of outliers that determined by KNN,
and try to understand what make them anomalies.

df.iloc[1995]

Row ID 1996
Order ID US-2017-147221
Order Date 2017-12-02 ©0:00:00
Ship Date 2017-12-04 ©0:00:00
Ship Mode Second Class
Customer ID JS-16030
Customer Name Joy Smith
Segment Consumer
Country United States
City Houston
State Texas
Postal Code 77036
Region Central
Product ID OFF-AP-10002534
Category Office Supplies
Sub-Category Appliances
Product Name 3.6 Cubic Foot Counter Height Office Refrigerator
Sales 294.62
Quantity 5
Discount 0.8
Profit -766.012

Name: 1995, dtype: object

Figure 17

For this particular order, a customer purchased 5 products
with total price at 294.62 and profit at lower than -766,
with 80% discount. It seems like a clearance. We should
be aware of the loss for each product we sell.

df.iloc[9649]

Row ID 9650
Order ID CA-2016-107104
Order Date 2016-11-26 ©0:00:00
Ship Date 2016-11-30 ©0:00:00
Ship Mode Standard Class
Customer ID MS-17365
Customer Name Maribeth Schnelling
Segment Consumer
Country United States
City Los Angeles
State California
Postal Code 90045
Region West
Product ID FUR-BO-10002213
Category Furniture
Sub-Category Bookcases
Product Name DMI Eclipse Executive Suite Bookcases
Sales 3406.66
Quantity 8
Discount 9.15
Profit 160.314

Name: 9649, dtype: object

Figure 18

For this purchase, it seems to me that the profit at around
4.7% is too small and the model determined that this
order is an anomaly.

df.iloc[9270]

Row ID 9271

Order ID US-2017-102183
Order Date 2017-08-21 ©0:00:00
Ship Date 2017-08-28 ©0:00:00
Ship Mode Standard Class
Customer ID PK-19075
Customer Name Pete Kriz
Segment Consumer
Country United States
City New York City
State New York
Postal Code 10035
Region East
Product ID OFF-BI-10001359
Category Office Supplies
Sub-Category Binders
Product Name GBC DocuBind TL3©© Electric Binding System
Sales 4305.55
Quantity 6
Discount 9.2
Profit 1453.12

Name: 9270, dtype: object

Figure 19

For the above order, a customer purchased 6 product at
4305 in total price, after 20% discount, we still get over
33% of the profit. We would love to have more of these
kind of anomalies.

Jupyter notebook for the above analysis can be found on
Github. Enjoy the rest of the week.

https://github.com/susanli2016/Machine-Learning-with-Python/blob/master/Anomaly_Detection_for_Dummies.ipynb
https://github.com/susanli2016/Machine-Learning-with-Python/blob/master/Anomaly_Detection_for_Dummies.ipynb

