

Deep Learning
and Computer Vision

with CNNs

By
Dan Howarth

and
Ajit Jaokar

Published by Data Science Central

https://www.datasciencecentral.com/

October 2019

– 3 –

Contents

Links to Notebooks _______________________________________ 5

Part 1: TensorFlow 2.0: Notebook 1: 'Hello World': Deep
Learning with TensorFlow 2.0 __________________________ 6

1. Introduction to the Notebooks _________________________ 6

1.1 What we will cover today __________________________ 6

2. Introduction to this Notebook _________________________ 8

2.1 Loading the Libraries ______________________________ 8

2.2 Introduction to our problem ________________________ 9

3. Deep Learning Conceptual Introduction ________________ 10

4. Data ___ 12

5. Model __ 18

6. Training the Model _________________________________ 23

7. Evaluation and Inference ____________________________ 28

7.1 Plotting our results _______________________________ 30

7.2 Making a prediction on a single image _______________ 33

8. Summary ___ 35

9. Exercise __ 35

Dan Howarth – Ajit Jaokar

– 4 –

Part 2: TensorFlow 2.0: Notebook 2: Computer Vision with
CNNs ___ 37

1. Introduction to this Notebook ________________________ 37

1.1 Load Libraries ___________________________________ 38

1.2 Loading our Data ________________________________ 39

2. Data: Introduction to Computer Vision _________________ 39

3. Model Building ____________________________________ 42

3.1 Convolutional Models ____________________________ 42

4. Training __ 47

4.1 Validation Sets, Batch Sizes and Learning Rates ________ 47

4.2 Saving Models __________________________________ 51

4.2.1 Saving and Loading Weights Only __________________ 53

4.2.2 Saving and Loading an entire model _______________ 54

5. Evaluation and Inference ____________________________ 54

6. Summary ___ 55

7. Exercises __ 56

– 5 –

Links to Notebooks

1. Notebook 1 – Deeplearning with TensorFlow

2. Notebook 2 – Computer Vision with CNNs

https://colab.research.google.com/drive/1YH3PXYx9SzDz7tsz_99H4U8aCeTPb_JV
https://colab.research.google.com/drive/1W51JKgZovi7QJvghGZp9FLCdJxE5SmU7#scrollTo=7uxgRHhoyKXR

– 6 –

Part 1

TensorFlow 2.0:
Notebook 1: 'Hello World'

Deep Learning

with TensorFlow 2.0

1. Introduction to the Notebooks

1.1 What we will cover today

• We will: provide an introduction to the core Deep Learning
Concepts; provide an introduction to TensorFlow 2.0; and,
provide an introduction to Computer Vision.

How will we go about it?
• We will have four sessions today. The first will provide a

basic introduction to Deep Learning and TensorFlow 2.0.
The second will go in to more detail about Computer Vision.

• Session Three will cover Transfer Learning, an important
technique for developing state of the art models. Session
Four will be an opportunity to put together everything you
have learned and develop your own models.

Deep Learning and Computer Vision with CNNs

– 7 –

How are the sessions structured?
• We will provide some introductory concepts and instruc-

tions at the start of session. You will then work through a
notebook that will cover the topics for that session. You can
do this individually or in conjunction with others around
you. We will answer questions and support throughout the
session. At the end of the session, we will summarize what we
have learnt.

• In addition, we are preparing some advanced topic note-
books that you can work through following today's session.
They will build on the initial notebooks and provide an in-
sight into the lower level TensorFlow API.

Can you set out all the notebooks?
• Session 1: 'Hello World' Deep Learning with TensorFlow 2.0

(this notebook)
• Session 2: Computer Vision with CNNs
• Session 3: Transfer Learning

And the Advanced Notebooks?
• Advanced 1: Model and Layers
• Advanced 2: Custom Training Loops
• Advanced 3: Data Pipelines and Augmentation
• Advanced 4: Tensors

What will you not cover?
• There are certain things that we can't cover today because of

time. We won't cover the math behind Deep Learning (calcu-
lus and Linear Algebra). There won't be detailed coverage of
the topics, although we will cover the main concepts and
provide some follow-up reading.

Dan Howarth – Ajit Jaokar

– 8 –

• And, we won't have exciting datasets. We will use benchmark
(but slightly dated) datasets that are available via the Tensor-
Flow 2.0 API. Our focus is on concepts and code, and this
means using datasets that are available to everyone and can
be trained on easily.

One final thing...
• The Session 1-3 tutorials are based on tutorials published on

the TensorFlow 2.0 website link. We have provided a lot
more material than is in those tutorials, and the advanced tu-
torials are new.

2. Introduction to this Notebook

What will we cover in this notebook?
• This notebook will introduce the core concepts of Deep

Learning. We will also start coding straightaway with Ten-
sorFlow 2.0.

• Let's start by loading the necessary libraries, and introducting
the problem we are going to work on.

2.1 Loading the Libraries
[] # we need to install tensorflow 2.0 on the

google cloud notebook we have opened
!pip install -q tensorflow==2.0.0-alpha0
 |████████████████████████████| 79.9MB 1.2MB/s
 |████████████████████████████| 419kB 51.8MB/s
 |████████████████████████████| 3.0MB 42.3MB/s

[] # imports future functionality that might

modify modules otherwise used and make them
incompatible in the future.

Deep Learning and Computer Vision with CNNs

– 9 –

We are future proofing by importing modules
that modify or replace existing modules that we
may have used now
from __future__ import absolute_import,
division, print_function, unicode_literals

[] # import tensorflow and tf.keras
import tensorflow as tf
from tensorflow import keras

[] # import helper libraries
import numpy as np
import matplotlib.pyplot as plt

[] # let's print out the version we are using
print(tf.__version__)

2.0.0-alpha

2.2 Introduction to our problem

What problem are we trying to solve?
• We will use the Fashion MNIST dataset. This is a dataset of

images of clothes (you will see what the data looks like soon).
The task is to train a model on this dataset so that when the
model sees a new image of clothes, it classifies it correctly.

• The dataset is quite large – 60,000 images to train on and
10,000 to test on. However, the images are small and there-
fore its possible for us to train on easily.

Dan Howarth – Ajit Jaokar

– 10 –

3. Deep Learning Conceptual Introduction

What are the main concepts in Deep Learning?
• The diagram above shows what I think are the core concepts

of Deep Learning (in a supervised learning context). We will
assume we are using a training set where we know the
matching input and output values.

• We have a dataset that is an input to the deep learning mod-
el. We need to define how we will process input data, if at all.

• We will define how we build our model. These user-defined
concepts are our hyperparameters (things that the deep learn-
ing practitioner sets). They create the total number of parame-
ters that will be trained to map our input data to output values.
Parameters are things learned by the model – they represent
the learning in deep learning. In the case of deep learning, the
parameters and weights and biases of the model.

• We will then use our model to train on the data. We will pass
our data through the model in a forward pass; this will pro-

Deep Learning and Computer Vision with CNNs

– 11 –

vide an output value by performing mathematical operations
at each of stage of our model.

• We will assess the performance of our model by comparing
this output value with the actual value to generate a loss value.
The loss will represent the difference between the model's per-
formance and the actual dataset. We will also measure the per-
formance with other metrics

• We will then perform a backward pass, where we use the loss
value to update our parameters using an optimizer. This opti-
mizer performs a version of backpropagation and the parame-
ters, so that their contribution to the overall loss is identified
and corrected to some extent during each training loop.

• This training loop is repeated until the parameters are suffi-
ciently updated that they are able to accurately map the input
data to the output values.

Is that it?
• There are other facets to deep learning and it’s hard to keep

things at a high level and not delve in to the details.
• Throughout the notebooks, we will update the chart above

with more detail as we learn it. This should hopefully start to
build knowledge around the key concepts, and let you see
how new things fit in to an overall framework.

Does TensorFlow 2.0 cover all these areas?
• Yes. Once we have learnt a new piece of code, we will update

the chart above to see where that bit of code fits. Again,
hopefully this will help you learn how the code implements
the concepts more easily.

TODO: Update chart. Add in additional ML words

Dan Howarth – Ajit Jaokar

– 12 –

4. Data

What do we need to think about with regard to our data?
• We need to understand what our input and output data is.

Given the problem we are trying to solve, does the data help
us?

• For this notebook, we are classifying images. This means that
our input data are a series of images and our output data are
the classes we want to use to classify images.

• We are using a well-known dataset so can expect the data to
be complete and not corrupted, but you might need to check
this when you are using different datasets.

What about processing inputs, the first conceptual block above?
• Our aim is to ensure the data is a suitable state to model, and

that the data is loaded into the training loop in a way that
maximises learning.

• There are a few things we might do to ensure that our data is
processed correctly. For now, we will begin by understanding
the size and shape of the data, and by rescaling it so that it
can be modelled effectively. We will also split our data into
training and test sets.

• Let's start by going through some code to load the data.

[] # using a preloaded dataset

fashion_mnist = keras.datasets.fashion_mnist
[] # load_data() is used to load a keras_dataset

it returns two sets of tuples that provides
data set arrays and labels, one for training
and one for testing data
(train_images, train_labels), (test_images,
test_labels) = fashion_mnist.load_data()

Downloading data from https://storage.googleapis.com/tensorflow/tf-
keras-datasets/train-labels-idx1-ubyte.gz

Deep Learning and Computer Vision with CNNs

– 13 –

32768/29515 [=================================] - 0s 0us/step
Downloading data from https://storage.googleapis.com/tensorflow/tf-
keras-datasets/train-images-idx3-ubyte.gz
26427392/26421880 [==============================] - 0s 0us/step
Downloading data from https://storage.googleapis.com/tensorflow/tf-
keras-datasets/t10k-labels-idx1-ubyte.gz
8192/5148 [===] - 0s
0us/step
Downloading data from https://storage.googleapis.com/tensorflow/tf-
keras-datasets/t10k-images-idx3-ubyte.gz
4423680/4422102 [==============================] - 0s 0us/step

What did we just do and why?
• We loaded and split our data into training and test sets. Each

set has our images and a corresponding array of labels.
• In machine learning, it is good practice to have both a train-

ing and a testing set.
• We will train our model on the training set, meaning we will

compare the predicts our model makes against known results
to update the model parameters. This will help improve the
model.

• At the end of training, we will use our model to predict re-
sults on our test data. This is input data that the model has
not been trained on, and the corresponding output labels
that the model doesn't see. We will then compare the results
of our model with the actual labels.

• The ability of the model to predict accurately using unseen da-
ta is the benchmark that determines how effective the model.

What are our inputs and outputs?
• In this instance, we returned four numpy arrays:
 train_images
 train_labels
 test_images
 test_labels

Dan Howarth – Ajit Jaokar

– 14 –

• Now that we have loaded and split our data, we can explore
the size and shape of the dataset, and preprocess it as required.

TODO: Diagram showing training and testing split

[] # lets start by looking at the size of the

train and test sets
lets get the shape
train_images.shape

(60000, 28, 28)
[] # get the same info for our test set

test_images.shape
(10000, 28, 28)

What does this show?
• We have 60,000 images in our train set, and 10000 images in

our test set. It is common practice to have significantly more
training than testing images.

• We can also see that the shape of the data for each image is
28 x 28. This is 28 rows by 28 columns. Compared to other
image data you might model in the future, this is small and is
why this is a good dataset for a tutorial.

• If the training and testing image sizes were different, we
would need to get them to the same size to pass in to the
model.

• When we create our model we will need to pass the shape in-
formation to the model's first layer.

[] ## let's look at our training labels

we can see that there are 10 labels
np.unique(train_labels)

array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9], dtype=uint8)
[] est labels correspond to the size of the train

and test sets
len(train_labels)

Deep Learning and Computer Vision with CNNs

– 15 –

and that the train and test labels correspond
to the size of the train and test sets
len(train_labels)

60000
[] test_labels.shape
(10000,)
[] ## we can see that our labels are just numbers.

We need to match them to description of the
image
create a list of the labels
class_names = ['T-shirt/top', 'Trouser',
'Pullover', 'Dress', 'Coat', 'Sandal', 'Shirt',
'Sneaker', 'Bag', 'Ankle boot']

We also need to preprocess the images by rescaling them. Why?
• As you will see below, all of our image arrays are between the

values of 0 and 255, with each value corresponding to a col-
our. We need to rescale them so that they are all between 0
and 1.

• The high level reason for this is that this helps with training
the model. The model will update its parameters more effec-
tively if all the input values are on the same scale, and in a
defined range between 0 and 1.

[] ## lets look at an image and use matplotlib to

plot the array values
converts the numpy array to an image and
displays it
plt.imshow(train_images[0])
displays the image values
plt.colorbar()
displays the chart only - comment out to see
what info it omits
plt.show()

Dan Howarth – Ajit Jaokar

– 16 –

[] # lets preprocess
train_images = train_images / 255.0
we need to do the same to the test and
training set
test_images = test_images / 255.0

[] # lets look again at the pixel range
plt.imshow(train_images[0])
plt.colorbar()
plt.show()

[] # now we have the class names, lets look at a
selection of the images
sets the size of the overall display for our
images
plt.figure(figsize=(10,10))
loops through the first 25 images
for i in range (25):
sets a location for each of the images
plt.subplot(5,5,i+1)
removes the axis lables
plt.xticks([])

Deep Learning and Computer Vision with CNNs

– 17 –

plt.yticks([])
plt.grid(False)
displays the image
plt.imshow(train_images[i], cmap=plt.cm.binary)
plots the label, mapping the label to our
list of clothing items
plt.xlabel(class_names[train_labels[i]])
displays the image and label
plt.show()

So, what did we cover in this section?
• We looked at understanding and processing our data.
• Specifically, we looked at data size and shape, rescaling our

data, and splitting our data into training and test sets.

How does it add to our existing knowledge?
• This starts to add to the high level concepts we introduced in

section 3.

Dan Howarth – Ajit Jaokar

– 18 –

What else can I learn to improve my knowledge?
• We touch briefly on how each array value represents a colour

value. We will look at this in more detail in the next notebook.
• There is more to learn on splitting training and tests. In later

notebooks, we will add a validation set.

5. Model

What is a deep learning model?
• The image above (credit) sets out the main components of a

deep learning model:
 an input layer that takes our data
 an output layer that returns a value
 hidden layers that generate the parameters that will learn

the mapping between inputs and outputs. * The hidden
layers provide the depth to the model.

 the arrows, which represent the connections between the
layers. Each arrow shows how a value from one layer will
be passed to another. As the value is passed from one

Deep Learning and Computer Vision with CNNs

– 19 –

layer to another, it is multiplied by a weight, which is a
learned parameter, to return a different value.

 nodes in each of the layers that represent the activation
functions within the model. An activation function is
where the product of all the inputs and weights into the
node are summed, along with a bias term (biases are also a
learned parameter) and where an output value is returned
dependent on the sort of activation function we choose.

• We configure the model by setting the number of layers and
defining what each layers does prior to training the model on
our data.

How do we build Deep Learning Models?
• In order to build a deep learning model, we can define the

following hyperparameters: the number of layers, the size of
layer, the type of layer, and the type of activation function in
each layer.

So layers are important?
• The building block of a neural network is the layer. Layers

make up models as we can see from the diagram above.
• Layers extract representations from the data fed into them

(taken from 'first CNN tutorial'). They contain the parame-
ters (weights and biases) that our model learns to make pre-
dictions.

• Given that the layer parameters are learned during train, our
task in building a deep learning model is to ensure there is
sufficient capacity in the model to learn the representations
required to map between the input and output data.

• This capacity is provided by the number of layers and the
size of each layer (the number of parameters in each layer).

Dan Howarth – Ajit Jaokar

– 20 –

• The larger the capacity, the more representations we can
have. But we need to trade off the number of parameters with
the dangers of overfitting, or developing a model that is too
specific to the training data and doesn't perform well on un-
seen data. (We will look at overfitting later)

What about layer type?
• Layers perform a set of mathematical operations on the data.

The sort of operations change depending on what represen-
tations we want and define with the code. We will use dense,
or fully connected, layers in this tutorial, and convolutional
layers in the following tutorials.

• These different layers are best suited to different tasks within
the mode, as we will see in these notebooks.

So it’s just layers?
• No, we also define activation functions. These take input val-

ues (which will be the product of the output values of the
previous layer and the weight parameter), sum them together
and produce an output value. The value returned will depend
on the type of activation function selected.

• The output layer will usually have a different activation func-
tion to the rest of the model, one that will be based on the re-
quired output of the model.

That's a lot to take in...
• It is. But these tutorials will set out some good guidelines. We

will learn that:
 Convolutional layers are good for extracting representa-

tions from image data, while dense layers are better suit-
ed for classifying those representation by mapping them
to the outputs.

Deep Learning and Computer Vision with CNNs

– 21 –

 An effective activation function for the dense hidden
layers is Relu.

 An effective activation function for the output layer is
Softmax.

How do we build a model in TensorFlow 2.0?
• There are a number of ways to build models in TensorFlow

2.0.
• Most straightforward is using the sequential API. We will use

this to develop our models.
• We can also use the functional API and a technique known

as sub-classing. We will explore these in the advanced note-
books as they offer benefits over the sequential API if you
want to build certain sorts of model.

• We will develop out first model below. As you will see – and
this holds true for a lot of deep learning – the code required
to implement complex ideas that require a lot of explanation
is pretty small.

[] # here we instantiate a Sequential model

note that are passing in the layers as a list
model = keras.Sequential([

the input / flatten layer changes the
input shape to a 1D array of 28x28 size
keras.layers.Flatten(input_shape=(28,28)),
here we define the hidden / Dense layer.
We specify the number of nodes - 128 - and
the activatin function - relu
keras.layers.Dense(128, activation='relu'),
we define the output / Dense layer with 10
nodes for 10 classes, and a softmax to
return an array of 10 probability scores
that sum to 1
keras.layers.Dense(10, activation='softmax')
])

[] # ability to print summary

Dan Howarth – Ajit Jaokar

– 22 –

model.summary()
Model: "sequential"

Layer (type) Output Shape Param #
==
flatten (Flatten) (None, 784) 0

dense (Dense) (None, 128) 100480

dense_1 (Dense) (None, 10) 1290
==
Total params: 101,770
Trainable params: 101,770
Non-trainable params: 0

How do we arrive at the number of parameters?
• Our first layer has 784 output parameters (28 x 28). Each of

those outputs get passed to each of the nodes in the next lay-
er (784 x 128). We also have a bias term for each node (128)
giving us 100,480 learnable parameters.

It’s worth reinforcing that, in a dense layer, every output value gets
passed to every input node in the next layer. The thing that is differ-
ent is the weight applied to that value, which will be different – or
has the potential to be different given that this is a learned parame-
ter. Therefore, in this instance, each node in the hidden layer will
receive 784 values from the previous layer, which will have been
modified by a learned weight parameter. To this, we will also add
one bias term, making 785 learnable parameters.
• Take the time to be comfortable with howe arrived at 1290

parameters for the output layer.

So, what did we cover in this section?
• The building blocks of deep learning models: layers (size,

shape, type) and activation functions.
• How to build a model using the keras sequential API, specifi-

cally using a list

Deep Learning and Computer Vision with CNNs

– 23 –

How does it add to our existing knowledge?
• This starts to add to the high level concepts we introduced in

section 3.

What else can I learn to improve my knowledge?
• Advanced Notebook 2: Models and Layers covers model

building with the functional API and using subclassing. It al-
so demonstrates the output of different layer types and acti-
vations functions.

• We will cover other ways of creating a sequential model in
the following notebooks.

6. Training the Model

How do we train a model?
• As per the chart in section 3, we training by making a for-

ward pass and a backward pass.
• A forward pass means passing the inputs through the model

and performing mathematical operations on the data as we
defined in the model section to make predictions.

• A backward pass means updating the weights and biases of
our model based on the results of the predictions.

• To do this using TensorFlow 2.0, we will use the keras API.
We first pass a .compile() method to our model, and then a
.fit() method to our model.

What is compiling?
• Compiling means that we assign certain variables to our

model that are important in the training process:
 a loss function, which measures the distance between

our predicted and actual classes.

Dan Howarth – Ajit Jaokar

– 24 –

 an optimizer, which updates the weights based on the
backpropagation algorithm

 a metric to provide an appropriate additional measure of
training performance. and an accuracy

• This is not an exhaustive list of what we variables we can pass
to the .compile() method. We will pass additional variables
in the following notebooks.

[] # we can see that this is a relatively easy

thing to code
we pass in the optimiser that we wish to use
model.compile(optimizer='adam',

specify the loss function
loss='sparse_categorical_crossentropy',
and we specify our metrics
metrics=['accuracy'])

What is fitting?
• The .fit() method governs the training process. To fit our

model to the data is to pass the data through the model and
see how well it predicts what we want it to predict, and then
to update the model based on these results – that is, .fit() im-
plements the forward and backward pass based on the model
and training variables we have defined.

• In the .fit() method, we get to define the number of epochs
(the number of times we go through the data), and a number
of other variables that we will cover in following notebooks.

[] # we just pass the fit method to the model,

along with training data and corresponding
output data
We also specify the number of epochs
history = model.fit(train_images,train_labels,
epochs=5)

Epoch 1/5
60000/60000 [==============================] - 4s 74us/sample -
loss: 0.4958 - accuracy: 0.8264

Deep Learning and Computer Vision with CNNs

– 25 –

Epoch 2/5
60000/60000 [==============================] - 4s 72us/sample -
loss: 0.3732 - accuracy: 0.8657
Epoch 3/5
60000/60000 [==============================] - 4s 72us/sample -
loss: 0.3328 - accuracy: 0.8777
Epoch 4/5
60000/60000 [==============================] - 4s 72us/sample -
loss: 0.3091 - accuracy: 0.8866
Epoch 5/5
60000/60000 [==============================] - 4s 73us/sample -
loss: 0.2920 - accuracy: 0.8924

What do the different parts of the training print out mean?
• The left hand side shows the number of epochs we have per-

formed.
• For each epoch, we can see how much of the training data we

have used (it’s now 60000 / 60000 because training is over,
but this figure changes as the data is loaded and passed
through the model.)

• On the right hand side of the data, we can see: the time it has
taken to complete the epoch; the loss for that epoch effect on
the accuracy for that epoch.

How did we do?
• On the face of it, 89% accuracy seems pretty good. Given this

is a publicly available dataset, then we can search to see how
others have done on it. We will also apply different models to
this dataset to see if we can improve our accuracy.

• We can see that our loss steadily reduced as the epochs in-
creased, and the accuracy improved. This is a good sign and
we would probably see further improvement if we ran the
training for more epochs.

• The keras .fit() method returns a history object, which rec-
ords the values of the training. We will explore this now and
use it to easily plot these values.

Dan Howarth – Ajit Jaokar

– 26 –

[] # model.fit returns a history object, which

contains a history dictionary about everything
that happened during training
history_dict = history.history
history_dict.keys()

dict_keys(['loss', 'accuracy'])

[] # for example we can access the loss like this

history_dict['loss']
[0.49576409851312636,
0.37323990731636686,
0.33276325614054997,
0.3090944565196832,
0.2919588043630123]

[] ## we can pass this to a pandas dataframe

we need to import pandas
import pandas as pd
pass history data to dataframe object
history_df = pd.DataFrame(history_dict)
and display it
history_df

loss accuracy
0 0.495764 0.826450
1 0.373240 0.865667
2 0.332763 0.877717
3 0.309094 0.886600
4 0.291959 0.892450

[] # we can use plot functionality of pandas to

quickly plot our results
history_df.plot(figsize=(8,5))
tailor our plot. Show the grid
plt.grid(True)
set the vertical range to [0 -1]
plt.gca().set_ylim(0,1)
display plot
plt.show()

Deep Learning and Computer Vision with CNNs

– 27 –

What does this show?
• The chart shows the improvement in loss and accuracy val-

ues over the epochs.
• If we had used a validation set, we would be able to compare

the values from the validation and training sets at each
epoch, which would tell us a little more about how the model
will be able to generalize to unseen data (we will look at this
in next notebook).

So, what did we cover in this section?
• That we need to perform a forward and backward pass to do

training in deep learning.
• That to do this in TensorFlow 2.0 is fairly easy using the

keras API. We simply:
 pass a .compile() method to our model to define our

loss, optimizer and metric variables
 and pass the .fit() method to our model in order to set

the number of training loops and govern other related
behavior of the training process.

Dan Howarth – Ajit Jaokar

– 28 –

How does it add to our existing knowledge?
• This starts to add to the high level concepts we introduced in

section 3.

What else can I learn to improve my knowledge?
• We will provide more detail about optimizers, loss functions

and metrics in the following notebooks.
• We will pass additional arguments to the .compile() and .fit()

methods in the following notebooks. For example, we can
add a validation set to our training loop, and we can record
more information about our model performance.

• Advanced Notebook 3: Training covers training using cus-
tom training loops in TensorFlow 2.0.

7. Evaluation and Inference

How do we know how we well the model is performing?
• We have seen how the model performs on the training set,

but we need to test it on unseen data to see how well the
model really is peforming.

• To do this we can call the .evaluate() method on the model
and pass in our test set. This returns the loss and scoring
metric that we passed in to the .compile() method (in this
case, accuracy).

• We can also use the .predict() method to make predictions
on the test image. This method will return (in this instance)
an array of 10 values, each representing a class label and the
probability the model believes the passed in image is one of
the 10 classes.

Deep Learning and Computer Vision with CNNs

– 29 –

[] # use the evaluate method

it returns two values, the loss and accuracy
from our model
test_loss, test_acc = model.evaluate(test_images,
test_labels)

10000/10000 [==============================] - 0s
38us/sample - loss: 0.3425 - accuracy: 0.8765

[] # here we can print out the accuracy and loss

print('\nTest accuracy:', test_acc)
print('\nTest loss:', test_loss)

Test accuracy: 0.8765
Test loss: 0.34245488489866255

[] # use our model to make predictions

predictions = model.predict(test_images)

What has been returned?
• a prediction for each image. The prediction actually is a value

against each of the 10 labels for each image. This value is the
probability the model has given that one of the 10 labels is
correct for the unseen image.

[] # we can view the predictions for just one of

the predictions
predictions[0]

array([1.2182815e-06, 9.0716959e-08, 3.3988119e-08, 1.8084372e-09,
 3.9402700e-08, 2.1158228e-02, 2.7726156e-07, 1.4800583e-02,
 2.4397614e-06, 9.6403706e-01], dtype=float32)

What is the predicted label?
• The one with the highest probability. We can retrieve this us-

ing the np.argmax function

[] # get highest value of the predictions

np.argmax(predictions[0])
9

Dan Howarth – Ajit Jaokar

– 30 –

How can we compare this with the actual label?

[] # we can use class_names to see what was the

9th label of the classes
class_names[np.argmax(predictions[0])]

'Ankle boot'
[] # and the get our test_label

test_labels[0] == class_names[np.argmax
(predictions[0])]

False

7.1 Plotting our results

How can we display our results?
• We can use matplotlib to display the results of our model.
• We will plot an image, what the predicted label is, and

whether this was correct. We will also plot a bar chart show-
ing the probability assigned by the model to the different
classes. We start by defining some helper functions.

[] # define a function that plots the predicted

image
def plot_image(i, predictions_array,
true_label, img):

assign variable names to our parameters
predictions_array, true_label, img =
predictions_array[i], true_label[i], img[i]
remove grid and axis values
plt.grid(False)
plt.xticks([])
plt.yticks([])
display images
plt.imshow(img, cmap=plt.cm.binary)
return predicted label
predicted_label = np.argmax(predictions_array)
and assign it a colour based on whether it
was correct
if predicted_label == true_label:
color = 'blue'

Deep Learning and Computer Vision with CNNs

– 31 –

else:
color = 'red'
define label format
plt.xlabel("{}{:2.0f}%
({})".format(class_names[predicted_label],
100*np.max(predictions_array),
class_names[true_label],
color=color))

[] # plot a function to graph the probabilities
def plot_value_array(i, predictions_array,
true_label):
assign variable names to our parameters
predictions_array, true_label =
predictions_array[i], true_label[i]
remove grid and axis values
plt.grid(False)
plt.xticks([])
plt.yticks([])
plot a bar chart
thisplot = plt.bar(range(10),
predictions_array, color='#777777')
reduce y axis to between 0,1 values
plt.ylim([0,1])
create prediction
predicted_label = np.argmax(predictions_array)
set plot colour
thisplot[predicted_label].set_color('red')
thisplot[true_label].set_color('blue')

Now let's use our functions to plot one image and a series of imag-
es together

[] # look at the 0 image

i = 0
set size of figure for the plot
plt.figure(figsize=(6,3))
display image one side of the figure
plt.subplot(1,2,1)
plot_image(i, predictions, test_labels,
test_images)
display chart on the other side of the figure
plt.subplot(1,2,2)
plot_value_array(i, predictions, test_labels)

Dan Howarth – Ajit Jaokar

– 32 –

show plot
plt.show

<function matplotlib.pyplot.show>
[] # look at the 12 image

i = 12
as above
plt.figure(figsize=(6,3))
as above
plt.subplot(1,2,1)
plot_image(i, predictions, test_labels,
test_images)
as above
plt.subplot(1,2,2)
plot_value_array(i, predictions, test_labels)
as above
plt.show

<function matplotlib.pyplot.show>

We can use this functionality to plot more than one image
[] # Plot the first X test images, their predicted

labels, and the true labels.
Color correct predictions in blue and
incorrect predictions in red.
num_rows = 5
num_cols = 3
num_images = num_rows*num_cols
plt.figure(figsize=(2*2*num_cols, 2*num_rows))
for i in range(num_images):

plt.subplot(num_rows, 2*num_cols, 2*i+1)
plot_image(i, predictions, test_labels,
test_images)
plt.subplot(num_rows, 2*num_cols, 2*i+2)
plot_value_array(i, predictions, test_labels)

plt.show()

Deep Learning and Computer Vision with CNNs

– 33 –

7.2 Making a prediction on a single image

Didn't we do this earlier?
• No. We made predictions on the entire test set and then se-

lected one of those predictions to view. Here we just want to
make a prediction on one of the images.

[] # get an image from the test_dataset

img = test_images[0]

We need to talk about batches...
• We haven't encountered batch sizes yet. This a value that

represents the number of images (or other data type if we
aren't doing image classification) that are passed to the mod-
el.

• In training, we pass a batch size and this represents how
many images the model will make predictions on before re-
cording the loss and updating the model. In the example
above, this value defualted to the entire dataset (60000).

• When making predictions with test (or other) images,
tf.keras needs to make predictions on a batch. This means, it
needs to understand how many images are about to passed to
it. In practical terms, this means we need to add a batch di-
mension to the shape of our data.

• Getting the data into the right shape for modelling and pre-
dicting can be a bit tricky sometimes. The Advanced Note-
book: Tensors covers this in more detail.

[] # lets looks at the shape of image before we

add a batch dimension to it
print(img.shape)

[] # add batch dimension by adding a dimension to
the image shape
img = (np.expand_dims(img,0))

Dan Howarth – Ajit Jaokar

– 34 –

print(img.shape)
[] # make prediction

predictions_single = model.predict(img)
[] # show the array

predictions_single
[] # again we can use argmax

np.argmax(predictions_single[0])
[] # and we can plot the result

plot_value_array(0, predictions_single,
test_labels)

_ = plt.xticks(range(10), class_names,
rotation=45)

So, what did we cover in this section?
• The .evaluate() and .predict() methods for understanding

how our models perform on unseen data.
• Plotting our results so that we can see how the model did
• Predicting the class of a single image by passing in a batch

dimension to the image shape.

How does it add to our existing knowledge?
• This starts to add to the high level concepts we introduced in

section 3.

What else can I learn to improve my knowledge?
• We will cover batches further in notebook 2.
• We will use the .evaluate() and .predict() methods in later

notebooks too.

Deep Learning and Computer Vision with CNNs

– 35 –

8. Summary

What have we learnt?
• We can see from the chart above, quite a lot.
• We have introduced core Deep Learning concepts, explained

them in high level terms, and put them in to practice by writ-
ing code.

• If you feel like this was a lot, don't worry because it was! It is
a lot to take in. Let's end with the opportunity to build and
train your own model!

9. Exercise

• The best way to learn code is to write it out for yourself. Take
the opportunity to reinforce what you have learnt by adding
code cells below and doing the following:

Dan Howarth – Ajit Jaokar

– 36 –

Fit the model
• Change the number of epochs when you .fit() the model

again and see how performance changes.

Build a new model
• Create a new model and:
 add an additional layer; and/or:
 add more nodes to the hidden layer(s)

• You will need to recompile the model, which means adding
the .compile() method to the new model and passing in the
arguments we set out above.

Good luck!

[]

– 37 –

Part 2

TensorFlow 2.0: Notebook 2:

Computer Vision with CNNs

1. Introduction to this Notebook

• In the previous notebook (see here) we introduced deep
learning concepts and the TensorFlow 2.0 code to implement
these concepts.

• In this notebook, we will use another dataset – the mnist da-
taset – to build on our knowledge. In particular, we will:
 introduce Computer Vision
 introduce convolutional layers into our models
 introduce the concept of regularisation
 introduce the validation set in training our model
 introduce how to save and reuse our model

• The image below sets out how this fits within our deep learn-
ing framework and exising knowledge

https://www.datasciencecentral.com/profiles/blogs/free-book-getting-started-with-tensorflow-2-0

Dan Howarth – Ajit Jaokar

– 38 –

1.1 Load Libraries
[] # we need to install tensorflow 2.0 on the

google cloud notebook we have opened
!pip install -q tensorflow==2.0.0-alpha0

[] ## importing as per previous notebook
We are future proofing by importing modules
that modify or replace exising modules that we
may have used now
from __future__ import absolute_import,
division, print_function, unicode_literals

import tensorflow and tf.keras
import tensorflow as tf
from tensorflow import keras

import helper libraries
import numpy as np
import matplotlib.pyplot as plt

let's print out the version we are using
print(tf.__version__)

[] ## some additional imports for this notebook
from tensorflow.keras import datasets, layers,
models

Introduction to Azure Machine Learning: In a Weekend – Appendix

– 39 –

1.2 Loading our Data
[] # split our data

(train_images, train_labels), (test_images,
test_labels) = datasets.mnist.load_data()

[] # lets have a quick look at our data
plt.imshow(train_images[0])

[] # and at our labels
np.unique(train_labels)

What is the problem we are trying to solve?
• As we can see, we have images of digits from 0-9, and labels

from 0-9. We are trying to build a model that correctly classi-
fies the digits in the image.

2. Data: Introduction to Computer Vision

What is Computer Vision?
• Computer Vision is the field of how computers can gain un-

derstanding from images and videos. It includes tasks such as
image recognition and object detection. Deep Learning is
seen as the state of the art technology for solving computer
vision problems.

Why is Deep Learning particularly good at it?
• The layers within a deep learning model are good for identi-

fying and modelling the different aspects of an image (such
as edges, parts of faces, and other important parts of an im-
age). The meaning that each layer extracts can be built up to
form representations for lots of different image types that
can then be classified.

• In particular, convolutional layers are good at extracting rep-
resentation from image data and they form the basis of deep

Dan Howarth – Ajit Jaokar

– 40 –

learning models for image recognition. The ability to build
larger and larger models that consist of these convolutional
layers, and to train them with more and more data (thanks to
increasing compute power), led to a leap forward in state of
the art for computer vision.

How does it work?
• Every image is represented by an array of numbers. You may

have noticed this when we looked at the shape of the images
we were processing. This shape represents the number of
pixels in an image, and each pixel has a numerical value. This
numerical value maps to a colour value that is displayed. It is
also what we use as input values to our model.

[] ## lets start by looking at the shape of an

image

we can see that it is 28 x 28 pixels
train_images[0].shape

[] ## we can also see that these pixels are
represented in an array of numbers
train_images[0]

[] # we need plt.imshow() - or another library
such as OpenCV or PIL - to output an image from
this array
plt.imshow(train_images[0])

What do the array values mean?
• Each value leads to a colour for the pixel that the array value

represents. Actualy what colour is displayed depends some-
what on the number of colour channels the array has. We
have only one channel present in this dataset. This is gray-
scale channel. Typically, we will see three channels for colour
images, with each channel representing one of Red, Green,

Introduction to Azure Machine Learning: In a Weekend – Appendix

– 41 –

Blue. A value in one channel will display a different colour
than a value in another channel.

• See the tutorials here for more detail on how the values with-
in a channel map to a colour.

• Its worth noting here that there are typically 256 values
(0-255) available in each channel, making a total combina-
tion of c. 16.8m colours available per a three channel image!

• As per the previous notebook, we will rescale the arrays to
between 0 and 1. This needs to happen in order to maximise
the success of the training.

What about images of different shapes?
• The size of an image can and does vary. In this case, we have

small image of 28 x 28 pixels (or 28, 28, 1) given we have one
channel. This was the same for the previous dataset and it
makes it easy to train models.

• Outside of introductory tutorials, it is likely that you will see
much larger images, meaning many more pixels and there-
fore larger arrays to train and learn representations on. This
will make the models larger and training more involved.

• One final thing to note is that Deep Learning models always
require an array of the same size to be passed to it. This
means that images which differ in size need to be prepro-
cessed so that they are the same size before being passed to
the model.

[] # we now need to reshape the data to add a

colour channel
train_images = train_images.reshape((60000, 28,
28, 1))
test_images = test_images.reshape((10000, 28,
28, 1))

[] # we can view the new shape

Dan Howarth – Ajit Jaokar

– 42 –

train_images.shape
[] # and normalize the data

train_images, test_images = train_images /
255.0, test_images / 255.0

So, what did we cover in this section?
• An introduction to computer vision, including how images

are represented by arrays.
• How the shape of an array matters for our model and the

preprocessing required prior to feeding the arrays to our
model.

How does it add to our existing knowledge?
• This builds on the deep learning concepts from notebook 2.

What else can I learn to improve my knowledge?
• Images have to be fed into the model in the same shape each

time. This requires pre-processing.
• Prior to feed images into a model, we can also change the

image in certain ways to add noise and variety to the training
data. This should mean that the model is more robust and
better at generalizing to unseen data. We will look at both of
these in the Advanced: Data Augmentation notebook.

3. Model Building

3.1 Convolutional Models

What did we do in the previous notebook?
• In Notebook 1, we looked at the main elements of deep

learning models: input and output layers, hidden layers –

Introduction to Azure Machine Learning: In a Weekend – Appendix

– 43 –

which contain the learned parameters of the model, and acti-
vation functions.

• We also looked briefly at the different sort of hidden layers
available to us, such as dense and convolutional layers.

• And, we built model that took an image as an input and flat-
tened it to a 1D array.

How do we build a convolutional neural network?
• A convolutional neural network (CNN) contains both dense

and convolutional layers. The convolutional layers form the
base of the model and extracts representation from the im-
age. The dense layers form the head of the model and takes
this represetation and maps it to our output classes

• A convolutional layer takes our image as it (subject to any
preprocessing to get it in a standard shape or augmented to
add noise and variety to the dataset) – that is, we do not need
to flatten the image into a 1D array. We flatten the array after
our final convolutional layer and prior to passing our input
to the dense layer.

Why use a convolutional layer?
• A convolution better encodes the key information in an im-

age than other types of layers. Their application to computer
vision resulted in a marked improvement in what was state
of the art. That's why we use them.

What is a convolutional layer?
• Simply, a convolutional layer is a layer that performs a math-

ematical operations known as convolutional on the input da-
ta. In contrast, a dense layer performs matrix multiplication
on its inputs.

Dan Howarth – Ajit Jaokar

– 44 –

• Each convolutional layer has a user-defined set of filters (or
windows) that we pass over the image. We define the number
and size of filters, although they are typically a 3 x 3 matrix.

• This filter contains a set of weights that will be learned by the
model and which are used to multiply the input values and re-
turn a new value in the layer's output. It’s these filters that con-
tain the learning of the convolutional layers of the model,
whose weights will be updated as we train so that they are more
and more able to extract key information from the image.

• The filter is applied to all the image channels as it passes over
each pixel location such that it will look at a specific row and
column index position and all the array values available at
that index:

(row,column,:)
• We won't go in to how convolutional works here, but see the

cell at the end of this section for links that do explain how it
works.

So what does a convolutional layer return?
• A convolutional layer returns an output array of the same

(row, column) shape as the input array, but with one channel
only.

• It tends to be the case that convolutional layer is paired with
a pooling layer. We won't cover these in any detail, but its
sufficient to know that a pooling layer tries to extract the key
information from the convolutional layer while typically
halving its size.

• The diagram below set this out.

Introduction to Azure Machine Learning: In a Weekend – Appendix

– 45 –

[] ## lets build our convolutional base

we use the Sequential API but use .add()
rather than passing the layers in as a list

build model using sequential
model = models.Sequential()

[] # start adding layers. input shape has been
defined, including the channel value we added
via reshape earlier
model.add(layers.Conv2D(32, (3, 3),
activation='relu', input_shape=(28, 28, 1)))
max pooling layers
model.add(layers.MaxPooling2D((2,2)))
this is then repeated to build
model.add(layers.Conv2D(64, (3, 3),
activation='relu'))
max pooling layers
model.add(layers.MaxPooling2D((2,2)))
additional convolutional layer
model.add(layers.Conv2D(64, (3, 3),
activation='relu'))

[] # print model
model.summary()

Dan Howarth – Ajit Jaokar

– 46 –

How do we get to the parameter count?
• The parameters of a convolutional layer are defined by:

((filter height ×filter width) + bias term)
×number of filters

• The bias term is a value of 1 so the number of parameters for
the first convolutional layer is:

((3×3)+1) ×32=320

What about the classification layer?
• As we said above, a convolutional based needs a classification

layer to take the information extracted from an image and
map it to output classes.

• We take the final output shape of the Convolutional layer
and flatten it to a 1D array. We then define our output layer,
which in this instance is a layer of 10 with a softmax activa-
tion function. We have also added an additional layer to pro-
vide additional parameters between the flattened and output
layer.

[] # flatten

model.add(layers.Flatten())
add a fully connected layer
model.add(layers.Dense(64, activation='relu'))
add the output layer, a fully connected layer
with a softmax activation
model.add(layers.Dense(10, activation='softmax'))

[] # complete model summary
model.summary()

So, what did we cover in this section?
• We looked at convolutional models and how they are con-

structed
• We looked at what convolutional layers are

Introduction to Azure Machine Learning: In a Weekend – Appendix

– 47 –

• We built our model using convolutional and dense layers,
using the Sequential API but by using model.add(layers) ra-
ther than passing the layers to the model as a list.

How does it add to our existing knowledge?
• We built on our understanding of how models are built in

deep learning.
• We built on our understanding of the Sequential API.

What else can I learn to improve my knowledge?
• Understand more about convolution:
• We will cover this in more detail in the Advanced Notebook

3: Model and Layers.
• There are a lot of good articles out there too. For example,

Cezanne Comacho, and Chris Olah all provide a good un-
derstanding of how convolution works.

• For the math of convolution, have a look at this paper.

4. Training

4.1 Validation Sets, Batch Sizes and Learning Rates

What did we do in the previous notebook?
• We covered forward and backward passes, compiling our

model and fitting it.

What will we cover now?
• We will cover more concepts around training the model: the

purpose of a validation set; overfitting; and regularization. We

Dan Howarth – Ajit Jaokar

– 48 –

will add in a validation and look for overfitting in our model
performance. We won't add any regularization methods

• We will also cover learning rates and batch sizes.

What is validation set?
• A validation set is a dataset that is kept aside from the train-

ing dataset. Typically, at the end of each epoch, the trained
model is passed the validation set in inference model, and the
loss and other metrics recorded. The model is then trained
again for another epoch, and at the end of this epoch is
passed the validation set in inference mode.

• This allows us to see during training how the model per-
forms on unseen data and also whether the model is under-
or over-fitting.

How do we create a validation set?
• We can set aside some data from our training set prior to be-

ginning training, store it as a variable (or a set of (data, label)
variables) and pass this to the validation_data argument in
model.fit()

• We can use the validation_split parameter in model.fit() to
specify the fraction of the data to be used as training data.

What is under and overfitting?
• When we train our models, they can sometimes struggle to

generalize well. This means that they do not perform well on
unseen data.

• A model that overfits will get better and better results (loss
and metrics) on the training data and decreasing results on
the validation set. This is because it is fitting too much to the

Introduction to Azure Machine Learning: In a Weekend – Appendix

– 49 –

specific characteristics of the training data, which may not be
present in the unseen data.

• A model that underfits does not perform well on either the
training or validation data.

• By including a validation set, we can monitor how well the
model performs, and if the performance on the training and
validation sets diverge too much then we can start to con-
clude that something need to be changed.

What can we do to address this?
• We can use regularization to help prevent overfitting.
• We can regularize our model and its training in a number of

ways, and to some extent they all penalize actions that may
cause the model to overfit to the training data:

• When building a model, we add a dropout layer. This turns
off a user defined number of outputs from a layer r during
training and helps prevents the model becoming reliant on
certain paths through the model.

• During training, weight regularization. This penalizes large
weights (our learned parameters) in the model. Larger
weights will create a larger loss value that the model will then
use to update the weights. A model with fewer larger weights,
i.e. with the learning more evenly spread across the nodes,
will have a better chance of generalizing well.

What is a batch_size?
• A batch size is the number of samples the model trains on

before performing a backward pass (model update). The
number of batches in an epoch is equal to:

• number of sample in a training setbatch size

Dan Howarth – Ajit Jaokar

– 50 –

• We can set the batch size and choose to see the model per-
formance as trains per batch size (using a parameter in mod-
el.fit()).

What is the learning rate?
• The learning rate controls the size of the update to the learn-

able parameters (weights and biases) during the backward
pass, based on the loss of the model.

• It is a parameter of the optimizer, set at the model.compile()
stage, and can be set by the user. The trick is to set the learn-
ing to update the weights sufficiently to change performance,
but not update them too much so that the model weights
swing between higher and lower values without settling on a
path to the best model.

• There are various strategies for mitigating this problem that
are worth investigating.

[] ## Lets compile the model again

model.compile(optimizer='adam',
loss='sparse_categorical_crossentropy',

metrics=['accuracy'])

[] ## and build a training loop

history = model.fit(train_images, train_labels,
add batch size
batch_size = 32,
epochs
epochs = 10,
and add a validation set
validation_split=0.2)

Did we do any good?
• 98% plus on the validation set seems pretty good!
• Let's plot the loss and accuracy and see what it shows us

Introduction to Azure Machine Learning: In a Weekend – Appendix

– 51 –

[] # if we print out our history object we can see

that it now includes validation values
history_dict = history.history
history_dict.keys()

[] ## we can pass this to a pandas dataframe

we need to import pandas
import pandas as pd

pass history data to dataframe object
history_df = pd.DataFrame(history_dict)

and display it
history_df

[] # we can use plot functionality of pandas to
quickly plot our results
history_df.plot(figsize=(8,5))
tailor our plot. Show the grid
plt.grid(True)
set the vertical range to [0 -1]
plt.gca().set_ylim(0, 1)
display plot
plt.show()

4.2 Saving Models

What do we mean by saving a model?
• We can save our progress as we train our models. We can

save our progress in two ways:
• during training, so that our models are saved after each

epoch (or, after an epoch that shows model improvement).
• after training, so that our model has completed its training

before we save it
• Of course, we can opt to save the model both during and af-

ter training.

Dan Howarth – Ajit Jaokar

– 52 –

• Using TensorFlow 2.0, we can opt to save the model either
manually, i.e. after the model has trained, or by using
callbacks – i.e. incorporating saving into the training process.

What are we saving?
• We can save the model weights only, the full model (including

the weights and the architecture), and the optimizer state.
• It’s useful to remember that when we are training a model, the

parameters we are updating during the training process are the
weights at each layer of the model. Our aim is to train on (da-
ta, labels) pairs that mean we can predict effectively on unseen
data using the weights we have trained. So it is these weights
that are saved, optionally along with the model architecture.

• Optimizer state. We haven't focused too much on optimizers,
but remember that this is the way that the model weights are
updated. The size of the update is set by the (user defined)
learning rate. When we save a model we can therefore save the
optimizer-state, meaning we can continue training a loaded
model from the state it was in when the model was saved.

Why save a model?
• So that we can reuse it later. This could be to deploy it and

use it in inference mode, or to continue training from the
point at which we stopped.

Once we have saved a model, how do we use it again?
• Once we have saved our weights and/or model, we can re-

store the model in a couple of different ways. If we decide to
save the weights only, we need to create an identical model to
the one that was used to create our weights. If we saved both
the model and weights, we can load this entire model.

Introduction to Azure Machine Learning: In a Weekend – Appendix

– 53 –

What are the ways of doing it?
• In this tutorial (notebook 2), we will look at saving and load-

ing model weights and model + weight manually, i.e. after
training.

• In notebook 3, we will look at how to save during and after
training using callbacks.

• We will use the Keras API. Note there are some other ways to
save the model covered in the TensorFlow 2.0 tutorials pro-
vided by Google.

One more thing...
• If you are using Google Colab, then we need to save the

model to the Google Drive.
• The code below doesn't do that, it assumes we are saving lo-

cally.
• So, for now, look at the code to get a feel for what to do but it

won't work. I will update this code with a solution.
• The same goes for the checkpoint example in notebook 3.

4.2.1 Saving and Loading Weights Only

[] ## lets go through the steps of saving the

model weights only

here we define a location for the weights to
be saved
model.save_weights('./checkpoints/my_checkpoint')

[] # to load the weights we need to create a new
instance of the same model architecture
new_instance = model

[] # then we can load the weights
new_instance.load_weights('./checkpoints/
my_checkpoint')

[] new_instance.weights[0][0][0][0]

Dan Howarth – Ajit Jaokar

– 54 –

4.2.2 Saving and Loading an entire model
[] # this saves it to the HDF5 format

model.save('my_model.h5')
[] # recreate the saved model, including weights

and optimizer
new_model = keras.models.load_model('my_model.h5')

So, what did we cover in this section?
• Validation sets
• Overfitting
• Regularization
• Learning Rates, Batch Sizes
• Saving Models

How does it add to our existing knowledge?
• We have built on our understanding of the training loop by

adding different aspects to it such as batch size and valida-
tion set, as well as getting a feel for what we need to guard
against in training models (e.g. overfitting)

What else can I learn to improve my knowledge?
• In the next notebook, we will use a callback to save a model

as it trains.
• Overfitting – much more to this topic. There is a good treat-

ment of this subject in Introduction to Statistical Learning.

5. Evaluation and Inference

[] ## using the model we have just saved, evaluate
it on the test set
if you are stuck, use some of the code from
notebook 1

Introduction to Azure Machine Learning: In a Weekend – Appendix

– 55 –

test_loss, test_acc =
model.evaluate(test_images, test_labels)

if we had saved our weights or model and
loaded them up, we would use the model
variable name we had saved here

[] # show how the model performs in inference
mode. Again, use some code from previous
notebook

6. Summary

• The chart above shows what we covered in this notebook.
• We have covered a lot so don't worry if you need to revisit

some of this again.

Dan Howarth – Ajit Jaokar

– 56 –

7. Exercises

[] ## build another convolution model
add more layers, vary their size and look up
dropout and how to add that

[] ## recompile the model and fit it

[] ## evaluate the model and use it inference mode

[] ## save the model

	Links to Notebooks
	Part 1 TensorFlow 2.0: Notebook 1: 'Hello World' Deep Learning with TensorFlow 2.0
	1. Introduction to the Notebooks
	1.1 What we will cover today

	2. Introduction to this Notebook
	2.1 Loading the Libraries
	2.2 Introduction to our problem

	3. Deep Learning Conceptual Introduction
	4. Data
	5. Model
	6. Training the Model
	7. Evaluation and Inference
	7.1 Plotting our results
	7.2 Making a prediction on a single image

	8. Summary
	9. Exercise

	Part 2 TensorFlow 2.0: Notebook 2: Computer Vision with CNNs
	1. Introduction to this Notebook
	1.1 Load Libraries
	1.2 Loading our Data

	2. Data: Introduction to Computer Vision
	3. Model Building
	3.1 Convolutional Models

	4. Training
	4.1 Validation Sets, Batch Sizes and Learning Rates
	4.2 Saving Models
	4.2.1 Saving and Loading Weights Only
	4.2.2 Saving and Loading an entire model

	5. Evaluation and Inference
	6. Summary
	7. Exercises

	Blank Page
	Deep-Learning-and-Computer-Vision-PDF2.pdf
	Links to Notebooks
	Part 1 TensorFlow 2.0: Notebook 1: 'Hello World' Deep Learning with TensorFlow 2.0
	1. Introduction to the Notebooks
	1.1 What we will cover today

	2. Introduction to this Notebook
	2.1 Loading the Libraries
	2.2 Introduction to our problem

	3. Deep Learning Conceptual Introduction
	4. Data
	5. Model
	6. Training the Model
	7. Evaluation and Inference
	7.1 Plotting our results
	7.2 Making a prediction on a single image

	8. Summary
	9. Exercise

	Part 2 TensorFlow 2.0: Notebook 2: Computer Vision with CNNs
	1. Introduction to this Notebook
	1.1 Load Libraries
	1.2 Loading our Data

	2. Data: Introduction to Computer Vision
	3. Model Building
	3.1 Convolutional Models

	4. Training
	4.1 Validation Sets, Batch Sizes and Learning Rates
	4.2 Saving Models
	4.2.1 Saving and Loading Weights Only
	4.2.2 Saving and Loading an entire model

	5. Evaluation and Inference
	6. Summary
	7. Exercises

	Deep-Learning-and-Computer-Vision-PDF2.pdf
	Links to Notebooks
	Part 1 TensorFlow 2.0: Notebook 1: 'Hello World' Deep Learning with TensorFlow 2.0
	1. Introduction to the Notebooks
	1.1 What we will cover today

	2. Introduction to this Notebook
	2.1 Loading the Libraries
	2.2 Introduction to our problem

	3. Deep Learning Conceptual Introduction
	4. Data
	5. Model
	6. Training the Model
	7. Evaluation and Inference
	7.1 Plotting our results
	7.2 Making a prediction on a single image

	8. Summary
	9. Exercise

	Part 2 TensorFlow 2.0: Notebook 2: Computer Vision with CNNs
	1. Introduction to this Notebook
	1.1 Load Libraries
	1.2 Loading our Data

	2. Data: Introduction to Computer Vision
	3. Model Building
	3.1 Convolutional Models

	4. Training
	4.1 Validation Sets, Batch Sizes and Learning Rates
	4.2 Saving Models
	4.2.1 Saving and Loading Weights Only
	4.2.2 Saving and Loading an entire model

	5. Evaluation and Inference
	6. Summary
	7. Exercises

	Deep-Learning-and-Computer-Vision-PDF2.pdf
	Links to Notebooks
	Part 1 TensorFlow 2.0: Notebook 1: 'Hello World' Deep Learning with TensorFlow 2.0
	1. Introduction to the Notebooks
	1.1 What we will cover today

	2. Introduction to this Notebook
	2.1 Loading the Libraries
	2.2 Introduction to our problem

	3. Deep Learning Conceptual Introduction
	4. Data
	5. Model
	6. Training the Model
	7. Evaluation and Inference
	7.1 Plotting our results
	7.2 Making a prediction on a single image

	8. Summary
	9. Exercise

	Part 2 TensorFlow 2.0: Notebook 2: Computer Vision with CNNs
	1. Introduction to this Notebook
	1.1 Load Libraries
	1.2 Loading our Data

	2. Data: Introduction to Computer Vision
	3. Model Building
	3.1 Convolutional Models

	4. Training
	4.1 Validation Sets, Batch Sizes and Learning Rates
	4.2 Saving Models
	4.2.1 Saving and Loading Weights Only
	4.2.2 Saving and Loading an entire model

	5. Evaluation and Inference
	6. Summary
	7. Exercises

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Impact
 /ZapfinoExtraLT-One
 /ZapfinoExtraLTPro
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

