

Database Systems
concepts, languages and architectures

2

Chapter

Section

3

Paolo Atzeni
Stefano Ceri

Stefano Paraboschi
Riccardo Torlone

Database
Systems

concepts, languages &
architectures

The McGraw-Hill Companies

London

 • Burr Ridge,

il

 • New York • St Louis • San Francisco • Auckland • Bogotá
Caracas • Lisbon • Madrid • Mexico • Milan • Montreal • New Delhi • Panama • Paris

San Juan • São Paulo • Singapore • Tokyo • Toronto

4

Chapter

Published by

McGraw-Hill Publishing Company

Shoppenhangers Road, Maidenhead, Berkshire, sl6 2ql, England

Telephone: +

(

)

Fax: +

(

)

Web site: http://www.mcgraw-hill.co.uk

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

isbn

Library of Congress cataloguing in publication data
The

loc

 data for this book has been applied for and may be obtained from the
Library of Congress, Washington,

d.c

.

Authors’ Web site address: http://www.mcgraw-hill.co.uk/atzeni

Publishing Director: Alfred Waller
Publisher: David Hatter
Page design: Mike Cotterell
Typesetting: Mouse Nous
Production: Steven Gardiner Ltd
Cover: Hybert Design

Copyright ©

 McGraw-Hill International (

uk

) Limited
All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any means, electronic or
otherwise without the prior permission of McGraw-Hill International (

uk

) Limited.

Printed in Great Britain at the University Press, Cambridge
1 2 3 4 5 CUP 3 2 1 0 9

http://www.mcgraw-hill.co.uk
http://www.mcgraw-hill.co.uk/atzeni/

Section

5

To our students

6

Chapter

Contents

Introduction

.

Information and data

.

Databases and database management systems

.

Data models

..

Schemas and instances

..

Abstraction levels in

dbms

s

..

Data independence

.

Languages and users

..

Database languages

..

Users and designers

.

Advantages and disadvantages of

dbms

s

.

Bibliography

Part

I

. Relational databases

13

The relational model

.

The structure of the relational model

..

Logical models in database systems

..

Relations and tables

..

Relations with attributes

..

Relations and databases

..

Incomplete information and null values

.

Integrity constraints

..

Tuple constraints

..

Keys

..

Keys and null values

..

Referential constraints

.

Conclusions

.

Bibliography

.

Exercises

Navigating
To navigate to a Part, Chapter or Section click on the Part, Chapter or Section number.To jump to a Subsection, click to the left of the Subsection number.

viii

Contents

Relational algebra and calculus

.

Relational algebra

..

Union, intersection, difference

..

Renaming

..

Selection

..

Projection

..

Join

..

Queries in relational algebra

..

Equivalence of algebraic expressions

..

Algebra with null values

..

Views

.

Relational calculus

..

Domain relational calculus

..

Qualities and drawbacks of domain calculus

..

Tuple calculus with range declarations

.

Datalog

.

Bibliography

.

Exercises

sql

.

Data definition in

sql

..

Elementary domains

..

Schema definition

..

Table definition

..

User defined domains

..

Default domain values

..

Intra-relational constraints

..

Inter-relational constraints

..

Schema updates

..

Relational catalogues

.

sql

 queries

.. The declarative nature of sql
.. Simple queries
.. Aggregate queries
.. Group by queries
.. Set queries
.. Nested queries

. Data modification in sql
.. Insertions
.. Deletions
.. Updates

. Other definitions of data in sql
.. Generic integrity constraints
.. Assertions
.. Views

Contents ix

.. Views in queries
. Access control

.. Resources and privileges
.. Commands for granting and revoking privileges

. Use of sql in programming languages
.. Integration problems
.. Cursors
.. Dynamic sql
.. Procedures

. Summarizing examples
. Bibliography
. Exercises

Part II. Database design 155
 Design techniques and models
. The database design process

.. The life cycle of information systems
.. Methodologies for database design

. The Entity-Relationship model
.. The basic constructs of the model
.. Other constructs of the model
.. Final overview of the e-r model

. Documentation of e-r schemas
.. Business rules
.. Documentation techniques

. Bibliography
. Exercises

 Conceptual design
. Requirements collection and analysis
. General criteria for data representation
. Design strategies

.. Top-down strategy
.. Bottom-up strategy
.. Inside-out strategy
.. Mixed strategy

. Quality of a conceptual schema
. A comprehensive method for conceptual design
. An example of conceptual design
. case tools for database design
. Bibliography
. Exercises

 Logical design
. Performance analysis on e-r schemas

x Contents

. Restructuring of e-r schemas
.. Analysis of redundancies
.. Removing generalizations
.. Partitioning and merging of entities and relationships
.. Selection of primary identifiers

. Translation into the relational model
.. Entities and many-to-many relationships
.. One-to-many relationships
.. Entities with external identifiers
.. One-to-one relationships
.. Translation of a complex schema
.. Summary tables
.. Documentation of logical schemas

. An example of logical design
.. Restructuring phase
.. Translation into the relational model

. Logical design using case tools
. Bibliography
. Exercises

 Normalization
. Redundancies and anomalies
. Functional dependencies
. Boyce–Codd normal form

.. Definition of Boyce–Codd normal form
.. Decomposition into Boyce–Codd normal form

. Decomposition properties
.. Lossless decomposition
.. Preservation of dependencies
.. Qualities of decompositions

. Third normal form
.. Definition of third normal form
.. Decomposition into third normal form
.. Other normalization techniques

. Database design and normalization
.. Verification of normalization on entities
.. Verification of normalization on relationships
.. Further decomposition of relationships
.. Further restructurings of conceptual schemas

. Bibliography
. Exercises

Part III. Database technology 281
 Technology of a database server
. Definition of transactions

Contents xi

.. acid properties of transactions
.. Transactions and system modules

. Concurrency control
.. Architecture of concurrency control
.. Anomalies of concurrent transactions
.. Concurrency control theory
.. Lock management
.. Deadlock management

. Buffer management
.. Architecture of the buffer manager
.. Primitives for buffer management
.. Buffer management policies
.. Relationship between buffer manager and file system

. Reliability control system
.. Architecture of the reliability control system
.. Log organization
.. Transaction management
.. Failure management

. Physical access structures
.. Architecture of the access manager
.. Organization of tuples within pages
.. Sequential structures
.. Hash-based structures
.. Tree structures

. Query optimization
.. Relation profiles
.. Internal representation of queries
.. Cost-based optimization

. Physical database design
.. Definition of indexes in sql

. Bibliography
. Exercises

 Distributed architectures
. Client-server architecture
. Distributed databases

.. Applications of distributed databases
.. Local independence and co-operation
.. Data fragmentation and allocation
.. Transparency levels
.. Classification of transactions

. Technology of distributed databases
.. Distributed query optimization
.. Concurrency control
.. Failures in distributed systems

xii Contents

. Two-phase commit protocol
.. New log records
.. Basic protocol
.. Recovery protocols
.. Protocol optimization
.. Other commit protocols

. Interoperability
.. Open Database Connectivity (odbc)
.. x-open Distributed Transaction Processing (dtp)

. Co-operation among pre-existing systems
. Parallelism

.. Inter-query and intra-query parallelism
.. Parallelism and data fragmentation
.. Speed-up and scale-up
.. Transaction benchmarks

. Replicated databases
.. New functions of replication managers

. Bibliography
. Exercises

Part IV. Database evolution 395
 Object databases
. Object-Oriented databases (oodbmss)

.. Types
.. Classes
.. Methods
.. Generalization hierarchies
.. Persistence
.. Redefinition of methods
.. Refinement of properties and methods
.. The object-oriented database manifesto

. The odmg standard for object-oriented databases
.. Object Definition Language: odl
.. Object Query Language: oql

. Object-Relational databases (ordbmss)
.. sql- data model
.. sql- query language
.. The third generation database manifesto

. Multimedia databases
.. Types of multimedia data
.. Queries on multimedia data
.. Document search
.. Representation of spatial data

. Technological extensions for object-oriented databases

Contents xiii

.. Representation of data and identifiers
.. Complex indexes
.. Client-server architecture
.. Transactions
.. Distribution and interoperability:

. Bibliography
. Exercises

 Active databases
. Trigger behaviour in a relational system
. Definition and use of triggers in Oracle

.. Trigger syntax in Oracle
.. Behaviour of triggers in Oracle
.. Example of execution

. Definition and use of triggers in
.. Trigger syntax in
.. Behaviour of triggers in
.. Example of execution

. Advanced features of active rules
. Properties of active rules
. Applications of active databases

.. Referential integrity management
.. Business rules

. Bibliography
. Exercises

 Data analysis
. Data warehouse architecture
. Schemas for data warehouses

.. Star schema
.. Star schema for a supermarket chain
.. Snowflake schema

. Operations for data analysis
.. Query formulation interfaces
.. Drill-down and roll-up
.. Data cube

. Development of the data warehouse
.. Bitmap and join indexes
.. View materialization

. Data mining
.. The data mining process
.. Data mining problems
.. Data mining perspectives

. Bibliography
. Exercises

xiv Contents

 Databases and the World Wide Web
. The Internet and the World Wide Web

.. The Internet
.. The World Wide Web
.. html
.. http
.. Gateways

. Information systems on the Web
.. Publication and consultation on the Web
.. Transactions on the Web
.. Electronic commerce and other new applications

. Design of data-intensive Web sites
.. A logical model for data-intensive hypertexts
.. Levels of representation in Web hypertexts
.. Design principles for a data-intensive Web site

. Techniques and tools for database access through the Web
.. Database access through cgi programs
.. Development tools
.. Shortcomings of the cgi protocol
.. Simulating long connections for transactions
.. Server-based alternatives to the cgi approach
.. Client-based alternatives to the cgi approach

. Bibliography
. Exercises

Part V. Appendices & Bibliography 519
Appendix A Microsoft Access
. System characteristics
. Definition of tables

.. Specification of join paths
.. Populating the table

. Query definition
.. Query By Example
.. The sql interpreter

. Forms and reports
. The definition of macros

Appendix B DB2 Universal Database
. db overview

.. Versions of the system
.. Instances and schemas of db
.. Interaction with db

. Database management with db
.. Interactive tools
.. Application programs

Contents xv

. Advanced features of db
.. Extension of sql for queries
.. Object-oriented features of db

Appendix C Oracle PL/SQL
. Tools architecture of Oracle
. Base domains
. The object-relational extension of Oracle
. pl/sql language

.. Execution of pl/sql in a client-server environment
.. Declarations of variables and cursors
.. Control structures
.. Management of exceptions
.. Procedures
.. Packages

Bibliography

Index

xvi Contents

0Preface

Databases are essential ingredients of modern computing systems. Although
database concepts, technology and architectures have been developed and
consolidated in the last decades, many aspects are subject to technological
evolution and revolution. Thus, writing a textbook on this classical and yet
continuously evolving field is a great challenge.

Key features
This book provides a new and comprehensive treatment of databases,
dealing with the complete syllabuses for both an introductory course and an
advanced course on databases. It offers a balanced view of concepts,
languages and architectures, with concrete reference to current technology
and to commercial database management systems (dbmss). It originates from
the authors’ long experience in teaching, both in academia and in industrial
and application settings.

The book is composed of four main parts and a fifth part containing three
appendices and a bibliography. Parts I and II are designed to expose students
to the principles of data management and for teaching them how to master
two main skills: how to query a database (and write software that involves
database access) and how to design its schema structure. These are the
fundamental aspects of designing and manipulating a database that are
required in order to make effective use of database technology.

Parts III and IV are dedicated to advanced concepts, required for mastering
database technology. Part III describes database management system
architectures, using a modern approach based upon the identification of the
important concepts, algorithms, components and standards. Part IV is
devoted to the current trends, focusing on object-oriented databases, active
databases, data warehouses and the interaction between databases and the
World Wide Web.

Appendices cover three popular database systems: Microsoft Access, ibm
db2 and Oracle.

xviii Preface

A number of features make this book unique.

• We make a clear distinction between the basic material (Parts I and II) and
the advanced material (Parts III and IV), which often marks the
progression from an introductory course to an advanced course. A
coherent treatment makes the transition from basic to advanced material
quite smooth and progressive and makes this book perfectly suitable to
serving the needs of a single, comprehensive course.

• We provide the foundations of the relational model and theory, but we
never introduce theory for its own sake. Each concept is immediately
applied to sql, with plenty of examples and exercises.

• The discussion of design techniques starts with the introduction of the
elements of the e-r (Entity-Relationship) model and proceeds through a
well-defined, staged process through conceptual design to the logical
design, which produces a relational schema. Several detailed examples are
developed, to help the reader to follow the process.

• We deal with the fundamental issues of database technology
(transactions, concurrency control, reliability, recovery) first on a single-
server architecture and then on a multi-server architecture with emphasis
on distribution, replication and parallelism.

• We emphasize standards (including sql-2, sql-3, odl, oql, corba,
odbc, jdbc, x-open) in order to give to the student an understanding of
the way in which the concepts developed in this book are deployed in the
commercial world.

• We include appendices on Access, db2 and Oracle, particularly helpful
for hands-on courses. We focus on the ease of use of Access, on the
interactive tools of db2 and the richness of Oracle’s pl-sql as a database
programming language.

• We provide a Web site (http://www.mcgraw-hill.co.uk/atzeni/) with
slides and exercises with solutions that can be used by lecturers and
students.

Detailed Content Overview

Chapter 1 covers the use of database technology in modern information
systems. We cover basic aspects, such as the difference between data and
information, the concepts of data model, schema and instance, a multi-level
organization of the database architecture with the fundamental notion of
data independence and the classification of database languages and users.

Preface xix

Part I – Relational Databases
This part introduces the concepts of relational databases and then focuses on
sql programming, one of the main objectives of this textbook.

Chapter 2 describes the relational model, by introducing the basic notions
of domain, attribute, relation schema and database schema, with the various
integrity constraints: primary key and referential constraints; null values are
also briefly discussed.

Chapter 3 illustrates the foundations of the languages for the relational
model. First we describe relational algebra, a simple and important
procedural language; then we introduce declarative languages like relational
calculus (on domains and on tuples with range restrictions) and Datalog.

Chapter 4 provides a thorough description of sql, by focusing on both the
Data Definition Language, used to create the schema of a database and the
Data Manipulation Language, which allows for querying and updating the
content of the database. The chapter also includes advanced features of sql,
such as programming language interfaces and dynamic sql.

Part II – Database Design
This part covers the conceptual and logical design of relational databases.
The process starts with the analysis of user requirements and ends with the
production of a relational database schema that satisfies several correctness
criteria. We believe that a student must initially learn about database use
before he or she can concentrate on database design with sufficient
confidence and therefore we postpone design until after the mastering of a
query language.

Chapter 5 introduces the design methodology and describes the e-r
conceptual model, with the classical notions of entity, relationship, attribute,
identifier and generalization. Business rules are also introduced, as a
formalism for the description of additional user requirements.

Chapter 6 illustrates conceptual design, which produces an e-r
conceptual description of the database, starting from the representation of
user requirements. Simple design principles are illustrated, including
methods for the systematic analysis of informal requirements, the
identification of the main concepts (entities and relationships), top-down
refinement strategies, suggestions for achieving certain qualities of the
schemas and schema documentation.

Chapter 7 focuses on logical design, which produces a relational database
schema starting from the conceptual schema. We discuss the various design
options and provide guidelines that the designer should follow in this phase.

Chapter 8 discusses schema normalization and the correctness criteria that
must be satisfied by relational schemas in order to avoid anomalies and

xx Preface

redundancies. Normalization is used for verification: although it is an
important design technique, we do not believe that a designer can really use
normalization as the main method for modelling reality. He or she must,
however, be aware of normalization issues. Also, the development is precise
but not overly formal: there are no abstract algorithms, but we cover instead
specific cases that arise in practice.

Part III – Database Technology

This part describes the modern architectures of database management
systems.

Chapter 9 is focused on the technology required for operating a single
dbms server; it discusses transactions, concurrency control, buffer
management, reliability, access structures, query optimization and physical
database design. This chapter provides a database administrator with the
fundamental knowledge required to monitor a dbms.

Chapter 10 addresses the nature of architectures that use a variable
number of database servers dispersed in a distributed or parallel
environment. Again, transactions, concurrency control and reliability
requirements due to data distribution are discussed; these notions are
applied to several architectures for data management, including client-
server, distributed, parallel and replicated environments.

Part IV – Database Evolution

This part discusses several important extensions to database technology.

Chapter 11 describes object database systems, which constitute a new
generation of database systems. We consider both the ‘object-oriented’ and
the ‘object-relational’ approaches, which are the two alternative paths
towards object orientation in the evolution of database systems. We also
consider multimedia databases and geographic information systems. The
chapter also describes several standards, such as odm, oql and corba.

Chapter 12 describes active database systems; it shows active rules as they
are supported in representative relational systems (Oracle and db2) and
discusses how active rules can be generated for integrity maintenance and
tested for termination.

Chapter 13 focuses on data analysis, an important new dimension in data
management. We describe the architecture of the data warehouse, the star
and snowflake schemas used for data representation within data warehouses
and the new operators for data analysis (including drill-down, roll-up and
data cube). We also briefly discuss the most relevant problems of data
mining, a novel approach for extracting hidden information from a data
warehouse.

Preface xxi

Chapter 14 focuses on the relationship between databases and the World
Wide Web, which has already had a deep influence on the way information
systems and databases are designed and accessed. It discusses the notion of
Web information systems, the methods for designing them and the tools and
techniques for coupling databases and Web sites.

Appendices
Three appendices conclude the volume, with descriptions of three popular
dbmss:

Appendix A deals with Microsoft Access, which is currently the most
widespread database management system on pc-based platforms. Access has
a simple yet very powerful interface, not only for programming in sql and
qbe, but also for adding forms, reports and macros in order to develop simple
applications.

Appendix B describes the db2 Universal Database, the latest member of
one of the major families of dbmss produced by ibm. The emphasis of the
presentation is on its interactive tools and its advanced functionality.

Appendix C covers Oracle, a major product in the market of dbmss and
specifically focuses on the procedural extension of sql (called pl/sql), which
is supported by Oracle for writing applications.

Use as a textbook
The book can be covered in a total of approximately – lecture hours
(plus – hours dedicated to exercises and practical experiences).

Our experience is that Parts I and II can be covered as a complete course in
about taught hours. Such a course requires a significant amount of
additional practical activity, normally consisting of several exercises from
each chapter and a project involving the design, population and use of a
small database. The appendixes provide useful support for the practical
activities.

Parts III and IV can be covered in a second course, or else they can be
integrated in part within an extended first course; in advanced, project-
centred courses, the study of current technology can be accompanied by a
project dedicated to the development of technological components. Part IV,
on current trends, provides material for significant project work, for
example, related to object technology, or to data analysis, or to Web
technology. The advanced course can be associated with further readings or
with a research-oriented seminar series.

An international textbook
Making the book reflect the international nature of the subject has been a
challenge and an opportunity. This book has Italian authors, who have also

xxii Preface

given regular courses in the United States, Canada and Switzerland, was
edited in the United Kingdom and is directed to the worldwide market. We
have purposely used a neutral version of the English language, thus avoiding
country-specific jargon whenever possible. In the examples, our attitude has
been to choose attribute names and values that would be immediately
understandable to everybody. In a few cases, however, we have purposely
followed the rules of different international contexts, without selecting one
in particular. The use of car registration numbers from France, or of tax codes
from Italy, will make the reader aware of the fact that data can have different
syntax and semantics in different contexts and so some comprehension and
adaptation effort may be needed when dealing with data in a truly
worldwide approach. It should also be noted that when dealing with money
values, we have omitted the reference to a specific currency: for example, we
say that a salary is ‘ thousand’, without saying whether it is dollars (and
which dollars: us, Canadian, Australian, Hong Kong, …), or Euros, or Pounds
Sterling.

Additional support

Supplementary material, including overhead slides, solutions to exercises
and additional exercises can be found at the book Web site:

http://www.mcgraw-hill.co.uk/atzeni/

The authors can be contacted through the site.

The Authors

Paolo Atzeni and Riccardo Torlone are professors at Università di Roma Tre.
Stefano Ceri and Stefano Paraboschi are professors at Politecnico di Milano.
They all teach courses on information systems and database technology and
are active members of the research community. Paolo Atzeni and Stefano Ceri
have many years of experience in teaching database courses, both in
European and in North American universities. They have also presented
many courses for professional database programmers and designers. All the
authors are active researchers, operating on a wide range of areas, including
distributed databases, deductive databases, active databases, databases and
the Web, data warehouses, database design and so on. They are actively
participating in the organization of the main International Conferences and
professional Societies dealing with database technology; in particular, Paolo
Atzeni is the chairman of the edbt Foundation and Stefano Ceri is a member
of the edbt Foundation, vldb Endowment and acm Sigmod Advisory
Committee. Their appointments include being co-chairs of vldb in
Rome.

http://www.mcgraw-hill.co.uk/atzeni/

Preface xxiii

Acknowledgements
The organization and the contents of this book have benefited from our
experiences in teaching the subject in various contexts. All the students
attending those courses, dispersed over many schools and countries
(University of Toronto, Stanford University, Università dell’Aquila,
Università di Roma ‘La Sapienza’, Università di Roma Tre, Politecnico di
Milano, Università di Modena, Università della Svizzera Italiana) deserve our
deepest thanks. Many of these students have field-tested rough drafts and
incomplete notes, and have contributed to their development, improvement
and correction. Similarly, we would like to thank people from companies and
government agencies who attended our courses for professionals and helped
us in learning the practical aspects that we have tried to convey in our
textbook.

We would like to thank all the colleagues who have contributed, directly
or indirectly, to the development of this book, through discussions on course
organization or the actual revision of drafts and notes. They include Carlo
Batini, Maristella Agosti, Giorgio Ausiello, Elena Baralis, Giovanni Barone,
Giampio Bracchi, Luca Cabibbo, Ed Chan, Giuseppe Di Battista, Angelo
Foglietta, Piero Fraternali, Maurizio Lenzerini, Gianni Mecca, Alberto
Mendelzon, Paolo Merialdo, Barbara Pernici, Silvio Salza, Fabio Schreiber,
Giuseppe Sindoni, Elena Tabet, Letizia Tanca, Ernest Teniente, Carson Woo
and probably some others whom we might have omitted. We thank the
reviewers of the English edition for a number of very useful suggestions
concerning the organization of the book and the specific content of chapters.

We thank the very many people who have contributed to the birth of this
book inside McGraw-Hill. We are grateful to Gigi Mariani and Alberto
Kratter Thaler who have worked with us to the Italian edition of this work.
We are deeply indebted to David Hatter, who endorsed our project
enthusiastically and was able to put together an effective team, together with
Ellen Johnson and Mike Cotterell. These three people have dedicated an
enormous amount of effort to the production process. In particular, we thank
Ellen for her support in the translation, David for his careful copy-editing
and for the many terminological suggestions and Mike for his professional
and patient processing of our manuscript through its numerous revisions.

We would also like to thank our families, for the continuous support they
have given to us and for their patience during the evenings, nights and
holidays spent on this book. Specifically, Paolo Atzeni would like to thank
Gianna, his wife and his children Francesco and Laura; Stefano Ceri wishes
to thank Maria Teresa, his wife and his children Paolo and Gabriele; Stefano
Paraboschi wishes to thank Paola, his wife; Riccardo Torlone wishes to thank
Maria Paola.

xxiv Preface

1
1Introduction

Collection, organization and storage of data are major tasks in many human
activities and in every computer-based system. Bank balances, telephone
numbers in directories, stock quotations, availability of credit card funds,
registers of students enrolled in a university and grades in their exams are all
examples of types of data that are fundamental to the activities to which they
refer. Computer-based systems ensure that this data is permanently
maintained, quickly updated to show changes, and made accessible to the
queries of users who can be remote from one another and from the computer
where the data is kept. Imagine, for example, queries about the availability
of funds on credit cards, asked through simple devices available in millions
of businesses (whether hotels, shops or companies), which allow purchases
made anywhere in the world to be charged to the credit card owners.

This book is about the management of data through the use of
computerized information systems; it describes the concepts necessary to
represent information on a computer, the languages for update and retrieval,
and the specialized architectures for data management. In this first chapter,
the concepts of information systems and databases are introduced, so that we
can then deal with the major characteristics of systems for managing
databases.

1.1 Information and data
In the pursuit of any activity, whether by an individual or in an organization
of any size, the availability of information and the capacity to manage it
efficiently are essential; therefore, every organization has an information
system, which manages the information necessary to perform the functions
of the organization. The existence of the information system is partly
independent of the extent to which it is automated: note that information
systems existed long before the invention and widespread adoption of

2 Chapter 1
Introduction

computers; for example, bank records and electoral rolls have been in place
for several centuries. In general, only a subset of the information system of
an organization is computerized. The capillary spread of computing
technology into almost all human activity, characteristic of the eighties and
of the nineties, generates a continuous growth in computerization of
information systems.

In the simplest of human activities, information is recorded and exchanged
according to the natural techniques typical of the activity itself: written or
spoken language, drawings, diagrams, numbers. In some activities, an
explicit record might not even exist, the information being – more or less
accurately – memorized. In any case, we can say that, as activities have
gradually become systematized, appropriate forms of organization and
codification have been found.

In computer-based systems the concept of recording and codifying is
taken to the limit: the information is recorded by means of data, which needs
to be interpreted in order to provide information. As with many basic
concepts, it is difficult to give a precise definition of the concept of data and
of the differences between the concepts of data and information: roughly we
can say that data alone has no significance, but once interpreted and suitably
correlated, it provides information that allows us to improve our knowledge
of the world.

For example, the string John Smith and the number 25775, written on a
sheet of paper, are two pieces of data that are meaningless by themselves. If
the sheet is sent in response to the question ‘Who is the head of the research
department and what is his telephone number?’, then it is possible to
interpret the data and use it to enrich our knowledge with the information
that the person named John Smith is the head of the research department and
that his telephone number is 25775.

Having introduced the concept of data in this way, we can move on to that
of the database, the main topic of this text. Various definitions are possible;
the most general being: a database is a collection of data, used to represent
information of interest to an information system. In this book, we will
mainly consider a far more restricted definition, related to a specific
technology, discussed in the next section.

Let us conclude this section with an observation. In many applications,
data is intrinsically much more stable than the (manual or automatic)
procedures that operate upon it. Returning to an example mentioned earlier,
we can observe that the data relating to bank applications has a structure
that has remained virtually unchanged for decades, while the procedures
that act upon it vary continually, as every customer can readily verify.
Furthermore, when one procedure is substituted for another, the new
procedure ‘inherits’ the data of the old one, with appropriate changes. This
characteristic of stability leads us to state that data constitutes a ‘resource’
for the organization that manages it, a significant heritage to exploit and
protect.

Section 1.2 3
Databases and database management systems

1.2 Databases and database management systems
Attention to data has characterized computer-based applications since the
beginning, but software systems dedicated specifically to the management of
data have been in existence only since the end of the sixties, and some
applications still do not make use of them. In the absence of specific software,
data management is performed by means of traditional programming
languages, for example c and fortran, or, more recently, by object-oriented
languages, among them c++, Smalltalk and Java. Many applications are
written in cobol, a programming language particularly suitable for
‘business applications’, that is, applications primarily written for data
management.1

The conventional approach to data management exploits the presence of
files to store data permanently. A file allows for the storage and searching of
data, but provides only simple mechanisms for access and sharing. With this
approach, the procedures written in a programming language are completely
autonomous; each one defines and uses one or more ‘private’ files. Data of
possible interest to more than one program is replicated as many times as
there are programs that use it, with obvious redundancy and the possibility
of inconsistency. Databases were created, for the most part, to overcome this
type of inconvenience.

We are now in the position of defining a database management system
(dbms) as a software system able to manage collections of data that are large,
shared and persistent, and to ensure their reliability and privacy. Like any
software product, a dbms must be efficient and effective. A database is a
collection of data managed by a dbms.

Let us comment on each of the above listed characteristics of the dbms and
of the databases.

• Databases can be large, in the sense that they can contain thousands of
billions of bytes and are, in general, certainly larger than the main
memory available. As a result, a dbms must manage data in secondary
memory. Obviously ‘small’ databases can exist, but the systems must be
able to manage data without being limited by dimensions, apart from the
physical ones of the devices at hand.

• Databases are shared, in the sense that various applications and users must
be able to gain access to data of common interest. It is important to note
that in this way the redundancy of data is reduced, since repetitions are
avoided, and, consequently, the possibility of inconsistencies is reduced; if
more than one copy of the same data exist, it is possible that they are not

1. cobol is a language of the seventies, now largely obsolete; however, many
business applications are still written in cobol. A process of transformation is
now in progress that is aimed at rewriting these applications in the more modern
languages for database management – the subject of this book.

4 Chapter 1
Introduction

identical; and vice versa, if every piece of data is stored only once, then
the problem of inconsistency is eliminated. In order to guarantee shared
access to data by many users operating simultaneously, the dbms makes
use of a special mechanism called concurrency control.

• Databases are persistent; that is, they have a lifespan that is not limited to
single executions of the programs that use them. Conversely, note that the
data managed by a program in main memory has a life that begins and
ends with the execution of the program; therefore, such data is not
persistent.

• dbmss ensure reliability; that is, the capacity of the system to preserve
the content of the database (or at least to allow its reconstruction) in case
of hardware or software failure. To fulfil this requirement, dbmss provide
specific functions for backup and recovery.

• dbmss ensure data privacy. Each user, who is recognized by a user name
that is specific to that user’s access to the dbms, is qualified to carry out
only certain operations on the data, through the mechanisms of
authorization.

• dbmss are also concerned with efficiency, that is, the capacity to carry out
operations using an appropriate amount of resources (time and space) for
each user. This characteristic relies on the techniques used in the
implementation of the dbms, and on how well the product has been
designed. It should be stressed that dbmss provide a wide-ranging
combination of features that require many resources, and therefore they
often put heavy requirements on the resources provided by the operating
environment.

• Finally dbmss increase effectiveness, that is, the capacity of the database
system to make the activities of its users productive, in every sense. This
is clearly a generic definition and does not correspond to a specific
function, given that a dbms provides various services and functions to
different users. The task of designing a database and the applications that
use it aims essentially to guarantee the good, overall effectiveness of the
system.

It is important to stress that the management of large and persistent
collections of data is also possible by means of instruments less sophisticated
than dbmss, beginning with the files present in all operating systems. Files
were introduced to manage data ‘local’ to a specific procedure or application.
dbmss were conceived and created to extend the functions of the file system,
permitting shared access to the same data by more than one user and
application, and also guaranteeing many other services in an integrated
manner. Clearly, dbmss in their turn use files for the storage of data;
however, as we shall discuss in Part III of the book, files managed by dbmss
allow the data organization to be of a higher level of complexity.

Section 1.3 5
Data models

1.3 Data models
A data model is a combination of constructs used to organize data. Each data
model provides structuring mechanisms, similar to the type constructors of
programming languages, which allow the definition of new data types based
on constructors applied to predefined, elementary types. For example, Pascal
allows the construction of types by means of array, record, set and file
constructors.

The relational data model, at present the most widespread, provides the
relation constructor, which makes it possible to organize data in a collection
of records with a fixed structure. A relation is often represented by means of
a table, whose rows show specific records and whose columns correspond to
the fields of the record; the order of rows and columns is irrelevant. For
example, data relating to university courses and their tutors and the
insertion of the courses into the prospectus of the various degree
programmes, can be organized by means of two relations TEACHING and
PROSPECTUS, represented by the tables in Figure 1.1. As we can see, a
relational database generally involves many relations.

The relational model was proposed in a research setting at the beginning of
the seventies, appeared on the market in real systems in the early eighties,
and is now, as we have said, the most widespread. Besides the relational
model, three other types of model have been defined.

• The hierarchical data model, based on the use of tree structures (and
hierarchies, hence the name), defined during the first phase of
development of dbmss (in the sixties) but still used in many systems,
mainly for continuity reasons.

• The network data model (also known as the codasyl model, after the
Conference on Data Systems Languages that gave it a precise definition),
based on the use of graphs, developed in the early seventies.

• The object data model, developed in the eighties in order to overcome
some limitations of the relational model, which extends to databases the
paradigm of object-oriented programming; Chapter 11, in Part IV of the
book, is dedicated to the object data model.

Figure 1.1 Example of a relational database.

TEACHING

Course Tutor

Databases Smith
Networks Jones
Languages Robinson

PROSPECTUS

DegreeProgramme Subject Year

Information Systems Databases 4
Information Systems Networks 4
Information Systems Languages 3
Electrical Engineering Databases 4
Electrical Engineering Networks 4

6 Chapter 1
Introduction

The data models listed above are all available in commercial dbmss; they
are called logical, to underline the fact that the structures used for these
models, although abstract, reflect a particular organization (tree, graph,
table, or object). Other data models known as conceptual models, have been
introduced to describe data in a manner independent of the logical model;
but these are not available in commercial dbmss. Their name comes from the
fact that they tend to describe concepts of the real world, rather than the data
needed for their representation. These models are used in the preliminary
phase of the database design process, to analyze the application in the best
possible way, without implementational ‘contaminations’. In Part II of this
book, dedicated to the design of databases, we examine in detail a conceptual
model, the Entity-Relationship model.

1.3.1 Schemas and instances
In a database there is a part that is invariant in time, called the schema of the
database, made up of the characteristics of the data, and a part that changes
with time, called the instance or state of the database, made up of the actual
values. In the example of Figure 1.1, the relations have a fixed structure; the
relation TEACHING has two columns (called attributes), which refer to courses
and tutors respectively. The schema of a relation consists of its heading, that
is, the name of the relation, followed by the names of its attributes; for
example,

TEACHING(Course, Tutor)

The rows of the table vary with time, and correspond to the courses
currently offered and their respective tutors. During the life of the database,
tutors and courses are added, removed or modified; similarly, the prospectus
is modified from one year to the next. The instance of a relation is made up of
a collection of rows, which vary with time; in the example we have three
pairs:

We could also say that the schema is the intensional component of the
database and the instance is the extensional component. These definitions
will be developed and discussed in detail in Chapter 2.

1.3.2 Abstraction levels in DBMSs
The concepts of model and schema described above can be developed
further, considering other dimensions in the description of data. In
particular, a standardized architecture for dbmss has been proposed. It is
divided into three levels, known respectively as logical, internal, and
external; for each level there is a schema.

Databases Smith
Networks Jones
Languages Robinson

Section 1.3 7
Data models

The logical2 schema is a description of the whole database by means of the
logical model adopted by the dbms (that is, one of the models described
earlier: relational, hierarchical, network or object).

The internal schema describes the implementation of the logical schema by
means of physical storage structures. For example, a relation can be
physically organized as a sequential file, or a hash file, or a sequential file
with indices. We discuss physical structures for the organization of data in
Part III of the book, devoted to the technological aspects of dbmss.

An external schema is the description of a portion of the database by means
of the logical model. An external schema can offer a different organization of
the data in order to reflect the point of view of a particular user or group of
users. Thus it is possible to associate various external schemas with a single
logical schema: each of the external schemas will provide a specific view of
the database (or a subset thereof).

In most of the current systems, the external level is not explicitly present,
but it is possible to define derived relations (called views). For example, as
regards the database in Figure 1.1, a student on the Electrical Engineering
degree programme could be interested only in the courses included in the
prospectus for that degree programme; this information is present in the
relation ELECTRICALENGINEERING, shown in Figure 1.2, which can be derived
from the relation PROSPECTUS considering only the rows that refer to the
Electrical Engineering degree programme. Mechanisms for access
authorization can be associated with external schemas, in order to regulate
the access of users to the database: a user could be authorized to manipulate
only the data described by means of his external schema.

1.3.3 Data independence
The multilevel architecture described in the previous section guarantees
data independence, a major property of dbmss. In general, this property
allows users and applications programs to refer to data at a high level of
abstraction, ignoring implementation details. More precisely, data
independence presents two aspects, physical and logical independence.

Physical independence allows interaction with the dbms independently of
the physical aspects of the data. For example, it is possible to modify the

2. This level is called conceptual by some authors, following the terminology used
originally in the proposal. We prefer the term logical, because, as we have seen,
we use the term conceptual for other purposes.

Figure 1.2 A relational view.

ELECTRICALENGINEERING

DegreeProgramme Subject Year

Electrical Engineering Databases 4
Electrical Engineering Networks 4

8 Chapter 1
Introduction

organization of the files that implement the relations or the physical
allocation of files to the storage devices without influencing the high level
descriptions of the data and programs that use the data.

Logical independence guarantees that the interaction with the external level
of the database is independent of the logical level. For example, it is possible
to add a new external schema according to the demands of a new user or to
modify an external schema without having to modify the logical schema and
therefore the underlying physical organization of the data. At the same time,
it is possible to modify the logical level, maintaining unchanged the external
schema of interest to a given user (provided that its definition in terms of the
logical structures is adjusted).

It is important to underline that access to a database happens only through
the external level (which can coincide with the logical level); it is the dbms
that translates the operations in terms of the underlying levels. The
multilevel architecture is therefore the fundamental mechanism through
which dbmss achieve data independence.

1.4 Languages and users
dbmss are complex systems that offer a variety of languages for the
management of data and involve, in their life-cycle, a variety of users.

1.4.1 Database languages
Noting the distinction between schemas and instances that we illustrated
above, we may distinguish between database languages in a similar way.

• The data definition language (ddl) is used to define the logical, external
and physical schemas and access authorizations.

• The data manipulation language (dml) is used for querying and updating
database instances.

It is important to note that some languages, such as, for example, sql,
which we examine in detail in Chapter 4, offer the features of both a ddl and
a dml in an integrated form.

Access to data can be specified in various ways.

• Through interactive textual languages, such as sql.

• Through commands similar to the interactive ones embedded in
traditional programming languages, such as c, c++, cobol, fortran,
and so on; these are called host languages because they ‘host’ commands
written in the database language.

• Through commands similar to the interactive ones embedded in ad hoc
development languages, often with specific features (for example, for the
generation of graphs, complex printouts, or forms and menus). These
languages vary greatly from one system to another and therefore we can

Section 1.4 9
Languages and users

give an idea of only a few of their aspects in the appendices that are
devoted to specific systems.

• Through friendly interfaces that allow the formulation of queries without
the use of a textual language. These too differ greatly from one system to
another and are continually evolving. Again, we touch upon a few simple
and important aspects in the appendices.

A large number of programs for data entry, management and printing have
a common structure; consequently, the existence of development languages
and friendly interfaces considerably simplifies the production of
applications, reducing development time and costs.

1.4.2 Users and designers

Various categories of people can interact with a database or with a dbms. Let
us briefly describe the most important.

• The database administrator (dba) is the person responsible for the design,
control and administration of the database. The dba has the task of
mediating among the various requirements, often conflicting, expressed
by the users, ensuring centralized control over the data. In particular, he
or she is responsible for guaranteeing services, ensuring the reliability of
the system, and managing the authorizations for access to the data. Part II
of the book is about the design of databases, one of the major tasks of the
dba.

• The application designers and programmers define and create programs
that access the database. They use the data manipulation language or
various support tools for the generation of interfaces for the database, as
described above. Chapter 4 describes sql as a tool for the design of
applications on databases.

• The users employ the database for their own activities. They can, in their
turn, be divided into two categories.

° End users, who use transactions, that is, programs that carry out
frequent and predefined activities, with few exceptions known and
taken into account in advance.3

° Casual users, able to use the interactive languages to gain access to the
database, formulating queries (or updates) of various types. They can
be specialists in the language they use and interact frequently with the
database. Note that the term ‘casual’ means that the queries are not
predefined.

3. In database usage, the term transaction also has a more specific meaning, which
will be discussed in Part III of the book.

10 Chapter 1
Introduction

1.5 Advantages and disadvantages of DBMSs
We conclude this chapter by summarizing the essential characteristics of
databases and dbmss, and their advantages and disadvantages.

• dbmss allow data to be considered as a common resource of an
organization, available to all its authorized members.

• The database provides a standardized and precise model of that part of
the real world of interest to the organization, usable in existing
applications and, with the necessary extensions, in future applications.

• With the use of a dbms, centralized control of the data is possible, which
can be improved by forms of standardization and can benefit from an
‘economy of scale’.

• Sharing allows the reduction of redundancy and inconsistency.

• Data independence, the fundamental characteristic of dbmss, favours the
development of applications that are more flexible and more easily
modifiable.

The use of dbmss also carries some negative aspects, or at least ones that
require careful consideration, including the following.

• dbmss are expensive products, complex and quite different from many
other software tools. Their introduction therefore represents a
considerable investment, both direct (the cost of the product) and indirect
(the acquisition of the necessary hardware and software resources,
application migration, personnel training).

• dbmss provide, in standardized form, a whole set of services, which
necessarily carry a cost. In the cases where some of these services are not
needed, it is difficult to extract the services actually required from the
others, and this can generate inefficiencies.

In conclusion, we can say that situations can exist in which the adoption
of a dbms can be inconvenient: some applications with one or just a few users
without the need for concurrent access can sometimes be achieved more
profitably with ordinary files rather than with a dbms. However, dbms
technology has evolved considerably in recent years, resulting in more and
more efficient and reliable systems, on more and more widespread and less
expensive architecture, so increasing the convenience of developing
applications with a dbms.

1.6 Bibliography
There are many other books and additional readings on the general aspects
of database systems. The more similar in goals to this book, with balanced
treatment of methodological and technical aspects, include ElMasri and

Section 1.6 11
Bibliography

Navathe [38], Ramakhrishnan [69], Korth, Silbesrchatz, and Sudarshan [78],
and O’Neil [63]. Date’s book [33], now in its sixth edition, is very popular in
the practitioners’ world, since it gives a simple description of many
important aspects. Ullman [88] offers an integrated view of existing database
technology and possible ‘knowledge-based’ extensions, a direction that was
popular in the eighties. Ullman and Widom [89] focus on a first-level course
in databases that includes both a relational and an object-based approach.
Additionally, we mention that Stonebraker [80] offers a collection of many
influential papers in the field, which can be used to follow the evolution of
the technology. For details relating to specific aspects mentioned in this
chapter, we refer the reader to the bibliographies of the succeeding chapters,
in which they will be explored in more detail.

12 Chapter 1
Introduction

Part I

IRelational databases

2
2The relational model

Most current database systems are based on the relational model, which was
proposed in a scientific publication by E. F. Codd [] in , with the
intention of providing a basis for data independence. The establishment of
the relational model as a de facto standard was rather slow, due to its high
level of abstraction: efficient solutions were not immediately discovered for
relational structures, which were different from those in use at that time.
Although the first prototypes of relational systems had already been created
in the early seventies, the first relational systems appeared on the market in
the early eighties, acquiring a significant share of it only in the mid-eighties.

In this chapter, we illustrate the structural aspects of the model, that is, the
way it is used to organize data. After a brief discussion of the various logical
models, we show how the concept of a relation can be used to represent the
information in a database. Then, we briefly discuss the techniques for the
representation of incomplete information and we examine integrity
constraints, which allow the specification of additional properties that must
be satisfied by the database.

The presentation of the relational model is completed in the next two
chapters, the first one dedicated to the principles of query operations on
relational databases, and the second one to sql, the language used in real
systems for the definition, updating and querying of relational databases.

2.1 The structure of the relational model

2.1.1 Logical models in database systems
The relational model is based on two concepts, relation and table, which differ
in their nature but are highly related. The notion of relation is formal, as it
comes from mathematics, in particular from set theory, while the concept of
table is simple and intuitive. Their simultaneous presence is probably the
major reason for the great success of the relational model. In fact, tables offer
a natural understanding even to end users who come across them in many

16 Chapter 2
The relational model

contexts other than in databases. On the other hand, the availability of a clear
and simple formalization has allowed the development of a theory to support
the model, with very interesting results.

The relational model satisfies the requirement of data independence, as
discussed in Chapter : users and programmers make reference only to
relations (logical or external level), which are then implemented by means of
appropriate physical structures; however, to gain access to the data it is not
necessary to know about the physical structures themselves. The relational
model was proposed at the end of the sixties in order to provide a higher
level of data independence than the network and hierarchical models. These
included reference to the underlying structure, by means of the use of
pointers and the physical ordering of data.

2.1.2 Relations and tables
Let us recall from basic mathematics courses that, given two sets, and ,
the cartesian product of and , in symbols , is the set of ordered
pairs , such that is an element of and is an element of .
For example, given the sets A = { 1,2,4} and B = { a,b} , the cartesian product

 is the set of all the possible pairs in which the first element belongs to
A and the second to B. Since A has three elements and B has two, we have
six pairs:

In mathematics, a relation on the sets and (called domains of the
relation) is a subset of . Given the sets A and B above, an example
relation on A and B consists of the set of pairs .

The above definition does not indicate whether the sets we are considering
may be finite or not, and therefore includes the possibility of infinite sets
(and thus of infinite relations). In practice, since our databases must be stored
in computer systems of finite size, the relations are necessarily finite. At the
same time, it can be useful for the domains to have an infinite size (so that it
is always possible to assume the existence of a value not present in the
database). Thus, we will assume where necessary that our databases are made
up of finite relations on possibly infinite domains.

Relations can be represented graphically in table form. The two tables
shown in Figure . describe the cartesian product and the
mathematical relation on A and B illustrated above.

The definitions of cartesian product and relation refer to two sets, but can
be generalized with respect to the number of sets. Given sets

, not necessarily distinct, the cartesian product of
, represented by , is made up of the set of

the n-tuples , such that belongs to , for . A
mathematical relation on the domains is a subset of the
cartesian product . The number n of the components of

D1 D2
D1 D2 D1 D2×

v1 v2(,) v1 D1 v2 D2

A B×

1 a,() 1 b,() 2 a,() 2 b,() 4 a,() 4 b,(),,,,,{ }

D1 D2
D1 D2×

1 a,() 1 b,() 4 b,(),,{ }

A B×

n 0>
D1 D2… Dn,,
D1 D2… Dn,, D1 D2 … Dn×××

v1 v2 … vn,,, vi Di 1 i n≤ ≤
D1 D2… Dn,,

D1 D2 … Dn×××

Section 2.1 17
The structure of the relational model

the cartesian product (and therefore of every n-tuple) is called the degree of
the cartesian product and of the relation. The number of elements (that is, of
n-tuples) of the relation is, as usual in set theory, the cardinality of the
relation. Figure .a shows the tabular representation of a cartesian product
on the domains C = {x, y} , D = {a, b, c} and E = {3, 5} , with degree .
Figure .b shows a relation on C × D × E with degree and cardinality .

Relations (and the corresponding tables) can be used to represent data for
any application. For example, the relation in Figure . contains data relating
to the results of a set of soccer matches.

It is defined with reference to two domains integer and string, each of
which appears twice. The relation is in fact a subset of the cartesian product:

String × String × Integer × Integer

Figure 2.1 Representation in table form of a cartesian product and a
relation.

Figure 2.2 A ternary cartesian product and a ternary relation.

Figure 2.3 A relation with the results of soccer matches.

1 a
1 b
2 a
2 b
4 a
4 b

1 a
1 b
4 b

(a) x a 3
x a 5
x b 3
x b 5
x c 3
x c 5
y a 3
y a 5
y b 3
y b 5
y c 3
y c 5

(b) x a 3
x a 5
x c 5
y a 3
y c 3
y c 5

Real Madrid Liverpool 3 1
Liverpool Milan 2 0
Real Madrid Roma 1 2
Roma Milan 0 1

18 Chapter 2
The relational model

2.1.3 Relations with attributes
We can make various observations about relations and their tabular
representations. According to the definition, a mathematical relation is a set
of ordered n-tuples , with , , …, . With
reference to the use that we make of relations for organizing data in our
database, we can say that each n-tuple contains various items of data
connected to each other, or rather establishes links between them; for
example, the first n-tuple of the relation in Figure . establishes a
relationship between the values Real Madrid, Liverpool, 3, 1, to indicate that
the result of the match between Real Madrid and Liverpool is to . We can
then remember that a relation is a set and therefore:

• there is no defined order between the n-tuples; in the tables that represent
them there is obviously a ‘presentation’ order, but it is immaterial, since
two tables with the same rows, but in different order, represent the same
relation;

• the n-tuples of a relation are distinct one from the other, since among the
elements of a set there cannot be two identical elements; therefore a table
can represent a relation only if its rows are different from one another.

At the same time, each n-tuple has an ordering: the i-th value of each one
comes from the i-th domain. This is essential for understanding the meaning
of the data in the relation: if we were to swap the third and fourth
components around in the relation in Figure ., it would completely change
the meaning of our relation, in that the results of the matches would be
inverted. This happens because each of the two domains integer and string
appears twice in the relation, and the two occurrences are distinguished on
the basis of their positions: the first appearance of the domain string refers to
the home team, and the second to the visiting team: similarly, the two
occurrences of the domain integer.

This ordering among the domains of a relation actually corresponds to an
unsatisfactory characteristic of the concept of relation as defined in
mathematics with regard to the possibility of organizing and using data.
Indeed, in computer science there is a tendency to prefer non-positional
notations to positional ones; the former allows reference to the fields of a
record by means of symbolic names, while the latter refers to the same fields
through their ordering, and should be used only when the ordering
corresponds to an intrinsic feature, as happens, for example, in numerical
analysis problems, in which arrays offer an obvious and direct representation
of vectors and matrices. The data that we wish to organize in the relations of
our databases has a structure that is very similar to that of records: a relation
is substantially a set of homogenous records, that is, defined on the same
fields. For this reason, we introduce a non-positional notation, by associating
names with the domains in a relation, referred to as attributes, which
describe the ‘roles’ played by the domains. For example, for the relation

v1 v2 … vn,,,() v1 D1∈ v2 D2∈ vn Dn∈

Section 2.1 19
The structure of the relational model

concerning the matches, we can use names such as HomeTeam, VisitingTeam,
HomeGoals, VisitorGoals; in the tabular representation, we use the attributes
as column headings (Figure .). Given the necessity of identifying the
components unambiguously, the attributes of a relation (and therefore the
column headings) must be different from each other.

By modifying the definition of relation with the introduction of attributes,
and still before giving the formal definition, we can see that the ordering of
attributes (and of the columns in the tabular representation) is irrelevant: it
is no longer necessary to speak of first domain, second domain, and so on; it
is sufficient to refer to the attributes. Figure . shows another tabular
representation of the relation in Figure ., with the attributes, and therefore
the columns, in a different order (after the American style in which the home
team is shown after the visiting team).

To formalize the concepts, let us establish the correspondence between
attributes and domains by means of a function DOM : X → D, which
associates with each attribute A ∈ X a domain DOM(A) ∈ D. Then, let us say
that a tuple on a set of attributes X is a function t, which associates with each
attribute A ∈ X a value of the domain DOM(A). We can therefore give the
new definition of relation: a relation on X is a set of tuples on X. The
difference between this definition and the traditional one of set theory
resides only in the definition of tuple: in a mathematical relation we have n-
tuples whose elements are distinguished by position, whereas, in the new
definition, the elements are distinguished by the attributes, that is, by a non-
positional technique. From now on, we will use the term ‘relation’ to refer to
the new non-positional definition.

Figure 2.4 A relation with attributes.

Figure 2.5 Another representation of the relation in Figure ..

HomeTeam VisitingTeam HomeGoals VisitorGoals

Real Madrid Liverpool 3 1
Liverpool Milan 2 0
Real Madrid Roma 1 2
Roma Milan 0 1

VisitingTeam HomeTeam VisitorGoals HomeGoals

Liverpool Real Madrid 1 3
Milan Liverpool 0 2
Roma Real Madrid 2 1
Milan Roma 1 0

20 Chapter 2
The relational model

Let us introduce a useful notation that we will use frequently in the future.
If t is a tuple on X and , then (or t.A) indicates the value of t on
A. For example, if t is the first tuple of the relation in Figure ., we can say
that

t[VisitingTeam] = Liverpool

The same notation is also used for sets of attributes, in which case it
denotes a tuple:

t[VisitingTeam, VisitorGoals]

is a tuple on two attributes.1

2.1.4 Relations and databases
As we have already seen, a relation can be used to organize relevant data for
an application. However, a single relation is not usually sufficient for this
purpose: a database is generally made up of several relations, whose tuples
contain common values where this is necessary in order to establish
correspondences. Let us explore this concept more thoroughly by
commenting on the database in Figure .:

1. There is an overloading in the notation here: if A is an attribute, then t[A] is a
value, while if X is a set of attributes, then t[X] is a tuple, that is, a function.
Moreover, as we shall see, sets consisting of a single attribute will be denoted by
the name of the attribute itself; therefore t[A] denotes both a value and a tuple
on an attribute. However, the ambiguity will usually be irrelevant.

Figure 2.6 A relational database.

A X∈ t A[]

STUDENTS RegNum Surname FirstName BirthDate

276545 Smith Mary 25/11/1980
485745 Black Anna 23/04/1981
200768 Verdi Paolo 12/02/1981
587614 Smith Lucy 10/10/1980
937653 Brown Mavis 01/12/1980

EXAMS Student Grade Course

276545 C 01
276545 B 04
937653 B 01
200768 B 04

COURSES Code Title Tutor

01 Physics Grant
03 Chemistry Beale
04 Chemistry Clark

Section 2.1 21
The structure of the relational model

• the first relation contains information relating to a set of students, with
registration numbers (RegNum), surnames (Surname), first names
(FirstName) and dates of birth (BirthDate);

• the third relation contains information on some courses, with code, title
and tutor;

• the second relation contains information relating to exams: the student’s
registration number, the course code and the grade achieved; this relation
makes reference to the data contained in the other two: to the students,
by means of the registration number, and to the courses, by means of
their codes.

The database in Figure . shows one of the fundamental characteristics of
the relational model, which is often expressed by saying that it is ‘value-
based’: the references between data in different relations are represented by
means of the values of the domains that appear in the tuples. Instead the
network and hierarchical models, which were defined before the relational
model, represent references explicitly by means of pointers and for this
reason are called ‘pointer-based’ models. Since in this book we do not have a
detailed presentation of these models, we briefly comment here on the
fundamental characteristics of a simple model with pointers. Figure .
shows the same database as that in Figure ., where we have used pointers
instead of value-based references (the registration numbers of the students
and the course codes).

Figure 2.7 A database with pointers.

STUDENTS RegNum Surname FirstName BirthDate

276545 Smith Mary 25/11/1980
485745 Black Anna 23/04/1981
200768 Verdi Paolo 12/02/1981
587614 Smith Lucy 10/10/1980
937653 Brown Mavis 01/12/1980

EXAMS Student Grade Course
● C ●

● B ●

● B ●

● B ●

COURSES Code Title Tutor

01 Physics Grant
03 Chemistry Beale
04 Chemistry Clark

22 Chapter 2
The relational model

Compared with a pointer-based model, the relational model has several
advantages:

• the logical representation of data (consisting only of values) makes no
reference to the physical one, which can also vary with time: the
relational model therefore allows physical data independence;

• it represents only what is relevant from the point of view of the
application (the user); the pointers are additional, related to implement-
ational aspects; in the models with pointers, the application programmer
has to refer to data that is not significant for the application;

• given that all of the information is contained in the values, it is relatively
simple to transfer the data from one context to another (for example, if it
is necessary to move the database from one system to another); with
pointers the operation is more complex, because the pointers have a
meaning that is local to each system, and so cannot be just exported
directly.

Note that, even in a relational database, on the physical level, the data can
be represented by techniques that require the use of pointers. The difference,
with regard to pointer-based models, is that the pointers are not visible at the
logical level. Furthermore, in the object database systems, which represent
one of the evolutionary directions of databases discussed in Chapter ,
object-identifiers show some of the characteristics of pointers, although at a
higher level of abstraction.

We can recap at this point the definitions of the relational model, with a
few details, distinguishing the levels of the schemas from those of the
instances.

• A relation schema consists of a symbol, called name of the relation R and a
set of (names of) attributes , the whole usually
indicated . A domain is associated with each attribute.

• A database schema consists of a set of relation schemas with different
names:

• A relation instance (or simply relation) on a schema is a set r of
tuples on X.

• A database instance (or simply database) on a schema R =
is a set of relations r = {r1, r2,…,rn} , where

every ri, for , is a relation on the schema .

To give an example, we can say that the database schema in Figure . is:

R = {STUDENTS(RegNum, Surname, FirstName, BirthDate),
EXAMS(Student, Grade, Course),

COURSES(Code, Title, Tutor)}

X A1 A2 … An,,,{ }=
R X()

R R1 X1() R2 X2() … Rn Xn(),,,{ }=

R X()

R1 X1() R2 X2() … Rn Xn(),,,{ }
1 i n≤ ≤ Ri Xi()

Section 2.1 23
The structure of the relational model

For convenience, we summarize the conventions that we adopt hereafter
(and that we have already used in the definitions and in the examples):

• the attributes (when they do not use significant names from the
application point of view) will be indicated by letters near the beginning
of the alphabet in capitals, possibly with a superscript or a subscript:

;

• sets of attributes will be indicated by letters near the end of the alphabet
in capitals: ; a set whose components we wish to
highlight will be denoted by the juxtaposition of the names of the
attributes themselves: we will write rather than

; similarly, the union of sets will be denoted by the
juxtaposition of the corresponding names: we will write XY rather than

; combining the two conventions, we will write XA instead of
;

• for the relation names we will use the letter(s) R (and S) in capitals: R1, S,
S′, …; for the relation instances, we will use the same symbols as the
corresponding relation names, but in lower case.

In order to illustrate further the fundamental concepts of the relational
model, let us discuss two more examples.

First we will note how relations on a single attribute are admissible. This
makes particular sense in databases consisting of several relations, in which
a relation on a single attribute contains values that appear as values of an
attribute of another relation. For example, in a database in which the relation
STUDENTS is shown in Figure ., it is possible to use another relation on a
single attribute, RegNum, to indicate the students who are also workers (by
means of the relevant RegNum, which must appear in the relation STUDENTS)
(see Figure .).

Let us now look at a more complex example, which shows how the
relational model allows the representation of information with a detailed
structure. In Figure ., three receipts from a restaurant are shown. They
have a structure that (apart from the preprinted phrases in bold) includes
some atomic information (number, date and total) and a variable number of

Figure 2.8 A relation on a single attribute.

A B C A ′ A1 …, , , , ,

X Y Z X ′ X1 …, , , , ,

X ABC=
X A B C,,{ }=

X Y∪
X A{ }∪

STUDENTS

RegNum Surname FirstName BirthDate

276545 Smith Mary 25/11/1980
485745 Black Anna 23/04/1981
200768 Verdi Paolo 12/02/1981
587614 Smith Lucy 10/10/1980
937653 Brown Mavis 01/12/1980

WORKERS

RegNum

276545
485745
937653

24 Chapter 2
The relational model

lines, each referring to a homogenous group of dishes (with quantity,
description and overall cost). Since our relations have a fixed structure, it is
not possible to represent the group of receipts with a single relation: it would
not be possible to represent a number of dishes that is not known in advance.
We can, however, represent the same information by means of two relations,
as shown in Figure .: the relation RECEIPTS contains the data shown only

Figure 2.9 Some receipts.

Figure 2.10 A database for the receipts in Figure ..

Da Mario Da Mario Da Mario
Receipt No: Receipt No: Receipt No:

Date: // Date: // Date: //

 covers . 2 covers . covers .
 hors d’oeuvre . 2 hors d’oeuvre . hors d’oeuvre .
 first course . 2 first course . first course .
 steak . 2 bream . bream .

2 coffee . salad .
 coffee .

Total: . Total: . Total: .

RECEIPTS

Number Date Total

1357 5/5/92 29.00
2334 4/7/92 27.50
3007 4/8/92 29.50

DETAILS

Number Quantity Description Cost

1357 3 covers 3.00
1357 2 hors d’oeuvre 5.00
1357 3 first course 9.00
1357 2 steak 12.00
2334 2 covers 2.00
2334 2 hors d’oeuvre 2.50
2334 2 first course 6.00
2334 2 bream 15.00
2334 2 coffee 2.00
3007 2 covers 3.00
3007 2 hors d’oeuvre 6.00
3007 3 first course 8.00
3007 1 bream 7.50
3007 1 salad 3.00
3007 2 coffee 2.00

Section 2.1 25
The structure of the relational model

once in each receipt (number, date and total) and the relation DETAILS

contains the various lines of each receipt (with quantity, description and
overall cost), associated with the same receipt, by means of the appropriate
receipt number.

We should point out here that for the database in Figure . to represent
the receipts correctly, two conditions must be satisfied:

• it is not necessary to keep track of the order in which the lines appear on
each receipt; in fact, since no order is defined among the tuples of a
relation, the tuples in DETAILS are not in any fixed order;

• no duplicate lines appear on any receipt (which could happen in the case
of different orders for the same dishes with the same quantity).

Both problems can be resolved by adding an attribute, which indicates the
position of the line of the receipt (see Figure .); in this way it is always

possible to reconstruct perfectly the contents of all the receipts. In general,
we can say that the solution to Figure . is preferable when the information
on the receipt is of interest only for its own sake (and in the receipts there are
no repeated lines), while that in Figure . makes it possible to keep track
of the actual layout of each receipt. The example demonstrates that in a given
situation, the data to be represented in the database can be different
according to the specific requirements of the application.

Figure 2.11 Another database for the receipts.

RECEIPTS

Number Date Total

1357 5/5/92 29.00
2334 4/7/92 27.50
3007 4/8/92 29.50

DETAILS

Number Line Quantity Description Cost

1357 1 3 covers 3.00
1357 2 2 hors d’oeuvre 5.00
1357 3 3 first course 9.00
1357 4 2 steak 12.00
2334 1 2 covers 2.00
2334 2 2 hors d’oeuvre 2.50
2334 3 2 first course 6.00
2334 4 2 bream 15.00
2334 5 2 coffee 2.00
3007 1 2 covers 3.00
3007 2 2 hors d’oeuvre 6.00
3007 3 3 first course 8.00
3007 4 1 bream 7.50
3007 5 1 salad 3.00
3007 6 2 coffee 2.00

26 Chapter 2
The relational model

2.1.5 Incomplete information and null values
The structure of the relational model, as discussed in the preceding sections,
is very simple and powerful. At the same time, however, it imposes a certain
degree of rigidity, in that the information must be represented by means of
homogenous tuples of data: in particular, in any relation we can represent
only tuples corresponding to the schema of the relation. In fact, in many
cases, the available data might not correspond exactly to the chosen format.
For example, consider the relation schema:

PERSONS(Surname, FirstName, Address, Telephone)

The value of the attribute Telephone might not be available for all the
tuples. It is worth noting that it would not be correct to use a value of the
domain to represent an absence of information, as this would generate
confusion. In this case, supposing the telephone numbers to be represented
by integers, we could, for example, use zero to indicate the absence of the
significant value. In general, however, this choice is unsatisfactory, for two
reasons.

In the first place, it requires the existence of a value of the domain never
used for significant values: in the case of telephone numbers, zero is clearly
distinguishable, but in other cases there exists no available value for this
purpose; for example, in an attribute that represents the date of birth and
that uses as a domain a type Date correctly defined, there are no ‘unused’
elements that would therefore be usable to denote absence of information.

In the second place, the use of domain values can generate confusion: the
distinction between actually significant values and fictitious ones (‘place-
holders’) is hidden, and therefore the programs that have access to the
database must take this into account, distinguishing among them (and
keeping track of which are the fictitious values in each case).

In order to represent simply, but at the same time conveniently, the non-
availability of values, the concept of relation is usually extended to include
the possibility that a tuple can assume, on each attribute, either a value of
the domain, as seen up to now, or a special value, called a null value. The null
value denotes an absence of information, and is an additional value, not in
the domain. In the tabular representations we will use for the null values the
symbol NULL, as in Figure ., which deals with the addresses of

Figure 2.12 A relation with null values.

City GovernmentAddress

Rome Via Quattro Novembre
Florence NULL

Tivoli NULL

Prato NULL

Section 2.1 27
The structure of the relational model

government offices in county towns in Italy. Note that all county towns have
local government offices, but other towns do not. With reference to the table
in the figure, we can note how in effect the three null values that appear in it
are assigned for different reasons, as follows.

• Florence is a county town and as such must certainly have a local
government office. At the moment we do not know its address. The null
value is used because the real value cannot be recorded in the database:
for this reason we say that it is an unknown value.

• Tivoli is not a county town and therefore has no local government office.
Thus the attribute GovernmentAddress can have no value for this tuple.
Here the null value denotes the inapplicability of the attribute, or in other
words, the non-existence of the value: the value is non-existent.

• The county of Prato has been established very recently and we do not
know if the local government office has yet been opened, nor do we know
its address (whether already operational or planned). In effect, we do not
know if the value exists and, if it exists, we do not know what it is. In
fact, we find ourselves in a situation that corresponds to the logical
disjunction (the ‘or’) of the two preceding: the value is either non-
existent or unknown. This type of null value is usually called no-
information, because it tells us absolutely nothing: the value might or
might not exist, and if it exists we don’t know what it is.

In relational database systems no hypothesis is made about the meaning of
null values; therefore, in practice, we find ourselves in the third situation,
that of the no-information value.

For a further reflection on null values, consider now the database in
Figure ., which is defined on the same database schema as Figure .. The
null value on the date of birth in the first tuple of the relation STUDENTS is
more or less admissible, in that one can accept that the information is not
essential in this context. However, a null value for the registration number
or the course code creates serious problems, since these values, as we have
discussed with reference to Figure ., are used to establish correspondences
between tuples of different relations. At this point, the presence of null
values in the relation EXAMS actually makes the information unusable: for
example, the second tuple, with just the grade and two null values, provides
no useful information. Thus, the presence of null values in a relation can in
some cases generate doubts as to the actual significance and identity of the
tuples: the last two tuples of the relation COURSES can be different or can
actually coincide! Hence the necessity for keeping a suitable control over the
use of null values in our relations is evident: only certain relation instances
should be admitted. In general, when a relation is defined, it is possible to
specify that null values are admissible only for some attributes and not for
others. At the end of the next section we will present a criterion for the
selection of attributes from which null values must be excluded.

28 Chapter 2
The relational model

2.2 Integrity constraints
The structures of the relational model allow us to organize the information of
interest to our applications. In many cases, however, it is not true that every
set of tuples in the schema represents information that is correct for the
application. We have already discussed the problem briefly with regard to
the presence of null values. Now, we will look at the problem in greater
detail, initially referring to relations without null values. Let us consider, for
example, the database in Figure . and note in it various situations that
should not occur.

For the purpose of this exercise, we will assume that the maximum grade
is A, for which ‘honours’ can be awarded, and the minimum is F.

• In the first tuple of the relation EXAMS we have an exam result of K, which
is not admissible, as grades must be between A and F.

Figure 2.13 A database with many null values.

Figure 2.14 A database with incorrect information.

STUDENTS

RegNum Surname FirstName BirthDate

276545 Smith Mary NULL

NULL Black Anna 23/04/1972
NULL Verdi Paolo 12/02/1972

EXAMS

Student Grade Course

276545 C 01
NULL B NULL

200768 A NULL

COURSES

Code Title Tutor

01 Physics Grant
03 Chemistry NULL

NULL Chemistry Clark

STUDENTS

RegNum Surname FirstName BirthDate

200768 Verdi Paolo 12/02/1981
937653 Smith Lucy 10/10/1980
937653 Brown Mavis 01/12/1980

EXAMS

Student Grade Honours Course

200768 K 05
937653 B honours 01
937653 A honours 04
276545 C 01

COURSES

Code Title Tutor

01 Physics Grant
03 Chemistry Beale
04 Chemistry Clark

Section 2.2 29
Integrity constraints

• In the second tuple again in the relation EXAMS an honours is shown
awarded for an exam for which the grade is B. Honours can be awarded
only if the grade is A.

• The last two tuples of the relation STUDENTS contain information on two
different students with the same registration number: again an impossible
situation, given that the registration number exists for the precise
purpose of identifying each student unambiguously.

• The fourth tuple of the relation EXAMS shows, for the attribute Student, a
value that does not appear among the registration numbers of the relation
STUDENTS: this is also an unacceptable situation, given that the
registration number provides us with information only as a link to the
corresponding tuple of the relation STUDENTS. Similarly, the first tuple
shows a course code that does not appear in the relation COURSES.

In a database, it is essential to avoid situations such as those just described.
For this purpose, the concept of integrity constraint was introduced, as a
property that must be satisfied by all correct database instances. Each
constraint must be seen as a predicate, which associates the value true or false
with each instance. In general, we associate a collection of constraints with
a database schema and we consider correct (or legal) the instances that satisfy
all the constraints. In each of the four cases discussed above, a constraint
would prohibit the undesirable situation.

It is possible to classify the constraints according to the elements of the
database that are involved in it. There are two categories, the first of which
has some particular subcases.

• A constraint is intra-relational if its satisfaction is defined with regard to a
single relation of the database; the first three cases above correspond to
intra-relational constraints; in some cases, the definition of the constraint
considers the tuples (or even the values) separately from each other.

° A tuple constraint is a constraint that can be evaluated on each tuple
independently from the others: the constraints relating to the first two
cases fall into this category.

° As a still more specific case, a constraint defined with reference to
single values (as in the first example in which, for the attribute Grade,
only values between A and F are allowed) is called a value constraint or
domain constraint, given that it imposes a restriction on the domain of
the attribute.

• A constraint is inter-relational if it involves more that one relation; this is
seen in the fourth example, in which the unacceptable situation can be
prohibited by requesting that a RegNum appears in the relation EXAMS

only if it appears in the relation STUDENTS.

In the following sections we will examine tuple constraints, key

30 Chapter 2
The relational model

constraints, which are the most important intra-relational constraints, and
referential constraints, which are the most important inter-relational
constraints.

2.2.1 Tuple constraints
As we have said, tuple constraints express conditions on the values of each
tuple, independently of other tuples.

A possible syntax for these constraints permits the definition of boolean
expressions (that is, with connectives and, or and not) with atoms that
compare values of attributes (or arithmetical expressions using values of
attributes). The violated constraints in the first two examples are described
by the following expressions:

(Grade ≥ A) and (Grade ≤ F)
(not (Honours = ‘honours’)) or (Grade = A)

In particular, the second constraint indicates that honours is admissible
only if the grade is equal to A (saying that either there is no honours, or the
grade is equal to A, or both). The first constraint is in fact a domain
constraint, given that it involves a single attribute.

The definition we have given also admits more complex expressions,
provided that they are defined on the values of single tuples. For example,
on a relation on the schema:

PAYMENTS(Date, Amount, Deductions, Net)

it is possible to define the constraint that imposes the condition that the net
amount is equal to the difference between the total amount and the
deductions, in the following manner:

2.2.2 Keys
In this section we will discuss key constraints, which are undoubtedly the
most important of the relational model; we could even go so far as to say that
without them the model itself would have no sense. Let us begin with an
example. In the relation in Figure ., the values of the various tuples on
the attribute RegNum are all different from each other: the value of the
RegNum unambiguously identifies the students; the very idea of the
registration number itself was introduced many years ago, well before the
introduction of databases, precisely in order to have a simple and effective
tool for referring to the students in an unambiguous way. Similarly, in the
relation there are no pairs of tuples with the same values on any of the three
attributes Surname, FirstName and BirthDate: these pieces of information also
identify each person unambiguously.2 Other sets of attributes also identify
unambiguously the tuples of the relation in Figure .: for example, the pair
RegNum and DegreeProg, given that RegNum is sufficient on its own.

Net Amount Deductions–=

Section 2.2 31
Integrity constraints

Intuitively, a key is a set of attributes used to identify unambiguously the
tuples in a relation. More precisely:

• a set of attributes K is a superkey for a relation r if r does not contain two
distinct tuples and with ;

• a set of attributes K is a key for r if K is a minimal superkey (that is, there
exists no other superkey K′ of r that is contained in K as proper subset).

In the example, in Figure .:

• the set RegNum is a superkey; it is also a minimal superkey, given that it
contains a sole attribute and thus we can conclude that RegNum is a key;

• the set Surname, FirstName, BirthDate is a superkey; furthermore, none of
its subsets is a superkey: in fact there are two equal tuples (the first and
second) on Surname and BirthDate, two (the last) equal on Surname and
FirstName and two (the third and fourth) equal on FirstName and
BirthDate; thus Surname, FirstName, BirthDate is another key;

• the set RegNum, DegreeProg is a superkey, as we have seen; however it is
not a minimal superkey, because one of its proper subsets, RegNum, is
itself a minimal superkey, and thus RegNum, DegreeProg is not a key;

• the set FirstName, DegreeProg is not a superkey, because there are two
tuples in the relation, the last two equal, on both FirstName and
DegreeProg.

In order to discuss the subject in more depth, let us examine another
relation, that shown in Figure .. It contains no pair of tuples that agree on
both Surname and DegreeProg. Thus, for this relation, the set Surname,
DegreeProg is a superkey. Since there are tuples that agree on Surname (the
first two) and on DegreeProg (the second and the fourth), this set is a minimal
superkey and therefore a key. Now, in this relation, Surname and DegreeProg
identify the tuples unambiguously; but can we say that this is true in

2. We assume that first name, surname and date of birth uniquely identify people;
this is not true in general, but can be assumed as true within small communities,
and it is convenient for the sake of the example.

Figure 2.15 A relation to illustrate keys.

RegNum Surname FirstName BirthDate DegreeProg

284328 Smith Luigi 29/04/59 Computing
296328 Smith John 29/04/59 Computing
587614 Smith Lucy 01/05/61 Engineering
934856 Black Lucy 01/05/61 Fine Art
965536 Black Lucy 05/03/58 Fine Art

t1 t2 t1 K[] t2 K[]=

32 Chapter 2
The relational model

general? Certainly not, given that there could easily be students with the
same surname enrolled on the same degree programme.

Thus we can say that Surname, DegreeProg is ‘by chance’ a key for the
relation in Figure ., while we are interested in the keys corresponding to
integrity constraints, satisfied by all the legal relations on a certain schema.
When defining a schema, we associate with it constraints that describe
properties in the real world, for which information is held in our database.
The constraints are defined at the schema level, with reference to all the
instances that must satisfy all the constraints. A correct instance can then
satisfy other constraints beyond those defined in the schema. For example
with a schema:

STUDENTS(RegNum, Surname, FirstName, BirthDate, DegreeProg)

are associated the constraints that impose as keys the two sets of attributes
discussed above:

RegNum
Surname, FirstName, BirthDate

Both the relations in Figure . and Figure . satisfy both the
constraints; the second also satisfies (‘by chance’, as we said) the constraint
that says that Surname, DegreeProg is another key.

We can now make some observations about keys, which justify the
importance attributed to them. In the first place, we can note how each
relation always has a key. A relation is a set, and thus is made up of elements
that are different from each other; as a consequence, for each relation r(X),
the set X of all the attributes is a superkey for it. Now there are two cases:
either such a set is also a key, so confirming the existence of the key itself, or
it is not a key, because there exists another superkey contained within it;
then we can proceed by repeating the same argument on this new set and so
on; since the set of attributes involved in a relation is finite, the process
terminates in a finite number of steps with a minimal superkey. Thus, we can
conclude that every relation has a key.

The fact that at least one key can be defined for each relation guarantees
access to all the values of a database and their unambiguous identification.
Moreover, it allows the effective establishment of the links between data
contained in different relations, which characterize the relational model as a

Figure 2.16 Another relation to illustrate keys.

RegNum Surname FirstName BirthDate DegreeProg

296328 Smith John 29/04/59 Computing
587614 Smith Lucy 01/05/61 Engineering
934856 Black Lucy 01/05/61 Fine Art
965536 Black Lucy 05/03/58 Engineering

Section 2.2 33
Integrity constraints

‘value-based’ model. Let us look again at the example in Figure .. In the
relation EXAMS, reference is made to the students by means of RegNum, and
to the courses by means of the respective codes: in effect, RegNum is the key
of the relation STUDENTS and Code is the key of the relation COURSES. So the
values of the key attributes are indeed used to refer to the content of each of
the relations from outside (that is, from other relations).

2.2.3 Keys and null values
We can now return to the discussion initiated at the end of Section ..,
regarding the necessity of avoiding the proliferation of null values in our
relations. In particular, we will note how, in the presence of null values for
key values, it is no longer true that the values of the keys permit the
unambiguous identification of the tuples of the relations and to establish
connections between tuples of different relations. To this end, consider the
relation in Figure ., defined on the same schema as the relation in
Figure .. It has two keys, one made up of the sole attribute RegNum and
the other of the attributes Surname, FirstName and BirthDate. The first tuple
has null values under RegNum and BirthDate and therefore on at least one
attribute of each key: this tuple is not identifiable in any possible way; in
particular, if we want to insert another tuple into the database relating to a
student named John Smith, then we cannot know if we are in fact referring
to the same student or to another. Furthermore, it is not possible to refer to
this tuple in other relations of the database, since this must be done by means
of the value of a key. The last two tuples also present a problem: in spite of
the fact that each of them has a key with no nulls (RegNum in the third tuple
and Surname, FirstName, BirthDate in the last), the presence of null values
makes it impossible to know if the two tuples refer to two different students
or the same one.

The example clearly suggests the necessity of limiting the presence of null
values in the keys of relations. In practice, we adopt a simple solution, which
makes it possible to guarantee the unambiguous identification of each tuple
and refer to it from within other relations: null values are forbidden on one
of the keys (called the primary key) and usually (that is, unless specified
otherwise) allowed on the others. The attributes that make up the primary
key are often underlined, as shown in Figure .. Most of the references
between relations are realized through the values of the primary key.

Figure 2.17 A relation with null values on all the keys.

RegNum Surname FirstName BirthDate DegreeProg

NULL Smith John NULL Computing
587614 Smith Lucy 01/05/61 Engineering
934856 Black Lucy NULL NULL

NULL Black Lucy 05/03/58 Engineering

34 Chapter 2
The relational model

It is worth noting that in most real cases it is possible to find attributes
whose values are available for a primary key. However, in some cases this
does not happen and it becomes necessary to introduce an additional code
attribute that is generated and associated with each tuple at the time of
insertion. Note that many identifying codes (including, for example, student
registration numbers and social security numbers) were introduced in the
past, before the invention or the widespread adoption of databases, precisely
to guarantee the unambiguous identification of the subject of a domain
(respectively the students and the citizens) and to simplify the reference to
them – precisely the goals of keys.

2.2.4 Referential constraints

In order to discuss the most important class of inter-relational constraints, let
us consider the database in Figure .. In it, the first relation contains
information relating to a set of traffic offences, the second to the police
officers who have made the charges and the third to a set of motor vehicles.
The information in the relation OFFENCES is given meaning and completeness
through reference to the other two relations; to the relation OFFICERS, by
means of the attribute Officer, which contains registration numbers (RegNum)
of officers corresponding to the primary key of the relation OFFICERS, and to
the relation CARS by means of the attributes Registration and Department3,
which contain values that form the primary keys of the relation CARS. The
references are significant in that the values in the relation OFFENCES are equal
to values actually present in the other two: if a value of Officer in OFFENCES

does not appear as a value of the key of OFFICERS, then the reference is not
effective (and so useless). In the example, all the references are actually
usable.

A referential constraint (or foreign key) between a set of attributes X of a
relation R1 and another relation R2 is satisfied if the values in X of each tuple
of the instance of R1 appear as values of the (primary) key of the instance of
R2. The precise definition requires a little care, particularly in the case in

Figure 2.18 A relation with a primary key.

3. This is the way registration numbers for cars are organized in France;
departments are regions of the country, each with a two-digit code: a
registration is made up of the department code and a string (digits and
characters) unique within the department. The example illustrates a key
composed of two attributes.

RegNum Surname FirstName BirthDate DegreeProg

643976 Smith John NULL Computing
587614 Smith Lucy 01/05/61 Engineering
934856 Black Lucy NULL NULL

735591 Black Lucy 05/03/58 Engineering

Section 2.2 35
Integrity constraints

which the key of the relation referred to consists of more than one attribute
and in the case in which there is more than one key. We will proceed in
stages, looking first at the case in which the key of R2 is unique and consists
of a sole attribute B (and therefore the set X is in its turn made up of a sole
attribute A): then, the referential constraint between the attribute A of R1
and the relation R2 is satisfied if, for every tuple t1 in R1 such that t1[A] is
not null, there exists a tuple t2 in R2 such that t1[A] = t2[B]. In the more
general case, we must take account of the fact that each of the attributes in X
must correspond to a precise attribute of the primary key K of R2. For this,
it is necessary to specify an order both in the set X and in K. Indicating the
attributes in order, X = A1A2…Ap and K = B1B2…Bp, the constraint is
satisfied if, for every tuple t1 in R1 with no nulls in X, there exists a tuple t2
in R2 with t1[Ai] = t2[Bi], for 1 ≤ i ≤ p.

On the schema of the database in Figure . it makes sense to define the
referential integrity constraints:

• between the attribute Officer of the relation OFFENCES and the relation
OFFICERS;

• between the attributes Registration and Department of OFFENCES and the
relation CARS, in which the order of the attributes in the key sees first
Registration and then Department.

The database in Figure . satisfies both constraints, whereas the
database in Figure . violates both. The violations are, firstly, that OFFICERS

does not contain a tuple with the value on RegNum equal to 456 and,

Figure 2.19 A database with referential constraints.

OFFENCES Code Date Officer Department Registration

143256 25/10/92 567 75 5694 FR
987554 26/10/92 456 75 5694 FR
987557 26/10/92 456 75 6544 XY
630876 15/10/92 456 47 6544 XY
539856 12/10/92 567 47 6544 XY

OFFICERS RegNum Surname FirstName

567 Brun Jean
456 Larue Henri
638 Larue Jacques

CARS Registration Department Owner Address

6544 XY 75 Cordon Edouard Rue du Pont
7122 HT 75 Cordon Edouard Rue du Pont
5694 FR 75 Latour Hortense Avenue Foch
6544 XY 47 Mimault Bernard Avenue FDR

36 Chapter 2
The relational model

secondly, that CARS contains no tuple with the value 75 for Department and
6544 XY for Registration (note that there is a tuple with the value 75 for
Department and another with the value 6544 XY for Registration, but this is
not sufficient, because there is a need for a tuple with both values: only in
this way can the two values make reference to a tuple of the relation CARS).

With reference to the second constraint, the discussion about the order of
the attributes can appear excessive, as the correspondence can be achieved
by means of the names of the attributes themselves. In general, however, this
need not be possible, and thus the ordering is essential. Let us consider for
example, a database containing information on the vehicles involved in road
accidents. In particular, let us suppose that we want to include in a relation,
together with other information, the Registration and Department of each of
the two vehicles involved.4 In this case, we must have two pairs of attributes
and two referential constraints. For example, the schema could be:

ACCIDENTS(Code, Dept1, Registration1, Dept2, Registration2 …)

In this case, it will obviously not be possible to establish the
correspondence in the referential constraint to the relation CARS by means of
the names of the attributes, in that they are different from those of the
primary key CARS. Only by means of the ordering does it become possible to
specify that the reference associates Dept1 (attribute of ACCIDENTS) to
Department (attribute of the key of CARS) and Registration1 to Registration and,
similarly, Dept2 to Department and Registration2 to Registration. The database
in Figure . satisfies the two constraints, while the one in Figure .
satisfies the one relating to Dept1 and Registration1 and violates the other,

Figure 2.20 A database that violates referential constraints.

4. Let us suppose for simplicity’s sake that there are always only two vehicles.

OFFENCES Code Date Officer Department Registration

987554 26/10/92 456 75 6544 XY
630876 15/10/92 456 47 6544 XY

OFFICERS RegNum Surname FirstName

567 Brun Mavis
638 Larue Jacques

CARS Registration Department Owner Address

7122 HT 75 Cordon Edouard Rue du Pont
5694 FR 93 Latour Hortense Avenue Foch
6544 XY 47 Mimault Bernard Avenue FDR

Section 2.2 37
Integrity constraints

because in the relation CARS there is no vehicle with the registration 9775 GF
and department 93.

A final observation might be useful regarding relations with more than one
key. In this case one of the keys should be indicated as the primary key, and
it is reasonable that the references should be directed towards it: for this
reason, in the specification of the referential constraints, we have been able
to omit the explicit mention of the attributes that make up the primary key.
Moreover, it should be noted that not all dbmss on the market allow the
explicit indication of the primary key: some allow the specification of more
than one key, but not the highlighting of one as a primary key. In these cases,
the referential constraint must indicate explicitly the attributes that make up
the key to which it refers. For example, let us consider a database on the
schema

EMPLOYEES (EmpNum, Surname, FirstName, Department)
DEPARTMENTS (Code, Name, Location)

in which the relation DEPARTMENTS is identified by the attribute Code and,
separately, by the attribute Name (no two departments exist with the same
code or with the same name). It is convenient that one of the two keys, for

Figure 2.21 A database with two similar referential constraints.

Figure 2.22 A database that violates a referential constraint.

ACCIDENTS Code Dept1 Registration1 Dept2 Registration2 …

6207 75 6544 XY 93 9775 GF …
6974 93 5694 FR 93 9775 GF …

CARS Registration Department Owner Address

7122 HT 75 Cordon Edouard Rue du Pont
5694 FR 93 Latour Hortense Avenue Foch
9775 GF 93 LeBlanc Pierre Rue de la Gare
6544 XY 75 Mimault Bernard Avenue FDR

ACCIDENTS Code Dept1 Registration1 Dept2 Registration2 …

6207 75 6544 XY 93 9775 GF …
6974 93 5694 FR 93 9775 GF …

CARS Registration Department Owner Address

7122 HT 75 Cordon Edouard Rue du Pont
5694 FR 93 Latour Hortense Avenue Foch
6544 XY 75 Mimault Bernard Avenue FDR

38 Chapter 2
The relational model

example Code, is indicated as a primary, and used to establish references. If,
however, the system does not allow for the concept of a primary key, the
constraint must be expressed by the explicit indication of the attributes; we
must therefore say that there exists a referential constraint between the
attribute Department of the relation EMPLOYEES and the key Code of the
relation DEPARTMENTS.

This is the reason why, as we show in Chapter , a more detailed
specification is offered for the definition referential constraints in relational
systems.

2.3 Conclusions
In this chapter we have defined the structures and constraints of the
relational model. First we discussed the concept of relation, with some
variations with respect to the concepts of set theory. Then, we showed how
relations can be used to organize more complex collections of data using the
data itself to create references between different components (without the
use of explicit pointers). Then, after introducing the necessity for using null
values to denote the absence of information, we discussed the concept of
integrity constraints through three fundamental classes: tuple constraints,
keys and referential constraints.

In the next two chapters, we complete the presentation of the relational
model from two points of view:

• in Chapter , we illustrate the foundations of query languages, that is, the
languages used to access information in databases;

• in Chapter , we show how all the concepts, those relative to the
structures and to the constraints, as discussed in this chapter, and those
relative to query languages (Chapter) are implemented in commercial
dbmss, using sql.

2.4 Bibliography
It is worth consulting the original article by Codd [] that contains the
original proposal for the relational model: its motivations and the general
presentation of the model are still valid. For this work, Codd received the
acm Turing Award, the most important recognition in the computing field;
the discussion he developed in such an occasion is also very interesting [].

Tsichritzis and Lochovsky [] offer general and comparative discussions
on data models.

More formal and detailed treatments on the relational model and its
associated theory (which is not developed much in this book) are offered by
Maier [], Ullman [], Paredaens et al. [], Atzeni and De Antonellis [],
Abiteboul, Hull and Vianu []. Interesting discussions on null values, with
the various approaches, were developed by Codd [] and Zaniolo [].

Section 2.5 39
Exercises

2.5 Exercises

Exercise 2.1 Describe in words, the information organized in the database
in Figure ..

Exercise 2.2 Highlight the keys and the referential constraints that exist in
the database in Figure . and that it is reasonable to assume are satisfied
by all the databases in the same schema. Highlight also the attributes on
which it could be reasonable to admit null values.

Exercise 2.3 Consider the information for the management of loans from a
personal library. The owner lends books to his friends, which he records
simply by means of the respective names or nicknames (thus avoiding
repetition) and refers to the books by title (not having two books of the
same title). When he lends a book, he makes a note of the date planned for
its return. Define a relational schema to represent this information,
highlighting suitable domains for its various attributes and show an
instance of it in tabular form. Show the key or keys of the relation.

Exercise 2.4 Represent, by means of one or more relations, the information
contained in a timetable of departures from a railway station: show the
number, time, final destination, category and stops of every departing train.

Exercise 2.5 Define a database schema to organize the information of a
company that has employees (each with Social Security Number, surname,

Figure 2.23 A database for Exercise . and Exercise ..

PATIENT

Code Surname FirstName

A102 Harris Lucy
B372 Rossini Peter
B543 Johnson Nadia
B444 Johnson Luigi
S555 Rose Jean

ADMISSION

Patient Admitted Discharged Ward

A102 2/05/94 9/05/94 A
A102 2/12/94 2/01/95 A
S555 5/10/94 3/12/94 B
B444 1/12/94 1/01/95 B
S555 5/10/94 1/11/94 A

DOCTOR

Number Surname FirstName Ward

203 Black Peter A
574 Bisi Mavis B
461 Boyne Steve B
530 Clark Nicola C
405 Mizzi Nicola A
501 Mount Mavis A

WARD

Code Name Consultant

A Surgical 203
B Paediatric 574
C Medical 530

40 Chapter 2
The relational model

first name and date of birth), and subsidiaries (each with code, branch and
director, who is an employee). Each employee works for a subsidiary.
Indicate the keys and the referential constraints of the schema. Show an
instance of the database and check that it satisfies the constraints.

Exercise 2.6 A family tree represents the structure of a family. Show how
the information of a family tree can be represented by means of a relational
database, possibly starting with a simplified structure, in which only the
male line or only the female line is represented (that is, only the offspring of
the male or the female members of the family are represented).

Exercise 2.7 For each of the Exercises .–., evaluate the needs for null
values, with the related benefits and difficulties.

Exercise 2.8 Define a database schema that organizes the information
necessary to generate the radio programmes page of a daily newspaper, with
stations, times and programme titles; besides the name, include the
transmission frequency and the location of the radio station.

3
3Relational algebra

and calculus

We have seen in the previous chapters that information of interest to data
management applications can be represented by means of relations. The
languages for specifying operations for querying and updating the data itself
constitute, in their turn, an essential component of each data model. An
update can be seen as a function that, given a database, produces another
database (without changing the schema). A query, on the other hand, can
also be considered as a function that, given a database, produces a relation.
So, in order either to interrogate or to update the database, we need to
develop the ability to express functions on the database. It is important to
learn the foundations of query and update languages first, and then apply
those foundations when studying the languages that are actually supported
by commercial dbmss.

We will look first at relational algebra. This is a procedural language (that
is, one in which the data retrieval functions are specified by describing the
procedure that must be followed in order to obtain the result). We will
illustrate the various operators of the algebra, the way operators can be
combined to form expressions, and the means by which expressions can be
transformed to improve efficiency. We will also describe the influence that
null values have on the relational algebra, and then how a query language
can be used to define virtual relations (also known as views), which are not
stored in the database.

Then, we will give a concise presentation of relational calculus, a
declarative language, in which the data retrieval functions describe the
properties of the result, rather than the procedure used to obtain it. This
language is based on first order predicate calculus and we will present two
versions, the first directly derived from predicate calculus and the second
that attempts to overcome some of the limitations of the first.

42 Chapter 3
Relational algebra and calculus

We will conclude the chapter with a brief treatment of Datalog, an
interesting contribution from recent research, which allows the formulation
of queries that could not be expressed in algebra or in calculus.

The sections on calculus and Datalog can be omitted without
compromising the understanding of the succeeding chapters.

In the next chapter, dedicated to sql, we will see how it can be useful,
from the practical point of view, to combine declarative and procedural
aspects within a single language. We will also see how updates are based on
the same principles as queries.

3.1 Relational algebra
As we have mentioned, relational algebra is a procedural language, based on
algebraic concepts. It consists of a collection of operators that are defined on
relations, and that produce relations as results. In this way, we can construct
expressions that involve more than one operator, in order to formulate
complex queries. In the following sections, we examine the various
operators:

• first, those of traditional set theory, union, intersection, difference;

• next, the more specific ones, renaming, selection, projection;

• finally, the most important, the join, in its various forms, natural join,
cartesian product and theta-join.

3.1.1 Union, intersection, difference
To begin with, note that relations are sets. So it makes sense to define for
them the traditional set operators of union, difference and intersection.
However we must be aware of the fact that a relation is not generically a set
of tuples, but a set of homogenous tuples, that is, tuples defined on the same
attributes. So, even if it were possible, in principle, to define these operators
on any pair of relations, there is no sense, from the point of view of the
relational model, in defining them with reference to relations on different
attributes. For example, the union of two relations r1 and r2 on different
schemas would be a set of heterogeneous tuples, some defined on the
attributes of r1 and the others on those of r2. This would be unsatisfactory,
because a set of heterogeneous tuples is not a relation and, in order to
combine the operators to form complex expressions, we want the results to
be relations. Therefore, in relational algebra, we allow applications of
operators of union, intersection and difference only to pairs of relations
defined on the same attributes. Figure . shows examples of applications of
the three operators, with the usual definitions, adapted to our context:

• the union of two relations r1(X) and r2(X), defined on the same set of
attributes X, is expressed as r1 ∪ r2 and is also a relation on X containing
the tuples that belong to r1 or to r2, or to both;

Section 3.1 43
Relational algebra

• the difference of r1(X) and r2(X) is expressed as r1 − r2 and is a relation on
X containing the tuples that belong to r1 and not to r2;

• the intersection of r1(X) and r2(X) is expressed as r1 ∩ r2 and is a relation
on X containing the tuples that belong to both r1 and r2.

3.1.2 Renaming
The limitations we have had to impose on the standard set operators,
although justified, seem particularly restrictive. For instance, consider the
two relations in Figure .. It would be meaningful to execute a sort of union
on them in order to obtain all the ‘parent–child’ pairs held in the database,
but that is not possible, because the attribute that we have instinctively
called Parent, is in fact called Father in one relation and Mother in the other.

Figure 3.1 Examples of union, intersection and difference.

Figure 3.2 A meaningful but incorrect union.

GRADUATES

Number Surname Age

7274 Robinson 37
7432 O’Malley 39
9824 Darkes 38

MANAGERS

Number Surname Age

9297 O’Malley 56
7432 O’Malley 39
9824 Darkes 38

GRADUATES ∪ MANAGERS

Number Surname Age

7274 Robinson 37
7432 O’Malley 39
9824 Darkes 38
9297 O’Malley 56

GRADUATES ∩ MANAGERS

Number Surname Age

7432 O’Malley 39
9824 Darkes 38

GRADUATES − MANAGERS

Number Surname Age

7274 Robinson 37

PATERNITY

Father Child

Adam Cain
Adam Abel
Abraham Isaac
Abraham Ishmael

MATERNITY

Mother Child

Eve Cain
Eve Seth
Sarah Isaac
Hagar Ishmael

PATERNITY ∪ MATERNITY ??

44 Chapter 3
Relational algebra and calculus

To resolve the problem, we introduce a specific operator, whose sole
purpose is to adapt attribute names, as necessary, to facilitate the application
of set operators. The operator is called renaming, because it actually changes
the names of the attributes, leaving the contents of the relations unchanged.
An example of renaming is shown in Figure .; the operator changes the
name of the attribute Father to Parent, as indicated by the notation Parent ←
Father given in subscript of the symbol Q, which denotes the renaming;
looking at the table it is easy to see how only the heading changes, leaving
the main body unaltered.

Figure . shows the application of the union to the result of two
renamings of the relations in Figure ..

Let us define the renaming operator in general terms. Let r be a relation
defined on the set of attributes X and let Y be another set of attributes with
the same cardinality. Furthermore, let A1A2…Ak and B1B2…Bk be
respectively an ordering of the attributes in X and an ordering of those in Y.
Then the renaming

contains a tuple for each tuple t in r, defined as follows: is a tuple on Y
and for i = 1, …, n. The definition confirms that the changes
that occur are changes to the names of the attributes, while the values remain

Figure 3.3 A renaming.

Figure 3.4 A union preceded by two renamings.

PATERNITY

Father Child

Adam Cain
Adam Abel
Abraham Isaac
Isaac Jacob

QParent←Father(PATERNITY)

Parent Child

Adam Cain
Adam Abel
Abraham Isaac
Isaac Jacob

QParent←Father(PATERNITY) ∪ QParent←Mother(MATERNITY)

Parent Child

Adam Cain
Adam Abel
Abraham Isaac
Abraham Ishmael
Eve Cain
Eve Seth
Sarah Isaac
Hagar Ishmael

QB1B2…Bk A1A2…Ak← r()

t ′ t ′
t ′ Bi[] t Ai[]=

Section 3.1 45
Relational algebra

unaltered and are associated with new attributes. In practice, in the two lists
A1A2…Ak and B1B2…Bk we indicate only those attributes that are renamed
(that is, those for which Ai ≠ Bi). This is the reason why in Figure . we have
written

QParent←Father(PATERNITY)

and not

QParent,Child←Father,Child(PATERNITY)

Figure . shows another example of union preceded by renaming. In this
case, in each relation there are two attributes that are renamed and therefore
the ordering of the pairs (Branch, Salary and so on) is significant.

3.1.3 Selection
We now turn our attention to the specific operators of relational algebra that
allow the manipulation of relations. There are three operators, selection,
projection and join (the last having several variants).

Before going into detail, note that selection and projection carry out
functions that could be defined as complementary (or orthogonal). They are
both unary (that is, they have one relation as argument) and produce as result
a portion of that relation. More precisely, a selection produces a subset of
tuples on all the attributes, while a projection gives a result to which all the
tuples contribute, but on a subset of attributes. As illustrated in Figure .,
we can say that selection generates ‘horizontal decompositions’ and
projection generates ‘vertical decompositions’.

Figure . and Figure . show two examples of selection, which illustrate
the fundamental characteristics of the operator, denoted by the symbol σ,
with the appropriate ‘selection condition’ indicated as subscript. The result
contains the tuples of the operand that satisfy the condition. As shown in the
examples, the selection conditions can allow both for comparisons between

Figure 3.5 Another union preceded by renaming.

EMPLOYEES

Surname Branch Salary

Patterson Rome 45
Trumble London 53

STAFF

Surname Factory Wages

Cooke Chicago 33
Bush Monza 32

QLocation, Pay←Branch,Salary(EMPLOYEES) ∪ QLocation,Pay←Factory,Wages(STAFF)

Surname Location Pay

Patterson Rome 45
Trumble London 53
Cooke Chicago 33
Bush Monza 32

46 Chapter 3
Relational algebra and calculus

attributes and for comparisons between attributes and constants, and can be
complex, being obtained by combining simple conditions with the logical
connectives ∨ (or), ∧ (and) and ¬ (not).

More precisely, given a relation , a propositional formula F on X is a
formula obtained by combining atomic conditions of the type AϑB or Aϑc
with the connectives ∨ , ∧ and ¬ , where:

• ϑ is a comparison operator (=, ≠, >, <, ≥, ≤);

• A and B are attributes in X that are compatible (that is, the comparison ϑ
is meaningful on the values of their domains);

• c is a constant compatible with the domain of A.

Given a formula F and a tuple t, a truth value is defined for F on t:

Figure 3.6 Selection and projection are orthogonal operators.

Figure 3.7 A selection.

A B C

selection
⇒

A B C

A B C
projection

⇒

A B

EMPLOYEES

Surname FirstName Age Salary

Smith Mary 25 2000
Black Lucy 40 3000
Verdi Nico 36 4500
Smith Mark 40 3900

σAge<30∨ Salary>4000(EMPLOYEES)

Surname FirstName Age Salary

Smith Mary 25 2000
Verdi Nico 36 4500

r X()

Section 3.1 47
Relational algebra

• AϑB is true on t if and only if is in relation ϑ with (for
example, is true on t if and only if);

• Aϑc is true on t if and only if t[A] is in relation ϑ with c;

• F1 ∨ F2, F1 ∧ F2 and ¬F1 have the usual meaning.

At this point we can complete the definition:

• the selection σF(r) produces a relation on the same attributes as r that
contains the tuples of r for which F is true.

3.1.4 Projection
The definition of the projection operator is also simple: given a relation r(X)
and a subset Y of X, the projection of r on Y (indicated by πY(r)) is the set of
tuples on Y obtained from the tuples of r considering only the values on Y:

Figure . shows a first example of projection, which clearly illustrates the
concept mentioned above. The projection allows the vertical decomposition
of relations: the result of the projection contains in this case as many tuples
as its operand, defined however only on some of the attributes.

Figure 3.8 Another selection.

Figure 3.9 A projection.

CITIZENS

Surname FirstName PlaceOfBirth Residence

Smith Mary Rome Milan
Black Lucy Rome Rome
Verdi Nico Florence Florence
Smith Mark Naples Florence

σPlaceOfBirth=Residence(CITIZENS)

Surname FirstName PlaceOfBirth Residence

Black Lucy Rome Rome
Verdi Nico Florence Florence

t A[] t B[]
A B= t A[] t B[]=

πY r() t Y[] t r∈{ }=

EMPLOYEESMAKESPACE

Surname FirstName Department Head

Smith Mary Sales De Rossi
Black Lucy Sales De Rossi
Verdi Mary Personnel Fox
Smith Mark Personnel Fox

πSurname,FirstName(EMPLOYEES)

Surname FirstName

Smith Mary
Black Lucy
Verdi Mary
Smith Mark

48 Chapter 3
Relational algebra and calculus

Figure . shows another projection, in which we note a different
situation. The result contains fewer tuples than the operand, because all the
tuples in the operand that have equal values on all the attributes of the
projection give the same contribution to the projection itself. As relations are
defined as sets, they are not allowed to have tuples with the same values:
equal contributions ‘collapse’ into a single tuple.

In general, we can say that the result of a projection contains at most as
many tuples as the operand, but can contain fewer, as shown in Figure ..
Note also that there exists a link between the key constraints and the
projections: πY(r) contains the same number of tuples as r if and only if Y is
a superkey for r. In fact:

• if Y is a superkey, then r does not contain pairs of tuples that are equal on
Y, and thus each tuple makes a different contribution to the projection;

• if the projection has as many tuples as the operand, then each tuple of r
contributes to the projection with different values, and thus r does not
contain pairs of tuples equal on Y: but this is exactly the definition of a
superkey.

For the relation EMPLOYEES in Figure . and Figure ., the attributes
Surname and FirstName form a key (and thus a superkey), while Department
and Head do not form a superkey. Incidentally, note that a projection can
produce a number of tuples equal to those of the operand even if the
attributes involved are not defined as superkeys (of the schema) but happen
to be a superkey for the specific relation. For example, if we reconsider the
relations discussed in Chapter on the schema

STUDENTS(RegNum, Surname, FirstName, BirthDate, DegreeProg)

we can say that for all the relations, the projection on RegNum and that on
Surname, FirstName and BirthDate have the same number of tuples as the
operand. Conversely, a projection on Surname and DegreeProg can have fewer
tuples; however in the particular case (as in the example in Figure .) in
which there are no students with the same surname enrolled on the same
degree programme, then the projection on Surname and DegreeProg also has
the same number of tuples as the operand.

Figure 3.10 A projection with fewer tuples than operands.

EMPLOYEESMAKESPACE

Surname FirstName Department Head

Smith Mary Sales De Rossi
Black Lucy Sales De Rossi
Verdi Mary Personnel Fox
Smith Mark Personnel Fox

πDepartment,Head(EMPLOYEES)

Department Head

Sales De Rossi
Personnel Fox

Section 3.1 49
Relational algebra

3.1.5 Join
Let us now examine the join operator, which is the most important one in
relational algebra. The join allows us to establish connections among data
contained in different relations, comparing the values contained in them and
thus using the fundamental characteristics of the model, that of being value-
based. There are two main versions of the operator, which are, however,
obtainable one from the other. The first is useful for an introduction and the
second is perhaps more relevant from a practical point of view.

Natural join The natural join, denoted by the symbol J, is an operator
that correlates data in different relations, on the basis of equal values of
attributes with the same name. (The join is defined here with two operands,
but can be generalized.) Figure . shows an example. The result of the join
is a relation on the union of the sets of attributes of the operands: in the
figure, the result is defined on Employee, Department, Head, that is, on the
union of Employee, Department and Department, Head. The tuples in the join
are obtained by combining the tuples of the operands with equal values on
the common attributes, in the example the attribute Department: for
instance, the first tuple of the join is derived from the combination of the first
tuple of the relation r1 and the second tuple of r2: in fact they both have sales
as the value for Department.

In general, we say that the natural join r1Jr2 of r1(X1) and r2(X2) is a
relation defined on X1X2 (that is, on the union of the sets X1 and X2), as
follows:

r1Jr2 = { t on X1X2 | exist t1∈ r1 and t2∈ r2 with t[X1] = t1 and t[X2] = t2}

More concisely, we could have written:

r1Jr2 = { t on X1X2 | t[X1] ∈ r1 and t[X2] ∈ r2}

The definition confirms that the tuples of the result are obtained by
combining tuples of the operands with equal values on the common

Figure 3.11 A natural join.

r1 Employee Department

Smith sales
Black production
Bianchi production

r2 Department Head

production Mori
sales Brown

r1 J r2 Employee Department Head

Smith sales Brown
Black production Mori
Bianchi production Mori

50 Chapter 3
Relational algebra and calculus

attributes. If we indicate the common attributes as X1,2 (that is, X1,2 = X1 ∩
X2), then the two conditions t[X1] = t1 and t[X2] = t2 imply (since X1,2 ⊆ X1
and X1,2 ⊆ X2) that t[X1,2] = t1[X1,2] and t[X1,2] = t2[X1,2] and thus t1[X1,2] =
t2[X1,2]. The degree of the result of a join is less than or equal to the sum of
the degrees of the two operands, because the common attributes of the
operands appear only once in the result.

Note that often the common attributes in a join form the key of one of the
relations. In many of these cases, there is also a referential constraint between
the common attributes. We illustrate this point by taking another look at the
relations OFFENCES and CARS in the database in Figure ., repeated for the
sake of convenience in Figure ., together with their join. Note that each
of the tuples in OFFENCES has been combined with exactly one of the tuples
of CARS: (i) at most one because Department and Registration form a key for
CARS; (ii) at least one because of the referential constraint between
Department and Registration in OFFENCES and the (primary) key of CARS. The
join, therefore, has exactly as many tuples as the relation OFFENCES.

Figure . shows another example of join, using the same relations as we
have already used (Figure .) to demonstrate a union preceded by
renamings. Here, the data of the two relations is combined according to the

Figure 3.12 The relations OFFENCES and CARS (from Figure .) and their
join.

OFFENCES Code Date Officer Department Registration

143256 25/10/92 567 75 5694 FR
987554 26/10/92 456 75 5694 FR
987557 26/10/92 456 75 6544 XY
630876 15/10/92 456 47 6544 XY
539856 12/10/92 567 47 6544 XY

CARS Registration Department Owner Address

6544 XY 75 Cordon Edouard Rue du Pont
7122 HT 75 Cordon Edouard Rue du Pont
5694 FR 75 Latour Hortense Avenue Foch
6544 XY 47 Mimault Bernard Avenue FDR

OFFENCES J CARS

Code Date Officer Depart-
ment

Regist
-ration Owner Address

143256 25/10/92 567 75 5694 FR Latour Hortense Avenue Foch
987554 26/10/92 456 75 5694 FR Latour Hortense Avenue Foch
987557 26/10/92 456 75 6544 XY Cordon Edouard Rue du Pont
630876 15/10/92 456 47 6544 XY Mimault Bernard Avenue FDR
539856 12/10/92 567 47 6544 XY Mimault Bernard Avenue FDR

Section 3.1 51
Relational algebra

value of the child, returning the parents for each person for whom both are
indicated in the database.

The two examples taken together show how the various relational algebra
operators allow different ways of combining and correlating the data
contained in a database, according to the various requirements.

Complete and incomplete joins Let us look at some different examples
of join, in order to highlight some important points. In the example in
Figure ., we can say that each tuple of each of the operands contributes
to at least one tuple of the result. In this case, the join is said to be complete.
For each tuple t1 of r1, there is a tuple t in r1Jr2 such that t[X1] = t1 (and
similarly for r2). This property does not hold in general, because it requires
a correspondence between the tuples of the two relations. Figure . shows
a join in which some tuples in the operands (in particular, the first of r1 and
the second of r2) do not contribute to the result. This is because these tuples
have no counterpart (that is, a tuple with the same value on the common
attribute Department) in the other relation. These tuples are referred to as
dangling tuples.

Figure 3.13 Offspring with both parents.

Figure 3.14 A join with ‘dangling’ tuples.

PATERNITY

Father Child

Adam Cain
Adam Abel
Abraham Isaac
Abraham Ishmael

MATERNITY

Mother Child

Eve Cain
Eve Seth
Sarah Isaac
Hagar Ishmael

PATERNITY J MATERNITY

Father Child Mother

Adam Cain Eve
Abraham Isaac Sarah
Abraham Ishmael Hagar

r1 Employee Department

Smith sales
Black production
White production

r2 Department Head

production Mori
purchasing Brown

r1Jr2 Employee Department Head

Black production Mori
White production Mori

52 Chapter 3
Relational algebra and calculus

There is even the possibility, as an extreme case, that none of the tuples of
the operands can be combined, and this gives rise to an empty result (see the
example in Figure .).

In the extreme opposite situation, each tuple of each operand can be
combined with all the tuples of the other, as shown in Figure .. In this
case, the result contains a number of tuples equal to the product of the
cardinalities of the operands and thus, |r1| × |r2| tuples (where |r|
indicates the cardinality of the relation r).

To summarize, we can say that the join of r1 and r2 contains a number of
tuples between zero and |r1| × |r2|. Furthermore:

• if the join of r1 and r2 is complete, then it contains a number of tuples at
least equal to the maximum of |r1| and |r2|;

• if X1∩X2 contains a key for r2, then the join of r1(X1) and r2(X2) contains
at most |r1| tuples;

Figure 3.15 An empty join.

Figure 3.16 A join with |r1| × |r2| tuples.

r1 Employee Department

Smith sales
Black production
White production

r2 Department Head

marketing Mori
purchasing Brown

r1Jr2 Employee Department Head

r1 Employee Project

Smith A
Black A
White A

r2 Project Head

A Mori
A Brown

r1Jr2 Employee Project Head

Smith A Mori
Black A Mori
White A Mori
Smith A Brown
Black A Brown
White A Brown

Section 3.1 53
Relational algebra

• if X1∩X2 is the primary key for r2 and there is a referential constraint
between X1∩X2 in r1 and such a key of r2, then the join of r1(X1) and
r2(X2) contains exactly |r1| tuples.

Outer joins The fact that the join operator ‘leaves out’ the tuples of a
relation that have no counterpart in the other operand is useful in some cases
but inconvenient in others, given the possibility of omitting important
information. Take, for example, the join in Figure .. Suppose we are
interested in all the employees, along with their respective heads, if known.
The natural join would not help in producing this result. For this purpose, a
variant of the operator called outer join was proposed (and adopted in the last
version of sql, as discussed in Chapter). This allows for the possibility that
all the tuples contribute to the result, extended with null values where there
is no counterpart. There are three variants of this operator: the left outer join,
which extends only the tuples of the first operand, the right outer join, which
extends those of the second operand and the full outer join, which extends
all tuples. In Figure . we demonstrate examples of outer joins on the
relations already seen in Figure .. The syntax is self-explanatory.

N-ary join, intersection and cartesian product Let us look at some of
the properties of the natural join. (We refer here to natural join rather than

Figure 3.17 Some outer joins.

r1 Employee Department

Smith sales
Black production
White production

r2 Department Head

production Mori
purchasing Brown

r1Jleftr2 Employee Department Head

Smith sales NULL

Black production Mori
White production Mori

r1Jrightr2 Employee Department Head

Black production Mori
White production Mori
NULL purchasing Brown

r1Jfullr2 Employee Department Head

Smith sales NULL

Black production Mori
White production Mori
NULL purchasing Brown

54 Chapter 3
Relational algebra and calculus

to outer join, for which some of the properties discussed here do not hold.)
First let us observe that it is commutative, that is, r1Jr2 is always equal to
r2Jr1, and associative, r1J(r2Jr3) is equal to (r1Jr2)Jr3. Thus, we can
write, where necessary, join sequences without brackets:

or

Note also that we have stated no specific hypothesis about the sets of
attributes X1 and X2 on which the operands are defined. Therefore, the two
sets could even be equal or be disjoint. Let us examine these extreme cases;
the general definition given above is still meaningful, but certain points
should be noted. If X1 = X2, then the join coincides with the intersection

since, by definition, the result is a relation on the union of the two sets of
attributes, and must contain the tuples t such that and

. If X1 = X2, the union of X1 and X2 is also equal to X1, and thus t
is defined on X1: the definition thus requires that t ∈ r1 and t ∈ r2, and
therefore coincides with the definition of intersection.

The case where the two sets of attributes are disjoint requires even more
attention. The result is always defined on the union X1X2, and each tuple is
always derived from two tuples, one for each of the operands. However, since
such tuples have no attributes in common, there is no requirement to be
satisfied in order for them to participate in the join. The condition that the
tuples must have the same values on the common attributes is always
verified. So the result of this join contains the tuples obtained by combining
the tuples of the operands in all possible ways. In this case, we often say that
the join becomes a cartesian product. This could be described as an operator
defined (using the same definition given above for natural join) on relations
that have no attributes in common. The use of the term is slightly misleading,
as it is not really the same as a cartesian product between sets. The cartesian
product of two sets is a set of pairs (with the first element from the first set
and the second from the second). In the case here we have tuples, each
obtained by juxtaposing a tuple of the first relation and a tuple of the second.
Figure . shows an example of the cartesian product, demonstrating how
the result contains a number of tuples equal to the product of the
cardinalities of the operands.

Theta-join and equi-join If we examine Figure ., it is obvious that a
cartesian product is, in general, of very little use, because it combines tuples
in a way that is not necessarily significant. In fact, however, the cartesian
product is often followed by a selection, which preserves only the combined
tuples that satisfy the given requirements. For example, it makes sense to
define a cartesian product on the relations EMPLOYEES and PROJECTS, if it is
followed by the selection that retains only the tuples with equal values on
the attributes Project and Code (see Figure .).

r1 r2 … rnJ J J J i 1=
n

ri

r1 X1() r2 X1()J r1 X1() r2 X1()∩=

t X1[] r1∈
t X2[] r2∈

Section 3.1 55
Relational algebra

For this reason, another operator is often introduced, the theta-join. It is a
derived operator, in the sense that it is defined by means of other operators.
Indeed, it is a cartesian product followed by a selection, as follows:

The relation in Figure . can thus be obtained using the theta-join:

EMPLOYEES J Project=CodePROJECTS

A theta-join in which the condition of selection F is a conjunction of atoms
of equality, each with an attribute of the first relation and one of the second,
is called equi-join. The relation in Figure . was obtained by means of an
equi-join.

Figure 3.18 A cartesian product.

Figure 3.19 A cartesian product followed by a selection.

EMPLOYEES

Employee Project

Smith A
Black A
Black B

PROJECTS

Code Name

A Venus
B Mars

EMPLOYEES J PROJECTS

Employee Project Code Name

Smith A A Venus
Black A A Venus
Black B A Venus
Smith A B Mars
Black A B Mars
Black B B Mars

EMPLOYEES

Employee Project

Smith A
Black A
Black B

PROJECTS

Code Name

A Venus
B Mars

σProject=Code(EMPLOYEES J PROJECTS)

Employee Project Code Name

Smith A A Venus
Black A A Venus
Black B B Mars

r1 rF 2J σF r1 r2J()=

56 Chapter 3
Relational algebra and calculus

From the practical point of view, the theta-join and the equi-join are very
important. This is because most current database systems do not take
advantage of attribute names in order to combine relations, and thus use the
equi-join and theta-join rather than the natural join. We examine this
concept more thoroughly when we discuss sql queries in Chapter . In fact
sql queries mainly correspond to equi-joins, while the natural join was made
available only in the most recent versions of sql.

At the same time, we presented the natural join first because it allows the
simple discussion of important issues, which can then be extended to the
equi-join. For example, we refer to natural joins in the discussion of some
issues related to normalization in Chapter .

Note also that the natural join can be simulated using renaming, equi-join
and projection. Without going into too much detail, here is an example.
Given two relations, r1(ABC) and r2(BCD), the natural join of r1 and r2 can
be expressed by means of other operators in three steps:

• renaming the attributes so as to obtain relations on disjoint schemas:

• equi-joining such relations, with equality conditions on the renamed
attributes: r1 JB=B′∧ C=C′(QB′C′←BC(r2))

• concluding with a projection that eliminates all the ‘duplicate’ attributes
(one for each pair involved in the equi-join):

πABCD(r1JB=B′∧ C=C′(QB′C′←BC(r2)))

3.1.6 Queries in relational algebra
In general, a query can be defined as a function that, when applied to
database instances, produces relations. More precisely, given a schema R of
a database, a query is a function that, for every instance r of R, produces a
relation on a given set of attributes X. The expressions in the various query
languages (such as relational algebra) ‘represent’ or ‘implement’ queries:
each expression defines a function. We indicate by means of E(r) the result
of the application of the expression E to the database r.

In relational algebra, the queries on a database schema R are formulated by
means of expressions whose atoms are (names of) relations in R (the
‘variables’). We conclude the presentation of relational algebra by showing
the formulation of some queries of increasing complexity, which refer to the
schema containing the two relations:

EMPLOYEES(Number, Name, Age, Salary)
SUPERVISION(Head, Employee)

A database on such a schema is shown in Figure ..
The first query is very simple, involving a single relation: find the numbers,

names and ages of employees earning more than 40 thousand. In this case, using

QB ′ C ′ BC← r2()

Section 3.1 57
Relational algebra

a selection, we can highlight only the tuples that satisfy the condition (salary
above thousand) and by means of a projection eliminate the unwanted
attributes:

πNumber,Name,Age(σSalary>40(EMPLOYEES)) (3.1)

The result of this expression, applied to the database in Figure ., is shown
in Figure ..

The second query involves both the relations, in a very natural way: find
the registration numbers of the supervisors of the employees earning more than
40 thousand:

πHead(SUPERVISION JEmployee=Number(σSalary>40(EMPLOYEES))) (3.2)

The result is shown in Figure ., referring again to the database in
Figure ..

Let us move on to some more complex examples. We begin by slightly
changing the above query: find the names and salaries of the supervisors of the
employees earning more than 40 thousand. Here, we can obviously use the
preceding expression, but we must then produce, for each tuple of the result,
the information requested on the supervisor, which must be extracted from

Figure 3.20 A database giving examples of expressions

Figure 3.21 The result of the application of Expression . to the database
in Figure ..

EMPLOYEES

Number Name Age Salary

101 Mary Smith 34 40
103 Mary Bianchi 23 35
104 Luigi Neri 38 61
105 Nico Bini 44 38
210 Marco Celli 49 60
231 Siro Bisi 50 60
252 Nico Bini 44 70
301 Steve Smith 34 70
375 Mary Smith 50 65

SUPERVISION

Head Employee

210 101
210 103
210 104
231 105
301 210
301 231
375 252

Number Name Age

104 Luigi Neri 38
210 Marco Celli 49
231 Siro Bisi 50
252 Nico Bini 44
301 Steve Smith 34
375 Mary Smith 50

58 Chapter 3
Relational algebra and calculus

the relation EMPLOYEES. Each tuple of the result is constructed on the basis of
three tuples, the first from EMPLOYEES (about an employee earning more than
 thousand), the second from SUPERVISION (giving the number of the
supervisor of the employee in question), and the third again from EMPLOYEES

(with the information concerning the supervisor). The solution intuitively
requires the join of the relation EMPLOYEES with the result of the preceding
expression, but a warning is needed. In general, the supervisor and the
employee are not the same, and thus the two tuples of EMPLOYEES that
contribute to a tuple of the join are different. The join must therefore be
preceded by a suitable renaming. The following is an example:

πNameH,SalaryH (QNumberH,NameH,SalaryH,AgeH←Number,Name,Salary,Age (EMPLOYEES)
JNumberH=Head

(SUPERVISION JEmployee=Number (σSalary>40(EMPLOYEES)))) (3.3)

The result is shown in Figure ., again referring to the database in
Figure ..

The next query is a variation on the one above, requesting the comparison
of two values of the same attribute, but from different tuples: find the
employees earning more than their respective supervisors, showing registration
numbers, names and salaries of the employees and supervisors. The expression
is similar to the one above, and the need for renaming is also evident. (The
result is shown in Figure ..)

πNumber,Name,Salary,NumberH,NameH,SalaryH
(σSalary>SalaryH(QNumberH,NameH,SalaryH,AgeH←Number,Name,Salary,Age (EMPLOYEES)

JNumberH=Head(SUPERVISION JEmployee=Number(EMPLOYEES)))) (3.4)

Figure 3.22 The result of the application of Expression . to the database
in Figure ..

Figure 3.23 The result of the application of Expression . to the database
in Figure ..

Head

210
301
375

NameH SalaryH

Marco Celli 60
Steve Smith 70
Mary Smith 65

Section 3.1 59
Relational algebra

The last example requires even more care: find the registration numbers and
names of the supervisors whose employees all earn more than 40 thousand. The
query includes a sort of universal quantification, but relational algebra does
not contain any constructs directly suited to this purpose. We can, however,
proceed with a double negation, finding the supervisors none of whose
employees earns thousand or less. This query is possible in relational
algebra, using the difference operator. We select all the supervisors except
those who have an employee who earns thousand or less. The expression
is as follows:

πNumber,Name(EMPLOYEES JNumber=Head
(πHead(SUPERVISION) −

πHead(SUPERVISION JEmployee=Number (σSalary≤40(EMPLOYEES))))) (3.5)

The result of this expression on the database in Figure . is shown in
Figure ..

3.1.7 Equivalence of algebraic expressions
Relational algebra, like many other formal languages, allows the formulation
of expressions equivalent among themselves, that is, producing the same
result. For example, the following equivalence is valid where x, y and z are
real numbers:

For each value substituted for the three variables, the two expressions give
the same result. In relational algebra, we can give a similar definition. A first
notion of equivalence refers to the database schema:

• E1 ≡R E2 if E1(r) = E2(r), for every instance of r in R.

Absolute equivalence is a stronger property and is defined as follows:

• E1 ≡ E2 if E1 ≡R E2, for every schema R.

Figure 3.24 The result of the application of Expression . to the database
in Figure ..

Figure 3.25 The result of Expression . on the database shown in
Figure ..

Number Name Salary NumberH NameH SalaryH

104 Luigi Neri 61 210 Marco Celli 60
252 Nico Bini 70 375 Mary Smith 65

Number Name

301 Steve Smith
375 Mary Smith

x y z+()× x y x z×+×≡

60 Chapter 3
Relational algebra and calculus

The distinction between the two cases is due to the fact that the attributes
of the operands are not specified in the expressions (particularly in the
natural join operations). An example of absolute equivalence is the
following:

πAB(σA>0(R)) ≡ σA>0(πAB(R))

while the following equivalence

πAB(R1) J πAC(R2) ≡R πABC(R1 J R2)

holds only if in the schema R the intersection between the sets of attributes
of R1 and R2 is equal to A. In fact, if there were also other attributes, the join
would operate only on A in the first expression and on A and such other
attributes in the second, with different results in general.

The equivalence of expressions in algebra is particularly important in
query optimization, which we discuss in Chapter . In fact, sql queries
(Chapter) are translated into relational algebra, and the cost is evaluated,
cost being defined in terms of the size of the intermediate and final result.
When there are different equivalent expressions, the one with the smallest
cost is selected. In this context, equivalence transformations are used, that is,
operations that substitute one expression for another equivalent one. In
particular, we are interested in those transformations that are able to reduce
the size of the intermediate relations or to prepare an expression for the
application of one of the above transformations. Let us illustrate a first set of
transformations.

. Atomization of selections: a conjunctive selection can be substituted by a
cascade of atomic selections:

where E is any expression. This transformation allows the application of
subsequent transformations that operate on selections with atomic
conditions.

. Cascading projections: a projection can be transformed into a cascade of
projections that ‘eliminate’ attributes in various phases:

if E is defined on a set of attributes that contain Y (and X). This too is a
preliminary transformation that will be followed by others.

. Anticipation of the selection with respect to the join (often described as
‘pushing selections down’):

if the condition F refers only to attributes in the sub-expression E2.

σF1 F2∧ E() σF1
σF2

E()()≡

πX E() πX πXY E()()≡

σF E1 E2J() E1 σF E2()J≡

Section 3.1 61
Relational algebra

. Anticipation of the projection with respect to the join (‘pushing
projections down’); let E1 and E2 be defined on X1 and X2, respectively;
if Y2 ⊂ X2 and Y2 ⊇ X1 ∩ X2 (so the attributes in X2 − Y2 are not involved
in the join), then the following holds:

By combining this rule with that of cascading projections, we can obtain
the following equivalence for theta-joins:

where X1 and X2 represent the attributes of E1 and E2 respectively and J1
and J2 the respective subsets involved in the join condition F, and,
finally:

°

°

On the basis of the equivalences above, we can eliminate from each
relation all the attributes that do not appear in the final result and are
not involved in the join.

. Combination of a selection and a cartesian product to form a theta-join:

Let us look at an example that clarifies the use of preliminary
transformations and the important rule of anticipation of selections. Suppose
we wish to find, by referring to the database in Figure ., the registration
numbers of the supervisors of the employees younger than 30. A first expression
for this could be the specification of the cartesian product of the two
relations (which have no attributes in common) followed by a selection and
then a projection:

πHead(σNumber=Employee∧ Age<30(EMPLOYEES J SUPERVISION))

By means of the previous rules, we can significantly improve the quality of
this expression, which is very low indeed: it first computes a large cartesian
product, although the final result contains only a few tuples. Using Rule ,
we break up the selection:

πHead(σNumber=Employee(σAge<30(EMPLOYEES J SUPERVISION)))

and we can then merge the first selection with the cartesian product, and
form an equi-join (Rule) and anticipate the second selection with respect to
the join (Rule), obtaining:

πHead(σAge<30(EMPLOYEES) JNumber=EmployeeSUPERVISION)

πX1Y2
E1 E2J() E1 πY2

E2()J≡

πY E1 EF 2J() πY πY1
E1() πF Y2

E2()J()≡

Y1 X1 Y∩() J1∪=

Y2 X2 Y∩() J2∪=

σF E1 E2J() E1 EF 2J≡

62 Chapter 3
Relational algebra and calculus

Finally, we can eliminate from the first argument of the join (with a
projection) the unnecessary attributes, using Rule :

πHead(πNumber(σAge<30(EMPLOYEES)) JNumber=EmployeeSUPERVISION)

Some other transformations can be useful, particularly other forms of
anticipation of selections and projections.

. Distribution of the selection with respect to the union:

σF(E1 ∪ E2) ≡ σF(E1) ∪ σ F(E2)

. Distribution of the selection with respect to the difference:

σF(E1 − E2) ≡ σF(E1) − σF(E2)

. Distribution of the projection with respect to the union:

πX(E1 ∪ E2) ≡ πX(E1) ∪ π X(E2)

It is worth noting that projection is not distributive with respect to
difference, as we can verify by applying the expressions:

πA(R1 − R2) and πA(R1) − πA(R2)

to two relations on AB that contain tuples equal on A and different on B.
Other interesting transformations are those based on correspondence

between set operators and complex selections:

.

.

.

Then, there is the commutative and associative property of all the binary
operators excluding difference and the distributive property of the join with
respect to the union:

Finally, we should be aware that the presence of empty intermediate
results (relations with zero tuples) makes it possible to simplify expressions
in a natural way. Note that a join (or also a cartesian product) in which one
of the operators is the empty relation, produces an empty result.

3.1.8 Algebra with null values
In the above sections, we have always taken for granted that the algebraic
expressions were being applied to relations containing no null values.
Having already stressed, in Section .., the importance of null values in
actual applications, we must at least touch upon the impact that they have on

σF1 F2∨ R() σF1
R() σF2

R()∪≡

σF1 F2∧ R() σF1
R() σF2

R()∩ σF1
R() σF2

R()J≡ ≡

σF1 F2()¬∧ R() σF1
R() σF2

R()–≡

E E1 E2∪() E E1J() E E2J()∪≡J

Section 3.1 63
Relational algebra

the languages discussed in this chapter. The discussion is dealt with further
in Chapter , in the context of the sql language.

Let us look at the relation in Figure . and the following selection:

σAge>30(PEOPLE)

Now, the first tuple of the relation must contribute to the result and the
second must not, but what can we say about the third? Intuitively, the age
value is a null of unknown type, in that the value exists for each person, and
the null means that we ignore it. With respect to these queries, instead of the
conventional two-valued logic (in which formulas are either true or false) a
three-valued logic can be used. In this logic, a formula can be true or false or
can assume a third, new truth value that we call unknown and represent by
the symbol U. An atomic condition assumes this value when at least one of
the terms of the comparison assumes the null value. Thus, referring to the
case under discussion, the first tuple certainly belongs to the result (true), the
second certainly does not belong (false) and the third perhaps belongs and
perhaps does not (unknown). The selection produces as a result the tuples for
which the formula is true.

The following are the truth tables of the logical connectives not, and and
or extended in order to take the unknown value into account. The semantic
basis of the three connectives is the idea that the unknown value is
somewhere between true and false.

We should point out that the three-valued logic for algebraic operators
also presents some unsatisfactory properties. For example, let us consider the
algebraic expression

σAge>30(PEOPLE) ∪ σ Age≤30(PEOPLE)

Figure 3.26 A relation with null values.

PEOPLE

Name Age Salary

Aldo 35 15
Andrea 27 21
Maria NULL 42

not
F T
U U
T F

and T U F
T T U F
U U U F
F F F F

or T U F
T T T T
U T U U
F T U F

64 Chapter 3
Relational algebra and calculus

Logically, this expression should return precisely the PEOPLE relation, given
that the age value is either higher than 30 (first sub-expression) or is not
higher than 30 (second sub-expression). On the other hand, if the two sub-
expressions are evaluated separately, the third tuple of the example (just like
any other tuple with a null value for Age), has an unknown result for each
sub-expression and thus for the union. Only by means of a global evaluation
(definitely impractical in the case of complex expressions) can we arrive at
the conclusion that such a tuple must certainly appear in the result. The same
goes for the expression

σAge>30∨ Age≤30(PEOPLE)

in which the disjunction is evaluated according to the three-valued logic.
In practice the best method for overcoming the difficulties described above

is to treat the null values from a purely syntactic point of view. This
approach works in the same way for both two-valued logic and three-valued
logic. Two new forms of atomic conditions of selection are introduced to
verify whether a value is specified or null:

• A is null assumes the value true on a tuple t if the value of t on A is null
and false if it is not;

• A is not null assumes the value true on a tuple t if the value of t on A
comes from the domain of A and false if the value is null.

In this context, the expression

σAge>30(PEOPLE)

returns the people whose age is known and over 30, whereas to obtain those
who are or could be over 30 (that is, those whose age is known and over 30
or not known), we can use the expression:

σAge>30∨ Age is null(PEOPLE)

Similarly, the expressions

σAge>30(PEOPLE) ∪ σ Age≤30(PEOPLE)
σAge>30∨ Age≤30(PEOPLE)

do not return an entire relation, but only the tuples that have a value not null
for Age. If we want the entire relation as the result, then we have to add an
‘is null’ condition:

σAge>30∨ Age≤30∨ Age is null(PEOPLE)

This approach, as we explain in Chapter , is used in the present version
of sql, which supports a three-valued logic, and is usable in earlier versions,
which adopted a two-valued logic.

Section 3.1 65
Relational algebra

3.1.9 Views
In Chapter , we saw how it can be useful to make different representations
of the same data available to users. In the relational model, this is achieved
by means of derived relations, that is, relations whose content is defined in
terms of the contents of other relations. In a relational database, there can
thus exist base relations, whose content is autonomous and actually stored in
the database, and derived relations, whose content is derived from the
content of other relations. It is possible that a derived relation is defined in
terms of other derived relations, on condition that an ordering exists among
the derived relations, so that all derived relations can be expressed in terms
of base relations.1

There are basically two types of derived relations:

• materialized views: derived relations that are actually stored in the
database;

• virtual relations (also called views, without further qualification):
relations defined by means of functions (expressions in the query
language), not stored in the database, but useable in the queries as if they
were.

Materialized views have the advantage of being immediately available for
queries. Frequently, however, it is a heavy task to maintain their contents
consistent with those of the relations from which they are derived, as any
change to the base relations from which they depend has to be propagated to
them. On the other hand, virtual relations must be recalculated for each
query but produce no consistency problems. Roughly, we can say that
materialized views are convenient when there are fewer updates than queries
and the calculation of the view is complex.2 It is difficult, however, to give
general techniques for maintaining consistency between base relations and
materialized views. For this reason, most commercial systems provide
mechanisms for organizing only virtual relations, which from here on, with
no risk of ambiguity, we call simply views.

Views are defined in relational systems by means of query language
expressions. Then queries on views are resolved by substituting the
definition of the view for the view itself, that is, by composing the original
query with the view query. For example, consider a database on the
relations:

R1(ABC), R2(DEF), R3(GH)

with a view defined using a cartesian product followed by a selection

1. This condition is relaxed in the recent proposals for deductive databases, which
allow the definition of recursive views. We discuss this issue briefly in
Section ..

2. We return to this subject in Chapter , in which we discuss active databases,
and in Chapter , in which we discuss data warehouses.

66 Chapter 3
Relational algebra and calculus

R = σA>D(R1 J R2)

On this schema, the query

σB=G(R J R3)

is executed by replacing R with its definition

σB=G(σA>D(R1 J R2) J R3)

The use of views can be convenient for a variety of reasons.

• A user interested in only a portion of the database can avoid dealing with
the irrelevant components. For example, in a database with two relations
on the schemas

EMPLOYEES(Employee, Department)
MANAGERS(Department, Supervisor)

a user interested only in the employees and their respective supervisors
could find his task facilitated by a view defined as follows:

πEmployee,Supervisor(EMPLOYEES J MANAGERS)

• Very complex expressions can be defined using views, with particular
advantages in the case of repeated sub-expressions.

• By means of access authorizations associated with views, we can
introduce mechanisms for the protection of privacy; for instance, a user
could be granted restricted access to the database through a specifically
designed view; this application of views is discussed in Chapter .

• In the event of restructuring of a database, it can be convenient to define
views corresponding to relations that are no longer present after the
restructuring. In this way, applications written with reference to the
earlier version of the schema can be used on the new one without the
need for modifications. For example, if a schema R(ABC) is replaced by
two schemas R1(AB), R2(BC), we can define a view, R = R1 J R2 and
leave intact the applications that refer to R. The results as we show in
Chapter confirm that, if B is a key for R2, then the presence of the view
is completely transparent.

As far as queries are concerned, views can be treated as if they were base
relations. However, the same cannot be said for update operations. In fact, it
is often not even possible to define a semantics for updating views. Given an
update on a view, we would like to have exactly one set of updates to the base
relations, such that the view, if computed after these changes to the base
relations, appears as if the given update had been performed on it.
Unfortunately, this is not generally possible. For example, let us look again
at the view

Section 3.2 67
Relational calculus

πEmployee,Supervisor(EMPLOYEES J MANAGERS)

Assume we want to insert a tuple into the view: we would like to have tuples
to insert into the base relations that allow the generation of the new tuple in
the view. But this is not possible, because the tuple in the view does not
involve the Department attribute, and so we do not have a value for it, as
needed in order to establish the correspondence between the two relations.
In general, the problem of updating views is complex, and all systems have
strong limitations regarding the updating of views.

We return to the subject of views and present further examples in
Chapter , in which we show how views are defined and used in sql.

3.2 Relational calculus
The term relational calculus refers to a family of query languages, based on
first order predicate calculus. These are characterized by being declarative,
meaning that the query is specified in terms of the property of the result,
rather than the procedure to be followed to obtain it. By contrast, relational
algebra is known as a procedural language, because its expressions specify
(by means of the individual applications of the operators) the construction of
the result step by step.

There are many versions of relational calculus and it is not possible to
present them all here. We first illustrate the version that is nearest to
predicate calculus, domain relational calculus, which presents the basic
characteristics of these languages. We then discuss the limitations and
modifications that make it of practical interest. We will therefore present
tuple calculus with range declarations, which forms the basis for many of the
constructs available for queries in sql, which we look at in Chapter .

In keeping with the topics already discussed concerning the relational
model, we use non-positional notation for relational calculus.

This section (on calculus) and the following one (on Datalog) can be
omitted without impairing the understanding of the rest of the book.

It is not necessary to be acquainted with first order predicate calculus in
order to read this section. We give now some comments that enable anyone
with prior knowledge to grasp the relationship with first order predicate
calculus; these comments may be omitted without compromising the
understanding of subsequent concepts.

There are some simplifications and modifications in relational calculus,
with respect to first order predicate calculus. First, in predicate calculus, we
generally have predicate symbols (interpreted in the same way as relations)
and function symbols (interpreted as functions). In relational calculus, the
predicate symbols correspond to relations in the database (apart from other
standard predicates such as equality and inequality) and there are no
function symbols. (They are not necessary given the flat structure of the
relations.)

68 Chapter 3
Relational algebra and calculus

Then, in predicate calculus both open formulas (those with free variables),
and closed formulas (those whose variables are all bound and none free), are
of interest. The second type have a truth value that, with respect to an
interpretation, is fixed, while the first have a value that depends on the
values substituted for the free variables. In relational calculus, only the open
formulas are of interest. A query is defined by means of an open calculus
formula and the result consists of tuples of values that satisfy the formula
when substituted for free variables.

3.2.1 Domain relational calculus
Relational calculus expressions have this form:

{ A1:x1, …, Ak:xk | f}
where:

• A1, …, Ak are distinct attributes (which do not necessarily have to appear
in the schema of the database on which the query is formulated);

• x1, …, xk are variables (which we will take to be distinct for the sake of
convenience, even if this is not strictly necessary);

• f is a formula, according to the following rules:

° There are two types of atomic formula:

* R(A1:x1, …, Ap:xp), where R(A1, …, Ap) is a relational schema
and x1, …, xp are variables;

* xϑy or xϑc, with x and y variables, c constant and ϑ comparison
operator (=, ≠, ≤, ≥, >, <).

° If f1 and f2 are formulas, then f1 ∨ f2, f1 ∧ f2, and ¬ f1 are formulas (∨ , ∧ ,
¬ are the logical connectives); where necessary, in order to ensure that
the precedences are unambiguous, brackets can be used;

° If f is a formula and x a variable (which usually appears in f, even if not
strictly necessary) then ∃ x(f) and ∀ x(f) are formulas (∃ and ∀ are the
existential quantifier and universal quantifier, respectively).

The list of pairs A1 : x1, …, Ak : xk is called the target list because it defines
the structure of the result, which is made up of the relation on A1, …, Ak that
contains the tuples whose values when substituted for x1, …, xk render the
formula true. The formal definition of the truth value of a formula goes
beyond the scope of this book and, at the same time, its meaning can be
explained informally. Let us briefly follow the syntactic structure of formulas
(the term ‘value’ here means ‘an element of the domain’, where we assume,
for the sake of simplicity, that all attributes have the same domain):

• an atomic formula R(A1:x1, …, Ap:xp) is true for values of x1, …, xp that
form a tuple of R;

Section 3.2 69
Relational calculus

• an atomic formula xϑy is true for values of x and y such that the value of x
stands in relation ϑ with the value of y; similarly for xϑc;

• the meaning of connectives is the usual one;

• for the formulas built with quantifiers:

° ∃ x(f) is true if there exists at least one value for x that makes f true;

° ∀ x(f) is true if f is true for all possible values for x.

Let us now illustrate relational calculus by showing how it can be used to
express the queries that we formulated in relational algebra in Section ..,
over the schema:

EMPLOYEES(Number, Name, Age, Salary)
SUPERVISION(Head, Employee)

Let us begin with a very simple query: find the registration numbers,
names, ages and salaries of the employees earning more than 40 thousand,
which we can formulate in algebra with a selection:

σSalary>40(EMPLOYEES) (3.6)

There is an equally simple formulation in relational calculus, with the
expression:

{ Number:m, Name:n, Age:a, Salary:s |
EMPLOYEES(Number:m, Name:n, Age:a, Salary:s) ∧ s > 40} (3.7)

Note the presence of two conditions in the formula (connected by the logical
operator and):

• the first, EMPLOYEES(Number:m, Name:n, Age:a, Salary:s), requires that the
values substituted respectively for the variables m, n, a, s constitute a
tuple of the relation EMPLOYEES;

• the second requires that the value of the variable s is greater than 40.

The result is made up of the values of the four variables that originate from
the tuples of EMPLOYEES for which the value of the salary is greater than
thousand.

A slightly more complex query is: find the registration numbers, names and
ages of the employees who earn more than 40 thousand. This query requires a
subset of the attributes of EMPLOYEES and thus in algebra can be formulated
with a projection (Expression .):

πNumber,Name,Age(σSalary>40(EMPLOYEES))

This query in calculus can be formulated in various ways. The most direct,
if not the simplest, is based on the observation that what interests us are the
values of Number, Name and Age, which form part of the tuples for which

70 Chapter 3
Relational algebra and calculus

Salary is greater than 40. That is, for which there exists a value of Salary,
greater than 40, which allows the completion of a tuple of the relation
EMPLOYEES. We can thus use an existential quantifier:

{ Number:m, Name:n, Age:a |
∃ s(EMPLOYEES(Number:m, Name:n, Age:a, Salary:s) ∧ s > 40)} (3.8)

The use of the quantifier is not actually necessary, since by simply writing

{ Number:m, Name:n, Age:a |
EMPLOYEES(Number:m, Name:n, Age:a, Salary:s) ∧ s > 40} (3.9)

we can obtain the same result.
The same structure can be extended to more complex queries, which in

relational algebra we formulated using the join operator. We will need more
atomic conditions, one for each relation involved, and we can use repeated
variables to indicate the join conditions. For example, the query that
requests find the registration numbers of the supervisors of the employees who
earn more than 40 thousand, formulated in algebra by Expression .:

πHead(SUPERVISIONJEmployee=Number(σSalary>40(EMPLOYEES)))

can be formulated in calculus by:

{ Head:h | EMPLOYEES(Number:m, Name:n, Age:a, Salary:s) ∧
SUPERVISION(Employee:m, Head:h) ∧ s > 40} (3.10)

where the variable m, common to both atomic conditions, builds the same
correspondence between tuples specified in the join. Here, also, we can use
existential quantifiers for all the variables that do not appear in the target list.
However, as in the case above, this is not necessary, and would complicate
the formulation.

If the involvement of different tuples of the same relation is required in an
expression, then it is sufficient to include more conditions on the same
predicate in the formula, with different variables. Consider the query: find the
names and salaries of the supervisors of the employees earning more than 40
thousand, expressed in algebra by Expression ., which has a join of the
relation with itself:

πNameH,SalaryH (QNumberH,NameH,SalaryH,AgeH←Number,Name,Salary,Age (EMPLOYEES)
JNumberH=Head

(SUPERVISION JEmployee=Number (σSalary>40(EMPLOYEES))))

This query is formulated in calculus by requiring, for each tuple of the
result, the existence of three tuples: one relating to an employee earning
more than thousand, a second that indicates who is his supervisor, and the
last (again in the EMPLOYEES relation) that gives detailed information on the
supervisor:

Section 3.2 71
Relational calculus

{ NameH:nh, SalaryH:sh |
EMPLOYEES(Number:m, Name:n, Age:a, Salary:s) ∧ s > 40 ∧

SUPERVISION(Employee:m, Head:h) ∧
EMPLOYEES(Number:h, Name:nh, Age:ah, Salary:sh)} (3.11)

Consider next the query: find the employees earning more than their
respective supervisors, showing registration number, name and salary of the
employees and supervisors (Expression . in algebra). This differs from the
preceding one only in the necessity of comparing values of the same
attribute originating from different tuples, which causes no particular
problems:

{ Number:m, Name:n, Salary:s, NumberH:h, NameH:nh, SalaryH:sh |
EMPLOYEES(Number:m, Name:n, Age:a, Salary:s) ∧

SUPERVISION(Employee:m, Head:h) ∧
EMPLOYEES(Number:h, Name:nh, Age:ah, Salary:sh) ∧ s > sh} (3.12)

The last example requires a more complex solution. We must find the
registration numbers and names of the supervisors whose employees all earn
more than 40 thousand. In algebra we used a difference (Expression .) that
generates the required set by taking into account all the supervisors except
those who have at least one employee earning less than thousand:

πNumber,Name(EMPLOYEES JNumber=Head
(πHead(SUPERVISION) −

πHead(SUPERVISION JEmployee=Number (σSalary≤40(EMPLOYEES)))))

In calculus, we must use a quantifier. By taking the same steps as for
algebra, we can use a negated existential quantifier. We use many of these,
one for each variable involved.

{ Number:h, Name:n | EMPLOYEES(Number:h, Name:n, Age:a, Salary:s) ∧
SUPERVISION(Employee:m, Head:h) ∧

¬∃ m′(∃ n′(∃ a′(∃ s′(EMPLOYEES(Number:m′, Name:n′, Age:a′, Salary:s′) ∧
 SUPERVISION(Employee:m′, Head:h) ∧ s′ ≤ 40))))} (3.13)

As an alternative, we can use universal quantifiers:

{ Number:h, Name:n | EMPLOYEES(Number:h, Name:n, Age:a, Salary:s) ∧
SUPERVISION(Employee:m, Head:h) ∧

∀ m′(∀ n′(∀ a′(∀ s′(¬(EMPLOYEES(Number:m′, Name:n′, Age:a′, Salary:s′) ∧
 SUPERVISION(Employee:m′, Head:h)) ∨ s′ > 40))))} (3.14)

This expression selects a supervisor h if for every quadruple of values m′,
n′, a′, s′ relative to the employees of h, s′ is greater than 40. The structure
¬ f ∨ g corresponds to the condition ‘If f then g’ (in our case, if m′ is an
employee having h as a supervisor, then the salary of m′ is greater than 40),
given that it is true in all cases apart from the one in which f is true and g is
false.

72 Chapter 3
Relational algebra and calculus

It is worth noting that variations of de Morgan laws valid for boolean
algebra operators, such that:

¬(f ∧ g) ≡ ¬(f) ∨ ¬(g)

¬(f ∨ g) = ¬(f) ∧ ¬(g)

are also valid for quantifiers:

∃ x(f) = ¬(∀ x(¬(f)))

∀ x(f) = ¬(∃ x(¬(f)))

The two formulations shown for the last query can be obtained one from
the other by means of these equivalences. Furthermore, in general, we can
use a reduced form of calculus (but without losing expressive power), in
which we have the negation, a single connective (for example, the
conjunction) and a single quantifier (for example the existential, which is
easier to understand).

3.2.2 Qualities and drawbacks of domain calculus
As we have shown in the examples, relational calculus presents some
interesting aspects, particularly its declarative nature. There are, however,
some defects and limitations, which are significant from the practical point
of view.

First, note that calculus allows expressions that make very little sense. For
example, the expression:

{ A1 : x1, A2 : x2 | R(A1 : x1) ∧ x2 = x2}

produces as a result a relation on A1 and A2 made up of tuples whose values
in A1 appear in the relation R, and the value on A2 is any value of the domain
(since the condition x2 = x2 is always true). In particular, if the domain
changes, for example, from the integers between and to the integers
between and , the answer to the query also changes. If the domain is
infinite, then the answer is also infinite, which is undesirable. A similar
observation can be made for the expression

{ A1 : x1 | ¬(R(A1 : x1))}

the result of which contains the values of the domain not appearing in R.
It is useful to introduce the following concept here: an expression of a

query language is domain independent if its result, on each instance of the
database, does not vary if we change the domain on the basis of which the
expression is evaluated. A language is domain independent if all its
expressions are domain independent. The requirement of domain
independence is clearly fundamental for real languages, because domain
dependent expressions have no practical use and can produce extensive
results.

Section 3.2 73
Relational calculus

Based on the expressions seen above, we can say that relational calculus is
not domain independent. At the same time, it is easy to see that relational
algebra is domain independent, because it constructs the results from the
relations in the database, without ever referring to the domains of the
attributes. So the values of the results all come from the instance to which
the expression is applied.

If we say that two query languages are equivalent when for each expression
in one there exists an equivalent expression in the other and vice versa, we
can state that algebra and calculus are not equivalent. This is because
calculus, unlike algebra, allows expressions that are domain dependent.
However, if we limit our attention to the subset of relational calculus made
up solely of expressions that are domain independent, then we get a language
that is indeed equivalent to relational algebra. In fact:

• for every expression of relational calculus that is domain independent
there exists an expression of relational algebra equivalent to it;

• for every expression of relational algebra there is an expression of
relational calculus equivalent to it (and thus domain independent).

The proof of equivalence goes beyond the scope of this text, but we can
mention its basic principles. There is a correspondence between selections
and simple conditions, between projection and existential quantification,
between join and conjunction, between union and disjunction and between
difference and conjunction associated with negation. The universal
quantifiers can be ignored in that they can be changed to existential
quantifiers using de Morgan’s laws.

In addition to the problem of domain dependence, relational calculus has
another disadvantage, that of requiring numerous variables, often one for
each attribute of each relation involved. Then, when quantifications are
necessary the quantifiers are also multiplied. The only practical languages
based at least in part on domain calculus, known as Query-by-Example (QBE),
use a graphic interface that frees the user from the need to specify tedious
details. Appendix A, which deals with the Microsoft Access system,
presents a version of qbe.

In order to overcome the limitations of domain calculus, a variant of
relational calculus has been proposed, in which the variables denote tuples
instead of single values. In this way, the number of variables is often
significantly reduced, in that there is only a variable for each relation
involved. This tuple relational calculus would however be equivalent to
domain calculus, and thus also have the limitation of domain dependence.
Therefore, we prefer to omit the presentation of this language. Instead we
will move directly to a language that has the characteristics of tuple calculus,
and at the same time overcomes the defect of domain dependence, by using
the direct association of variables with relations of the database. The
following section deals with this language.

74 Chapter 3
Relational algebra and calculus

3.2.3 Tuple calculus with range declarations
The expressions of tuple calculus with range declarations have the form

{ T| L | f }

where:

L is the range list, enumerating the free variables of the formula f, with the
respective ranges of variability: in fact, L is a list of elements of type
x(R), with x variable and R relation name; if x(R) is in the range list, then,
when the expression is evaluated, the possible values for x are just the
tuples in the relation R;

T is the target list, composed of elements of type Y :x.Z (or simply x.Z,
abbreviation for Z :x.Z), with x variable and Y and Z sequences of
attributes (of equal length); the attributes in Z must appear in the schema
of the relation that makes up the range of x. We can also write x.*, as
abbreviation for X :x.X, where the range of the variable x is a relation on
attributes X;

f is a formula with

• atoms of type x.Aϑc or x1.A1ϑx2.A2, which compare, respectively, the
value of x on the attribute A with the constant c and the value of x1 on
A1 with that of x2 on A2;

• connectives as for domain calculus;

• quantifiers, which also associate ranges to the respective variables:

∃ x(R)(f) ∀ x(R)(f)

where, ∃ x(R)(f) means ‘there is a tuple x in the relation R that satisfies
the formula f′ and ∀ x(R)(f) means ‘every tuple x in R satisfies f′.

Range declarations in the range list and in the quantifications have an
important role: while introducing a variable x, a range declaration R(x)
specifies that x can assume as values only the tuples of the relation R with
which it is associated. Therefore this language has no need of atomic
conditions such as those seen in domain calculus, which specify that a tuple
belongs to a relation.

We show next how the various queries that we have already expressed in
algebra and domain calculus can be formulated in this language.

The first query, which requests registration numbers, names, ages and
salaries of the employees earning more than 40 thousand, becomes very concise
and clear (compare with Expression .):

{ e.* |e(EMPLOYEES) | e.Salary > 40} (3.15)

In order to produce only some of the attributes, registration numbers,
names and ages of the employees earning more than 40 thousand

Section 3.2 75
Relational calculus

(Expression . in algebra and Expression . in domain calculus), it is
sufficient to modify the target list:

{ e.(Number, Name, Age) | e(EMPLOYEES) | e.Salary > 40} (3.16)

For queries involving more than one relation, more variables are necessary,
specifying the conditions of correlation on the attributes. The query that
requests find the registration numbers of the supervisors of the employees
earning more than 40 thousand (Expression . in algebra and Expression .
in domain calculus) can be formulated with:

{ s.Head | e(EMPLOYEES), s(SUPERVISION) |
 e.Number = s.Employee ∧ e.Salary > 40} (3.17)

Note how the formula allows for the conjunction of two atomic conditions,
one that corresponds to the join condition (e.Number = s.Employee) and the
other to the usual selection condition (e.Salary > 40).

In the case of expressions that correspond to the join of a relation with
itself, there will be more variables with the same range. The query: find
names and salaries of supervisors of employees earning more than 40 thousand
(Expression . and Expression .) can be formulated using the following
expression:

{ NameH, SalaryH:e′.(Name, Salary) |
e′(EMPLOYEES), s(SUPERVISION), e(EMPLOYEES) |

e′.Number = s.Head ∧ s.Employee = e.Number ∧
e.Salary > 40} (3.18)

Similarly, we can find the employees who earn more than their respective
supervisors, showing registration number, name and salary of the employees and
supervisors (Expression . in algebra and Expression . in domain
calculus):

{ e.(Name,Number, Salary),NameH,NumberH,SalaryH:e′.(Name,Number,Salary) |
e(EMPLOYEES), s(SUPERVISION), e′(EMPLOYEES) |

e.Number = s.Employee ∧ s.Head = e′.Number ∧
e.Salary > e′.Salary} (3.19)

Queries with quantifiers are much more concise and practical here than in
domain calculus. The query that requests find the registration number and
name of the supervisors whose employees all earn more that 40 thousand
(Expression . in algebra and Expression . or Expression . in domain
calculus) can be expressed with far fewer quantifiers and variables. Again,
there are various options, based on the use of the two quantifiers and of
negation. With universal quantifiers:

{ e.(Number, Name) | e(EMPLOYEES), s(SUPERVISION) |
e.Number = s.Head ∧ ∀ e′(EMPLOYEES)(∀ s′(SUPERVISION)

(¬(s.Head = s′.Head ∧ s′.Employee = e′.Number) ∨
e′.Salary > 40))} (3.20)

76 Chapter 3
Relational algebra and calculus

With negated existential quantifiers:

{ e.(Number, Name) | e(EMPLOYEES), s(SUPERVISION) |
e.Number = s.Head ∧ ¬(∃ e′(EMPLOYEES)(∃ s′(SUPERVISION)

(s.Head = s′.Head ∧ s′.Employee = e′.Number ∧
e′.Salary ≤ 40)))} (3.21)

Unfortunately, it turns out that it is not possible in tuple calculus with
range declarations to express all the queries that could be formulated in
relational algebra (or in domain calculus). In particular, the queries that in
algebra require the union operator, cannot be expressed in this version of
calculus. Take, for example, the simple union of two relations on the same
attributes: given R1(AB) and R2(AB), we wish to formulate the query that
we would express in algebra by the union of R1 and R2. If the expression had
two free variables, then every tuple of the result would have to correspond
to a tuple of each of the relations. This is not necessary, because the union
requires the tuples of the result to appear in at least one of the operands, not
necessarily in both. If, on the other hand, the expression had a single free
variable, this would have to refer to a single relation, without acquiring
tuples from the other for the result. Therefore, the union cannot be
expressed.

For this reason, sql, as we will see in Chapter , allows for an explicit
union construct, to express queries that would otherwise prove impossible.
This is because the declarative aspects of sql are based on tuple calculus
with range declarations.

Note that if we allowed the definition of ranges made up of two or more
relations, we would resolve the problem of simple unions. We could not
however, formulate complex unions whose operands are sub-expressions not
directly corresponding to relation schemas. For example, given two relations
R1(ABC) and R2(BCD), the union of their projections on BC

πBC(R1) ∪ π BC(R2)

could not be expressed even with this extension, because the two relations
have different schemas, and thus a single variable cannot be associated with
both.

We must stress that, while the union operator cannot be expressed in this
version of calculus, the intersection and difference operators are expressible.

• Intersection requires the tuples of the result to belong to both the
operands and thus the result can be constructed with reference to just
one relation, with the additional condition that requires the existence of
an equal tuple in the other relation; for example, the intersection:

πBC(R1) ∩ πBC(R2)

can be expressed by:

{ x1.BC | x1(R1) | ∃ x2(R2)(x1.B = x2.B ∧ x1.C = x2.C)}

Section 3.3 77
Datalog

• Similarly, the difference, which produces the tuples of an operand not
contained in the other, can be specified by requesting precisely those
tuples of the first argument that do not appear in the second. For
example,

πBC(R1) − πBC(R2)

can be expressed by:

{ x1.BC | x1(R1) | ¬∃ x2(R2)(x1.B = x2.B ∧ x1.C = x2.C)}

3.3 Datalog

We conclude this chapter with a brief discussion of another database query
language that has generated considerable interest in the scientific community
since the mid-eighties. The basic concept on which the Datalog language is
based is that of adapting the logic programming language Prolog for use with
databases. We can illustrate neither Datalog nor Prolog in detail here, but we
can mention the most interesting aspects, particularly from the point of view
of a comparison with the other languages seen in this chapter.

In its basic form, Datalog is a simplified version of Prolog,3 a language
based on first order predicate calculus, but with a different approach from
the relational calculus discussed above. There are two types of predicate in
Datalog:

• extensional predicates, which correspond to relations in the database;

• intensional predicates, which essentially correspond to views (virtual
relations), specified by means of logical rules.

Datalog rules have the form:

head ← body

where

• the head is an atomic formula of the form R(A1 : a1, …, Ap : ap), similar to
those used in domain relational calculus,4 where each ai, however, can be
a constant or a variable;

• the body is a list of atomic formulas, of both forms allowed in domain
calculus, that is, the form R(…) and the comparison between variables or
between a variable and a constant.

3. For those acquainted with Prolog, note that function symbols are not used in
Datalog.

4. For the sake of continuity with previous sections, we use a non-positional
notation for atomic formulas, while Datalog and Prolog usually have a positional
notation. The substance of the language is, however, the same.

78 Chapter 3
Relational algebra and calculus

Rules define the ‘content’ of intensional predicates, as the tuples whose
values satisfy the body. The following conditions are imposed:

• extensional predicates can appear only in the body of rules;

• if a variable appears in the head of a rule, then it must also appear in the
body of the same rule;

• if a variable appears in a comparison atom, then it must also appear in an
atom of the form R(…) in the same body.

The first condition ensures that there will be no attempt to redefine the
relations stored in the database. The other two ensure a property similar (in
this context) to domain independence as discussed with regard to relational
calculus.

A basic characteristic of Datalog, which distinguishes it from the other
languages we have seen up to now, is its use of recursion. It is possible for an
intensional predicate to be defined in terms of itself (directly or indirectly).
We will return to this aspect shortly.

Datalog queries are specified simply by means of atoms
R(A1 : a1, …, Ap : ap), usually preceded by a question mark ‘?’, to underline
precisely the fact that they are queries; however other syntactic conventions
may be used. Queries produce as results the tuples of the relation R that can
be obtained by suitable substitutions for the variables. For example, the
query:

?EMPLOYEES(Number:m, Name:n, Age:30, Salary:s)

returns the employees who are thirty years old. To formulate more complex
queries, we must use rules. For example, in order to find the registration
numbers of the supervisors of the employees who earn more than 40 thousand,
formulated in algebra by Expression . and in domain calculus by
Expression ., we define an intensional predicate SUPEROFRICH, with the
rule:

SUPEROFRICH(Head:h) ←
EMPLOYEES(Number:m, Name:n, Age:a, Salary:s),
SUPERVISION(Employee:m, Head:h), s > 40 (3.22)

In order to evaluate a query of this nature, we must define the semantics
of the rules. The basic concept is that the body of a rule is considered as the
conjunction of the atoms that appear in it, and thus the rule can be evaluated
in the same way as an expression of domain calculus. The body of the
expression, substituting the commas with and, becomes the formula, and the
head of the expression, apart from the name of the intensional predicate,
becomes the target list. Expression . defines the intensional relation
SUPEROFRICH as made up of the same tuples that appear in the result of

Section 3.3 79
Datalog

Expression . of calculus, which has precisely the structure described
above:

{ Head:h | EMPLOYEES(Number:m, Name:n, Age:a, Salary:s) ∧
SUPERVISION(Employee:m, Head:h) ∧ s > 40}

Similarly, we can write rules (with auxiliary intensional predicates) for
many of the queries we have looked at in preceding sections. In the absence
of recursive definitions, the semantics of Datalog is therefore very simple, in
the sense that the various intensional predicates can be calculated by means
of expressions similar to calculus. However, using the definition given so far
for Datalog, it is not possible to formulate all the queries that could be
expressed in calculus (and in algebra). This is because there is no construct
available corresponding to the universal quantifier (or to negation in the full
sense of the term). It can be proven that non-recursive Datalog is equivalent
to the domain independent subset of calculus without negations or universal
quantifiers.

To furnish Datalog with the same expressive power as calculus, we must
add to the basic structure the possibility of including in the body, not only
atomic conditions, but also negations of atomic conditions (which we
indicate by the symbol not).

Only in this way can we formulate the query that requests find the
registration numbers and names of the supervisors whose employees all earn
more than 40 thousand (Expression .):

{ Number:h, Name:n | EMPLOYEES(Number:h, Name:n, Age:a, Salary:s) ∧
SUPERVISION(Employee:m, Head:h) ∧

¬∃ m′(∃ n′(∃ a′(∃ s′(EMPLOYEES(Number:m′, Name:n′, Age:a′, Salary:s′) ∧
 SUPERVISION(Employee:m′, Head:h) ∧ s′ ≤ 40))))}

Let us proceed by defining a predicate for the supervisors who do not satisfy
the condition:

SUPEROFSOMENOTRICH(Head:h) ←
SUPERVISION(Employee:m, Head:h),
EMPLOYEES(Number:m, Name:n, Age:a, Salary:s), s′ ≤ 40

We can use this predicate in the negated form:

SUPEROFALLRICH(Number:h, Name:n) ←
EMPLOYEES(Number:h, Name:n, Age:a, Salary:s)
SUPERVISION(Employee:m, Head:h),
not SUPEROFSOMENOTRICH(Head:h)

We could prove that non-recursive Datalog with negation is equivalent to the
domain-independent subset of calculus.

Greater expressive power is obtained by using recursive rules. For
example, referring again to the database with the relations EMPLOYEES and

80 Chapter 3
Relational algebra and calculus

SUPERVISION, we can define the intensional predicate SUPERIORS, which gives,
for each employee, the supervisor, the supervisor’s supervisor and so on,
with no limits. For this we need two rules:

SUPERIORS(Employee:e, SuperHead:h) ←
SUPERVISION(Employee:e, Head:h)

SUPERIORS(Employee:e, SuperHead:h) ←
SUPERVISION(Employee:e, Head:h′)
SUPERIORS(Employee:h′, SuperHead:h)

The second rule is recursive, in that it defines the SUPERIORS relation in
terms of itself. To evaluate this rule, we cannot proceed as we have done up
to now, because a single evaluation of the body would not be sufficient to
calculate the recursive predicate. There are various techniques for formally
defining the semantics in this case, but they are well beyond the scope of this
text. We will touch upon the simplest method, based on the technique
known as fixpoint: the rules that define the intensional recursive predicate
are evaluated many times until an iteration does not generate new results. In
our case, the first iteration would generate a relation SUPERIORS equal to the
extensional relation SUPERVISION, that is, containing the supervisors of the
employees. The second step would add the supervisors of the supervisors,
and so on. Obviously, queries of this nature cannot be formulated in
relational algebra (or in calculus) because we would have no way of knowing
how many times the join of the relation SUPERVISION with itself had to be
specified.

As a final issue before concluding, we simply state the fact that certain
recursive rules with negation are difficult to evaluate, because the fixpoint
cannot be reached. This is why limits are imposed on the presence of
negations in recursive rules. The reader should be aware that it is possible to
identify a perfectly workable subset of recursive Datalog with negation that
is much more expressive than calculus and relational algebra in that:

• for every expression of algebra there is an equivalent expression of
Datalog with negation;

• there are recursive Datalog expressions for which there are no equivalent
expressions in algebra and calculus.

3.4 Bibliography
Relational algebra was proposed by Codd [] as an essential component of
the model. Relational calculus and the close correspondence of the two
families of languages were also proposed by Codd []. Deeper and more
formal treatment of relational languages can be found in the books devoted
to database theory: Ullman [], Maier [], Paredaens et al. [], Atzeni and
De Antonellis [], Abiteboul, Hull and Vianu []. Datalog is discussed in

Section 3.5 81
Exercises

depth by Ceri, Gottlob and Tanca [], Ullman [], Abiteboul, Hull and
Vianu [].

3.5 Exercises

Exercise 3.1 Study the database schema containing the relations:

FILMS(FilmNumber, Title, Director, Year, ProductionCost)
ARTISTS(ActorNumber, Surname, FirstName, Sex, BirthDate, Nationality)

ROLES(FilmNumber, ActorNumber, Character)

. Produce a database on this schema for which the joins between the
various relations are all complete.

. Assuming two referential constraints between the relation ROLES and the
other two, discuss possible cases of incomplete join.

. Show a cartesian product that involves relations in this database.

. Show a database for which one (or more) of the joins is (are) empty.

Exercise 3.2 With reference to the schema in Exercise ., express the
following queries in relational algebra, in domain calculus, in tuple calculus
and in Datalog:

. the titles of the films starring Henry Fonda;

. the titles of the films in which the director is also an actor;

. the actors who have played two characters in the same film; show the
titles of the films, first name and surname of the actor and the two
characters;

. the titles of the films in which the actors are all of the same sex.

Exercise 3.3 Consider the database containing the following relations:

REPRESENTATIVE(Number, Surname, FirstName, Committee, County, Constituency)
CONSTITUENCIES(County, Number, Name)

COUNTIES(Code, Name, Region)
REGIONS(Code, Name)

COMMITTEES(Number, Name, President)

Formulate the following queries in relational algebra, in domain calculus and
in tuple calculus;

. find the name and surname of the presidents of the committees in which
there is at least one representative from the county of Borsetshire;

. find the name and surname of the members of the finance committee;

82 Chapter 3
Relational algebra and calculus

. find the name, surname and constituency of the members of the finance
committee;

. find the name, surname, county and region of election of the delegates of
the finance committee;

. find the regions in which representatives having the same surname have
been elected.

Exercise 3.4 Show how the formulation of the queries in Exercise . could
be facilitated by the definition of views.

Exercise 3.5 Consider the database schema on the relations

COURSES(Number, Faculty, CourseTitle, Tutor)
STUDENTS(Number, Surname, FirstName, Faculty)

TUTORS(Number, Surname, FirstName)
EXAMS(Student, Course, Grade, Date)

STUDYPLAN(Student, Course, Year)

Formulate, in relational algebra, in domain calculus, in tuple calculus, and in
Datalog, the queries that produce:

. the students who have gained an ‘A’ in at least one exam, showing, for
each of them, the first name, surname and the date of the first of such
occasions;

. for every course in the engineering faculty, the students who passed the
exam during the last session;

. the students who passed all the exams required by their respective study
plans;

. for every course in the literature faculty, the student (or students) who
passed the exam with the highest grades;

. the students whose study plans require them to attend lectures only in
their own faculties;

. first name and surname of the students who have taken an exam with a
tutor having the same surname as the student.

Exercise 3.6 With reference to the following database schema:

CITIES(Name, Region, Population)
CROSSINGS(City, River)
RIVERS(River, Length)

formulate the following queries in relational algebra, domain calculus, tuple
calculus and Datalog:

Section 3.5 83
Exercises

. find the names, regions and populations for the cities that (i) have more
than thousand inhabitants and (ii) and are crossed by the Thames or
the Mersey;

. find the cities that are crossed by (at least) two rivers, giving the name of
the city and that of the longest of the rivers.

Exercise 3.7 With reference to the following database schema:

TRIBUTARIES(Tributary, River)
RIVERS(River, Length)

formulate in Datalog, the query that finds all the tributaries, direct and
indirect, of the Mississippi.

Exercise 3.8 Consider the relational schema consisting of the following
relations:

TUTORS(Number, Surname, FirstName)
COURSES(Number, CourseName, Tutor)

STUDENTS(Number, Surname, FirstName)
EXAMS(Student, Course, Date, Grade)

With reference to this schema, formulate the expressions of algebra, tuple
relational calculus and Datalog that produce:

. the exams passed by the student named Detrouvelan–Delaney
(supposing him to be the only one with such a surname), indicating, for
each exam, the name of the course, the grade achieved and the name of
the tutor;

. the tutors who teach two courses (and not more than two), indicating the
surname and first name of the tutor and the names of the two courses.

Exercise 3.9 Consider a relational schema containing the relations:

R1(ABC), R2(DG), R3(EF)

Formulate in tuple and domain relational calculus, the query formulated in
relational algebra with the following expression:

(R3 JG=E R2) ∪ QDG←AC(πACEF(R1 JB=F R3)))

Exercise 3.10 With reference to the schema in Exercise ., formulate in
relational algebra the queries specified in domain calculus by means of the
following expressions:

{ H : g, B : b | R1(A : a, B : b, C : c) ∧ R2(D : c, G : g)}

{ A : a, B : b | R2(D : a, G : b) ∧ R3(E : a, F : b)}

84 Chapter 3
Relational algebra and calculus

{ A : a, B : b | R1(A : a, B : b, C : c) ∧ ∃ a′(R1(A : a′, B : b, C : c) ∧ a ≠ a′)}

{ A : a, B : b | R1(A : a, B : b, C : c) ∧ ∀ a′(¬ R1(A : a′, B : b, C : c)) ∨ a = a′}

{ A : a, B : b | R1(A : a, B : b, C : c) ∧ ¬∃ a′(R1(A : a′, B : b, C : c)) ∧ a ≠ a′}

Exercise 3.11 Consider the following algebraic expression:

πADH(σ(B=C)∧(E=F)∧(A>20)∧(G=10)((R1 J R3) J R2)

which refers to the schema

R1(AB), R2(CDE), R3(FGH)

and transform it, with the goal of reducing the size of the intermediate
results.

4
4SQL

sql is an acronym for Structured Query Language1. It was originally
developed for the relational dbms System R, created by the ibm Research
Laboratory at San Jose in California during the late seventies. sql has since
been adopted by many other systems; it has been standardized and has
become the reference language for relational databases.

sql is not merely a query language. It contains the dual features of a Data
Definition Language, ddl (with commands for the definition of a relational
database schema) and a Data Manipulation Language, dml (with commands
for the modification and querying of a database instance). In this chapter, we
first introduce sql as the definition language of a database schema
(Section 4.1); then we describe the specification of queries (Section 4.2) and
updates (Section 4.3). In Section 4.4 we describe some more advanced
features of data definition, which require knowledge of the query language.
In Section 4.5, we illustrate the commands for authorization control, and we
conclude the chapter with a description of the interaction between sql and
traditional programming languages (Section 4.6).

Some advanced features of dbmss, shown in Part III and Part IV, are also
supported by sql. We will defer the presentation of these aspects of the
language until they can be introduced alongside the appropriate concepts.
For this reason, we describe the sql commands for the support of
transactions and the definition of indices in Chapter 9, and the definition of
active rules in Chapter 12.

Standardization of SQL The widespread use of sql is largely due to the
vast amount of standardization work that has been devoted to it, carried out
mainly within ansi (the American National Standards Institute) and iso (the
Organization for International Standardization). Many vendors of relational
systems have been able to take part in the decision-making process, rather

1. There are two different pronunciations of this acronym; the first enunciates the
letters separately: s-q-l, whereas the second pronounces it like the word
‘sequel’. Sequel is the name by which the language was originally known.

86 Chapter 4
SQL

than one vendor in particular having a dominant influence. This
standardization work began in the early eighties and is continuing today.
Thus, various versions of the language have emerged, each one an
improvement on the previous one.

The first definition of a standard for sql was promulgated in 1986 by ansi.
This first standard already contained many of the basics for query
formulation, at the same time offering some (limited) support for schema
definition and manipulation. The standard was then extended in 1989; the
most significant addition to this version was the definition of referential
integrity. This version is known as sql-89.

A second version, for the most part compatible with the preceding one,
but containing a large number of new features, was published in 1992,
known as sql-92 or sql-2; we will use the name sql-2. A new version of the
standard, sql-3, has recently been prepared and will also be called sql-99.
sql-3 is completely compatible with sql-2, but is still far from being widely
adopted. For this reason, we will always refer to sql-2 in this book,
highlighting the new features that are not present in the earlier version. sql-
3 includes new capabilities resulting from recent research (among which are:
active rules and triggers, recursive operations, aggregate operations, new
types of data and object paradigm support). Some of these aspects are
illustrated in the final part of the book, dealing with advanced aspects of
databases.

Even without the new sql-3 enhancements, sql-2 is a rich and complex
language, so much so that, some years after the appearance of the definition
document, no commercial system yet makes available all the language
features. To quantify the precise degree of compliance with the standard,
three levels of complexity of the language constructs are defined. These are
known respectively as Entry SQL, Intermediate SQL and Full SQL; the systems
can be thus characterized according to the level that they support. Entry sql
is similar to sql-89. It differs only in a few slight corrections that were
introduced during the definition of sql-2. Intermediate sql contains
characteristics that respond best to market requirements, and is offered by
many of the recent versions of relational products. Full sql contains
advanced features that are progressively being added to the systems.

On the other hand, the systems frequently offer features that are not
standardized. For example, active rules, or triggers, are present in several
relational systems but not in sql-2. In all these cases, the database vendors
have chosen different syntaxes and have given different semantic
interpretations to the same features. This is a problem for two reasons. Firstly,
the need to choose, retrospectively, one from among the many solutions
currently being implemented, compels the modification of systems already
on the market and the rewriting of applications developed for them.
Secondly, the existence of more than one proposal for the implementation of
the same features is a serious obstacle to the standardization process. In fact,
the definition of standards is a collective process that requires all the

Section 4.1 87
Data definition in SQL

involved parties (vendors and sometimes representatives of users) to reach
agreement.

If we look carefully at relational systems, we can see that each of them
offers a different sql; the differences emerge most dramatically when we
compare their most recently developed features. Conversely, as regards the
more consolidated aspects of the language, there is a strong adherence to the
standard; this allows users to interact in standard sql with systems that are
completely different from each other, ranging from a single-user dbms
running on a pc, up to the dbms on a mainframe storing the information base
of a large organization.

A further important observation is that, in describing sql, we assume that
the user interacts directly with the sql engine in order to define, update and
query the database. With increasing frequency, systems offer interfaces that
are easy to use and contain specific programs for the definition of schemas,
updates, and queries. These programs use menus and graphical interfaces to
generate the corresponding sql instructions. This, however, does not
diminish the importance of a knowledge of the lingua franca of database
systems. This expertise is necessary for the development of all non-trivial
database applications, regardless of the capability of the dbms interface.

4.1 Data definition in SQL
In this section, we illustrate the use of sql for the definition of database
schemas. Before that, we need to illustrate the notation we intend to use for
the syntax of the language statements. In general we will represent the terms
of the language using a typewriter-style font, while the variable terms will
be written in italics. Following usual conventions, we will use some special
symbols:

• angular brackets 〈 and 〉 are used to enclose terms;

• square brackets [and] indicate that the enclosed term is optional, that is,
it may not appear or appear only once;

• curly brackets { and } indicate that the enclosed term may not appear or
may be repeated an arbitrary number of times;

• vertical bars indicate that one among the terms separated by the bars
must appear.

Curved brackets (and) must always be taken as sql keywords and not as
grammar definition symbols.

4.1.1 Elementary domains
sql provides six families of elementary domains, which can be used to define
the domains associated with the attributes of the schema.

88 Chapter 4
SQL

Character The domain character allows the representation of single
characters or strings. The length of the strings of characters can be fixed or
variable; for strings of variable length, the maximum length is indicated. A
default character set is specified for each schema (e.g., Latin, Cyrillic, Greek,
Kanji, etc.); when it is necessary to use more than one character set, we can
specify it directly for each domain. The syntax is:

character [varying] [(Length)] [character set CharSetName]

To define a domain ‘string of 20 characters’ with this syntax, we can write
character (20), while a domain ‘string of Greek letters of variable length,
maximum length 1000’, would be denoted as character varying (1000)
character set Greek. If the length is not specified, the domain represents a
single character. A varying string must specify its maximum length. sql also
allows the compact forms char and varchar, for character and varying
character respectively.

Bit This domain, introduced in sql-2, is used by attributes that can assume
only the value 0 or the value 1. The domain bit is typically used to represent
attributes, known as flags, which specify whether an object has or has not a
certain property. sql also allows a domain ‘string of bits’, for which the
length is specified as a parameter. When no length is specified, the length of
the string is set equal to one. The bit strings can be used for the concise
representation of groups of properties. For bits, we can also define strings of
variable length. The syntax is:

bit [varying] [(Length)]

To define a domain ‘string of 5 bits’ or ‘string of bits of variable length and
maximum length of 100’ we can use the definitions bit(5) and bit
varying(100). The latter can be shortened to varbit(100).

Exact numeric domains This family contains the domains that allow the
representation of exact values, integer or with a fractional part (such as
typical currency values). sql makes available four different exact numeric
domains:

• numeric [(Precision [,Scale])]

• decimal [(Precision [,Scale])]

• integer

• smallint

The domains numeric and decimal represent numbers with a decimal base.
The parameter Precision specifies the number of significant digits; using a
domain decimal (4) we can represent values between −9,999 and +9,999.
Using the parameter Scale we can specify the scale of representation, that is,
we can indicate how many digits should appear after the decimal point. If we
want to include two decimal digits, we assign the value 2 to Scale. In order

Section 4.1 89
Data definition in SQL

to specify the scale it is also necessary to specify the precision as defined
above; thus with a domain numeric (6,3) we represent the values between

 and +999.999. The difference between the domains numeric and
decimal lies in the fact that the numeric domain has exactly the precision as
indicated, while the precision of the decimal domain should be taken as a
minimum requirement. Should the precision not be specified, the system
uses a default implementation value. If the scale is not specified, it is assumed
to be zero.

When the representation of fractions is not required, and an accurate
control of the size of the decimal representation is not important, then it
becomes possible to use the predefined domains integer and smallint. The
degree of accuracy of these domains is not specified in the standard, but is
left to the implementation.

Approximate numeric domains To represent approximate real values
(useful, for example, for representing physical quantities), sql provides the
following domains:

• float [(Precision)]

• double precision

• real

All these domains allow the description of real numbers by means of a
floating point representation, in which each number corresponds to a pair of
values: the mantissa and the exponent. The mantissa is a fractional value,
while the exponent is an integer. The approximate value of the real number
is obtained by multiplying the mantissa by the power of 10 specified by the
exponent. For example, the notation 0.17E16 represents the value 1.7 ×10¹⁵,
and 0.4E-6 represents 4×10⁷. A given precision can be specified for the
domain float, which represents the number of digits dedicated to the
representation of the mantissa, while the precision of the exponent depends
on the implementation. The domain double precision represents the
numbers with a greater precision than the domain real.

Date and time This family of domains and the next were introduced in
sql-2 in order to offer specific support to the management of temporal
information, which is very important in many applications. They represent
instants of time and comprise three forms:

• date

• time [(Precision)] [with time zone]

• timestamp [(Precision)] [with time zone]

Each of these domains can be structured in fields. The domain date allows
the fields year, month and day, the domain time allows the fields hour, minute
and second, and timestamp allows all the fields, from year to second. For both

.–

90 Chapter 4
SQL

time and timestamp we can specify the precision, which represents the
number of decimal places that must be used in the representation of fractions
of a second. If the precision is not specified, time assumes a precision of zero
(resolution to the second) and timestamp of 6 (temporal resolution to the
microsecond). If the option with time zone is specified, then it becomes
possible to access two fields, timezone_hour and timezone_minute. They
represent the difference between local time and Universal Coordinated Time,
formerly known as Greenwich Mean Time; thus 21:03:04+1:00 and
20:03:04+0:00 correspond to the same instant in time, but the first represents
it in Middle European Time (differing from the base time zone by +1:00), the
second in Universal Coordinated Time.

Temporal intervals This family of domains allows the representation of
intervals of time, such as, for example, the duration of an action. The syntax
is:

interval FirstUnitOfTime [to LastUnitOfTime]

FirstUnitOfTime and LastUnitOfTime define the units of measurement that
must be used, from the greatest to the smallest. We can therefore define
domains such as interval year to month to indicate that the length of the
time interval must be measured by the number of years and the number of
months. It has to be noted that the group of units of measurement is divided
into two distinct groups: year and month on one hand, and the units from day
to second on the other; this separation occurs because it is impossible to
compare days and months exactly (given that a month can have between 28
and 31 days), making it infeasible to compare intervals of the two groups.
The first unit that appears in the definition, whatever it may be, can be
characterized by the precision, which represents the number of decimal
digits used in the representation. When the smallest unit is the second, we
can specify a precision that represents the number of decimal places to be
used. If the second is the first (and therefore the only) unit, then the first
parameter represents the number of significant decimal places and the
second parameter would represent the number of decimal places of the
fractional part. When the precision is not specified, it assumes the default
value 2. Thus, interval year(5) to month allows the representation of
intervals up to 99,999 years and 11 months, while interval day(4) to
second(6) allows the representation of intervals up to 9,999 days, 23 hours 59
minutes and 59.999999 seconds, with a precision to a millionth of a second

4.1.2 Schema definition
sql makes it possible to define a database schema as a collection of objects;
each schema consists of a set of domains, tables,2 indices, assertions, views and
privileges, defined by the following syntax:

create schema [SchemaName] [[authorization] Authorization]
{ SchemaElementDefinition}

Section 4.1 91
Data definition in SQL

Authorization represents the name of the user who owns the schema. If the
term is omitted, it is assumed that the user who issued the command is the
owner. The name of the schema can be omitted and, in this case, the name of
the owner is adopted as the name of the schema. After the create schema
command, the user can define the schema components. It is not necessary for
all the components to be defined at the same time as the schema is created:
this can take place in several successive phases. Let us now look at tables and
domains, postponing the other elements of the schema (assertions, views and
privileges) until Section 4.4.

4.1.3 Table definition
An sql table consists of an ordered set of attributes and of a (possibly empty)
set of constraints. For example, the schema of a table DEPARTMENT is defined
by means of the following sql statement:

create table Department
(

Name char(20) primary key,
Address char(50),
City char(20)

)

The above table has three attributes of character string domain; the
attribute Name constitutes the primary key of the table.

The syntax for the definition of a table is:

create table TableName
(AttributeName Domain [DefaultValue] [Constraints]
 { , AttributeName Domain [DefaultValue] [Constraints]}
 [OtherConstraints]
)

Each table is defined by giving its name and the definition of its attributes;
each attribute, in turn, has a name and domain and possibly a set of
constraints, which must be satisfied by the attribute values. Once all the
attributes have been defined, we can then define the constraints that involve
more than one attribute of the table. A table is initially empty and the creator
holds all the privileges regarding the table, that is, the rights to access and to
modify the data.

4.1.4 User defined domains
In the definition of tables, beside the predefined domains we have illustrated
in Section 4.1.1, it is possible to refer to domains that are explicitly defined
by the user. Note that there is a close relationship between the definition of
the domains of attributes and the definition of the types of variables in a

2. In this chapter we use the term table in place of relation and row in place of
tuple, in keeping with sql terms; in sql, attributes are generally referred to as
columns, but in this case we prefer to adhere to classical relational terminology.

92 Chapter 4
SQL

high-level programming language (c, Pascal, etc.). In both cases the goal is
the definition of the legal values for data. However, there are also important
differences. On the one hand, the type constructors in sql are much more
limited than those in programming languages. On the other hand, however,
sql offers domain constraints, which have no counterpart in such languages.
In sql, new domains are specified using the predefined domains described in
Section 4.1.1 by means of the create domain command.

create domain DomainName as ElementaryDomain
[DefaultValue]
[Constraints]

A domain is thus characterized by its own name, by an elementary domain
(which can be predefined or previously user-defined), by a possible default
value, and finally by a (possibly empty) set of constraints that represent the
conditions that must be satisfied by legal domain values.

Unlike the type definition mechanisms of the various programming
languages, sql-2 does not provide domain constructors such as record or
array (other than the possibility of defining strings of characters or bits).
This constraint derives from the relational data model, which requires that
all attributes have elementary domains.

The declaration of domains associates a domain name with a set of
constraints. This becomes important when, for example, we need to repeat
the same attribute definition in several tables. The definition of a domain
enables its reuse and makes attribute definitions more easily modifiable. We
can change just the domain definition (particularly the default and the
constraints associated with it) and such a change is propagated to all the
tables where it is used.

4.1.5 Default domain values
In the syntax for defining domains and tables, we note the presence of a term
DefaultValue, associated with domains and attributes. This term specifies the
value that the attribute must assume when a row is inserted into the table
without a value being specified for the attribute itself. When a default value
is not specified, the value null is assumed as default.

The syntax for the specification of default values is:

default 〈GenericValue | user | null〉

GenericValue represents a value that is compatible with the domain,
provided as a constant or, more generally, defined as the result of the
evaluation of an expression. The option user sets as default value the login
name of the user who issues the command to update the table. When an
attribute has a domain with a default value and is explicitly given a different
default value, the default value associated with the attribute wins and
becomes the effective default value.

Section 4.1 93
Data definition in SQL

For example, an attribute NumberOfChildren, which allows an integer as a
value and which has the default value zero is defined by:

NumberOfChildren smallint default 0

If, during the insertion of a row, the value of the attribute is not specified,
it is assigned the value zero.

4.1.6 Intra-relational constraints
In the definition of both domains and tables, we can define constraints, that
is, properties that must be verified by every instance of the database. We
introduced constraints in Section 2.2, making the distinction between intra-
relational constraints (which involve a single relation) and inter-relational
constraints (which take into account several relations). The most powerful
construct for the specification of generic constraints, both inter-relational
and intra-relational, is that of check, which, however, requires the
specification of queries to the database. We deal with this later, in
Section 4.4, once we have illustrated sql queries. In this section, we will
illustrate predefined intra-relational constraints.

The simplest intra-relational constraints are not null, unique, and primary
key.

Not null The null value is a special value, which indicates the absence of
information. A null value can generally represent different situations as we
discussed in Section 2.1.5.

However, sql-2 does not allow the distinction among the various
interpretations of the null value. Those applications that need to be able to
distinguish among these various situations must resort to ad-hoc solutions,
such as the introduction of other attributes.

The constraint not null indicates that the null value is not admissible as
the attribute value. In this case, the attribute must always be specified,
generally at the insertion stage. If, however, a default value other than null
is associated with the attribute, then it becomes possible to carry out an
insertion even without providing a value for the attribute, since the default
value will be assigned to it automatically.

The constraint is specified by adding to the attribute definition the
keywords not null:

Surname character(20) not null

Unique A unique constraint is applied to an attribute (or a set of attributes)
of a table and imposes the requirement that the attribute (or the set of
attributes) is a (super)key. Thus, the constraint ensures that different rows do
not possess the same values. An exception is made for the null value, which
can appear in various rows without violating the constraint, since it is
assumed that each null value represents an unknown actual value different
from that of another null value.

94 Chapter 4
SQL

This constraint can be defined in two ways. The first alternative can be
used only when the constraint involves a single attribute. In this case, the
specification of the attribute is followed by the keyword unique (similar to
the specification of the not null constraint):

RegistrationNumber character(6) unique

The second alternative is necessary when we need to define the constraint
on a set of attributes. In this case, after the definition of the attributes, we
use the following clause:

unique (Attribute{ , Attribute})

The following is an example of the use of this syntax:

FirstName character(20) not null,
Surname character(20) not null,
unique (Surname, FirstName)

It should be noted that the above definition is very different from a
definition such as the following:

FirstName character(20) not null unique,
Surname character(20) not null unique

In the first case, the constraint imposes the condition that there can be no
two rows that have both the same first name and the same surname. In the
second (stricter) case, the constraint is violated if either the same first name
or the same surname appears more that once.

Primary key As we discussed in Section 2.2, it is usually important to
specify a primary key, the most important identifier for a relation.
Accordingly, sql allows a primary key constraint to be specified only once for
each table (while it is possible to use the constraints unique and not null an
arbitrary number of times). Like the unique constraint, the primary key
constraint can be directly defined on a single attribute, or it can be defined
by listing the several attributes that make up the primary key. None of the
attributes of a primary key can assume the null value; thus, the definition of
primary key implies an implicit definition not null for all the attributes of the
primary key.

For example, the following definition imposes the constraint that the pair
of attributes FirstName and Surname constitute the primary key:

FirstName character(20),
Surname character(20),
Dept character(15),
Salary numeric(9) default 0,
primary key (Surname,FirstName)

4.1.7 Inter-relational constraints
As we saw in Section 2.2, the most important inter-relational constraints are
referential integrity constraints. In sql, the appropriate construct to define
them is the foreign key constraint.

Section 4.1 95
Data definition in SQL

This constraint creates a link between the values of the attribute(s) of a
table and the values of the attribute(s) of another table. With respect to such
a constraint, we call the involved tables internal and external. The constraint
is that for every row of the internal table the value of a given attribute, if
different from the null value, must be present among the values of a given
attribute of the rows belonging to the external table. The only requirement
that the syntax imposes is that the attribute referred to in the external table
is subject to a unique constraint, that is, identifies the tuples of the external
table. This attribute generally represents the primary key of the table, for
which the unique constraint is guaranteed. Several attributes may be
involved in the constraint, when the key for the external table consists of a
set of attributes. In this case, the only difference is that it is necessary to
compare tuples of values rather than single values.

The constraint can be defined in two ways, like the unique and primary key
constraints. If there is only one attribute involved, it is possible to define it
using the syntactic construct references, which indicates the external table
and attribute. The more general definition, which is necessary when the link
is represented by a set of attributes, uses the construct foreign key,
syntactically placed after attribute definitions. This construct lists firstly the
constrained attributes of the internal table involved in the link, followed by
the name of the external table and the names of the referenced attributes. Let
us give an example of the first use:

create table Employee
(

RegNo character(6) primary key,
FirstName character(20) not null,
Surname character(20) not null,
Dept character(15)
 references Department(DeptName),
Salary numeric(9) default 0,
City character(15),
unique (Surname,FirstName)

)

The constraint specifies that the attribute Dept can assume only one of the
values that the rows of the table DEPARTMENT possess for the attribute
DeptName.

If we then need the attributes FirstName and Surname to appear in a table
of personal records, we need to use the second alternative:

create table Employee
(

RegNo character(6) primary key,
FirstName character(20) not null,
Surname character(20) not null,
Dept character(15)
 references Department(DeptName),
Salary numeric(9) default 0,
City character(15),
unique (Surname,FirstName),

96 Chapter 4
SQL

foreign key(FirstName,Surname)
 references PersonalRecord(FirstName,Surname)

)

The correspondence between the local and external attributes reflects
their order: the first attribute in the foreign key corresponds to the first
attribute in the referenced table, and so on for the other attributes. In this
case, FirstName and Surname of EMPLOYEE correspond respectively to FirstName
and Surname of PERSONALRECORD.

In the case of all the constraints seen so far, when the system detects a
violation generated by an update, the system just rejects the update,
signalling the error to the user. With referential integrity constraints, sql
also allows the user to choose other actions to be taken when a violation is
introduced.

We illustrate the point by means of an example. Consider the definition of
the foreign key constraint on the attribute Dept in the table EMPLOYEE. The
constraint can be violated by operating either on the rows of the internal
table, EMPLOYEE, or on those of the external table, DEPARTMENT. There are only
two ways to introduce violations by modifying the contents of the internal
table: by inserting a new row or by changing the value of the referring
attribute. No particular support is offered in the case of either of these
violations; the operation will simply be rejected.

On the other hand, various options are offered for responding to violations
generated by alterations to the external table. The reason for this asymmetry
is due to the particular importance of the external table, which, from the
application point of view, typically represents the principal table (or master).
The internal table (or slave) must adapt itself to variations in the master. In
fact, all actions will generate an intervention only on the internal table.

The operations on the external table that can produce violations are the
update of values of the referenced attributes and the deletion of rows (in the
example, deletion of rows in DEPARTMENT and update of the attribute
DeptName). The type of reaction can differ according to the command that
produced the violations.

In particular, for updates, it is possible to react in one of the following
ways:

• cascade: the new value of the attribute of the external table is assigned to
all the matching rows of the internal table;

• set null: the value null is assigned to the referring attribute in the
internal table in place of the value modified in the external table;

• set default: the default value is assigned to the referring attribute in the
internal table in place of the value modified in the external table;

• no action: the update is simply rejected, with no correcting action by the
system.

Section 4.1 97
Data definition in SQL

For violations produced by the deletion of an element of the external table,
the same set of reactions is available:

• cascade: all the rows of the internal table corresponding to the deleted
row are also deleted;

• set null: the value null is assigned to the referring attribute in place of
the value deleted from the external table;

• set default: the default value is assigned to the referring attribute in
place of the value deleted from the external table;

• no action: the deletion is rejected.

We can specify different policies for different events (for example, using a
cascade policy for updates and a set null policy for deletions).

The use of the cascade policy assumes that the rows of the internal table
are tightly linked to the corresponding rows of the external table. Therefore,
if modifications are made to the external table, the same modifications must
be made to all the rows of the internal table. On the other hand, the other
policies assume a weaker dependence between the rows of the two tables.

The reaction policy is specified immediately after the integrity constraint,
according to the following syntax:

on <delete | update>
 <cascade | set null | set default | no action>

The following example shows a referential integrity constraint whose
repair policies are set null for deletions and cascade for updates:

create table Employee
(

RegNo character(6),
FirstName character(20) not null,
Surname character(20) not null,
Dept character(15),
Salary numeric(9) default 0,
City character(15),
primary key(RegNo),
foreign key(Dept) references Department(DeptName)

 on delete set null
 on update cascade,

unique (Surname,FirstName)
)

4.1.8 Schema updates
sql provides primitives for the manipulation of database schemas, which
enable the modification of previously introduced table definitions. The
commands used for this purpose are alter and drop.

The alter command The alter command allows the modification of
domains and schemas of tables. The command can assume various forms:

98 Chapter 4
SQL

alter domain DomainName 〈set default DefaultValue |
drop default |
add constraint ConstraintDef |
drop constraint ConstraintName〉

alter table TableName
 alter column AttributeName
 〈set default DefaultValue | drop default〉 |
 add constraint ConstraintDef |
 drop constraint Constraint |
 add column AttributeDef |
 drop column AttributeName 〉

By using alter domain and alter table we can add and remove constraints
and modify default values associated with domains and attributes;
furthermore, we can add and remove attributes and constraints within the
schema of a table. Note that when a new constraint is defined, it must be
satisfied by the data already present in the database. If the database contains
violations of the new constraint, the constraint definition will be rejected.

For example, the following command extends the schema of the table
DEPARTMENT with an attribute NoOfOffices that makes it possible to represent
the number of offices within the department:

alter table Department add column NoOfOffices numeric(4)

The drop command While the alter command carries out modifications
to the domains or schemas of the tables, the drop command allows the
removal of components, whether they be schemas, domains, tables, views or
assertions. Assertions are constraints that are not associated with any
particular table; these will be presented in Section 4.4. The command has the
syntax:

drop 〈schema | domain | table | view | assertion〉 ComponentName
 [restrict | cascade]

The restrict option specifies that the command must not be carried out if
the component being deleted is not empty. Thus, a schema is not removed if
it contains tables or other elements; a domain is not removed if it appears in
a table definition; a table is not removed if it possesses rows or if it is present
in a definition of a table or view; and, finally, a view is not removed if it is
used in the definition of other views. The restrict option is the default.

With the cascade option, the component is removed together with the
components depending on it. Thus, when a non-empty schema is removed,
all the objects of which it is constructed are also eliminated. By removing a
domain that appears in the definition of an attribute, the cascade option
causes the name of the domain to be removed, but the attributes that were
defined using that domain remain associated with the same basic domain
definition. Consider, for example, the domain LongString, defined as
char(100). If LongString is eliminated (by means of the command drop domain
LongString cascade) all the attributes defined on that domain will directly
assume the domain char(100). When a table is removed with the cascade
option, all its rows are lost. If the table appeared in another definition of a

Section 4.1 99
Data definition in SQL

table or view, these would also be removed. By eliminating a view that
appears in other tables or views, these too are removed.

The cascade option usually generates a chain reaction. All the elements
depending on an element that is eliminated are eliminated in their turn, until
there are no remaining elements that contain, in their definitions, elements
that have been eliminated. It is necessary to exercise extreme caution in the
use of this option, since it is possible that, owing to some overlooked
dependence, the command could have a different result from the one
intended. Many systems make it possible to test the result of the drop
cascade command, before it is actually executed.

4.1.9 Relational catalogues
Although only partly specified by the standard, each relational dbms
manages its own data dictionary (or rather the description of the tables
present in the database) using a relational schema. The database therefore
contains two types of table: those that contain the data and those that
contain the metadata. This second group of tables constitutes the catalogue
of the database.

This characteristic of relational system implementations is known as
reflexivity. A dbms typically manages the catalogue by using structures
similar to those in which the database instance is stored. Thus, an object-
oriented database, for example, will have a data dictionary that is defined on
an object model (see Chapter 11). In this way, the database can use the same
functions for the internal organization of metadata as are used for the
management of the database instance.

The definition and modification commands of the database schema could,
in theory, be replaced by manipulation commands that operate directly on
the tables of the data dictionary, making superfluous the introduction of
special commands for the definition of the schema. This is not done,
however, for two reasons. The first is the absence of a standardization of the
dictionary, which differs greatly from one product to the next. The second is
the necessity of ensuring that the commands for the manipulation of schemas
are clear and immediately recognizable, and furthermore syntactically
distinguishable from the commands that modify the database instance.

The sql-2 standard for the data dictionary is based on a two-tier
description. The first level is that of DEFINITION_SCHEMA, made up of a
collection of tables that contain the descriptions of all the structures in the
database. The collection of tables appearing in the standard, however, is not
used by any implementation, since the tables provide a description of only
those aspects of a database covered by sql-2. What is left out, in particular,
is all the information concerning the storage structures, which, even if not
present in the standard, form a fundamental part of a schema. The tables of
the standard, therefore, form a template to which the systems are advised
(but not obliged) to conform. The second component of the standard is the

100 Chapter 4
SQL

INFORMATION_SCHEMA. This consists of a collection of views on the
DEFINITION_SCHEMA. These views fully constitute part of the standard and
form an interface for the data dictionary, which must be offered by the
systems that want to be compatible with the standard. The
INFORMATION_SCHEMA contains views such as DOMAINS, DOMAIN_CONSTRAINTS,
TABLES, VIEWS, COLUMNS, up to a total of 23 views that describe the structure
of the database.

Rather than describe the structure of these tables, we provide a simplified
example of the contents of one of these views. In Figure 4.1 we can see the
simplified contents of the COLUMNS view of the catalogue describing the
tables EMPLOYEE and DEPARTMENT.

In Figure 4.2 we see an example of the reflexivity of the data dictionary,
with the description in COLUMNS of the view itself.

4.2 SQL queries
The part of sql dedicated to the expression of queries is included in the dml.
However, the separation between the ddl and the dml is not rigid and part
of the query definition syntax will also be used in the specification of certain
advanced features of the schema (see Section 4.4).

Table_Name Column_Name Ordinal_Position Column_Default Is_Nullable

Employee RegNo 1 NULL N
Employee FirstName 2 NULL N
Employee Surname 3 NULL N
Employee Dept 4 NULL Y
Employee Salary 5 0 Y
Employee City 6 NULL Y
Department DeptName 1 NULL N
Department Address 2 NULL Y
Department City 3 NULL Y

Figure 4.1 Part of the contents of the view COLUMNS of the data
dictionary.

Table_Name Column_Name Ordinal_Position Column_Default Is_Nullable

Columns Table_Name 1 NULL N
Columns Column_Name 2 NULL N
Columns Ordinal_Position 3 NULL N
Columns Column_Default 4 NULL Y
Columns Is_Nullable 5 Y N

Figure 4.2 The reflexive description of COLUMNS.

Section 4.2 101
SQL queries

4.2.1 The declarative nature of SQL
sql expresses queries mainly in a declarative way, that is, by specifying the
properties of retrieved data and not how to obtain it. In this respect, sql
follows the principles of relational calculus and contrasts with procedural
query languages, such as relational algebra, in which a data retrieval
procedure has to be specified in the query. The sql query is passed for
execution to the query optimizer. This is a DBMS component, which
analyzes the query, selects a query execution strategy and formulates an
equivalent query in the internal procedural language of the database
management system. This procedural language is hidden from the user. In
this way, whoever writes queries in sql can ignore the translation and
optimization aspects. The query optimizer will be discussed in Section 9.6.
The enormous effort that has gone into the development of optimization
techniques has made highly efficient query execution possible for most
relational dbmss.

There are generally many different ways to express a query in sql: the
programmer must make choices that are based not on efficiency but rather on
characteristics such as readability and ease of modification of the query. In
this way, sql facilitates the programmer’s work, making possible the
description of abstract and high level queries.

4.2.2 Simple queries
Query operations in sql are specified by means of the select statement. Let
us first look at the essential structure of a select.

select TargetList
from TableList
[where Condition]

The three parts that make up a select instruction are often called
respectively the target list, the from clause, and the where clause. A more
detailed description of the same syntax is as follows:

select AttrExpr [[as] Alias] { , AttrExpr [[as] Alias]}
from Table [[as] Alias] { , Table [[as] Alias]}
[where Condition]

An sql query considers the rows that belong to the cartesian product of
the tables listed in the from clause, and selects those that satisfy the
conditions expressed in the where clause. The result of the execution of an
sql query is a table, with a row for every row selected by the where clause,
whose columns result from the evaluation of the expressions AttrExpr that
appear in the target list. Each column can be re-named by means of the Alias
that appears immediately after the expression. The tables can also be re-
named using the Alias; the table alias is used either as a shorthand or as a
variable, in a way that we will go into later.

Consider a database containing the tables EMPLOYEE(FirstName, Surname,
Dept, Office, Salary, City) and DEPARTMENT(DeptName, Address, City).

102 Chapter 4
SQL

Query 1: Find the salary of the employees named Brown.

select Salary as Remuneration
from Employee
where Surname = 'Brown'

If there are no employees named Brown, the query returns an empty
result. Otherwise, it returns a table with as many rows as there are employees
with that surname. By applying the query to the table in Figure 4.3, we
obtain the result shown in Figure 4.4: there are two employees named Brown
and therefore the result contains two rows.

Let us now continue the analysis of sql queries, gradually introducing
more complex constructs.

Target list The target list specifies the elements of the schema of the
resulting tables. The special character * (asterisk) can also appear in the
target list, representing the selection of all the attributes of the tables listed
in the from clause.

Query 2: Find all the information relating to employees named Brown. The
result appears in Figure 4.5.

select *
from Employee
where Surname = 'Brown'

The target list can contain generic expressions on the values of the
attributes of each selected row.

Query 3: Find the monthly salary of the employees named White. The result
is shown in Figure 4.6.

Figure 4.3 Contents of the EMPLOYEE table.

Figure 4.4 Result of Query 1.

EMPLOYEE FirstName Surname Dept Office Salary City

Mary Brown Administration 10 45 London
Charles White Production 20 36 Toulouse
Gus Green Administration 20 40 Oxford
Jackson Neri Distribution 16 45 Dover
Charles Brown Planning 14 80 London
Laurence Chen Planning 7 73 Worthing
Pauline Bradshaw Administration 75 40 Brighton
Alice Jackson Production 20 46 Toulouse

Remuneration

45
80

Section 4.2 103
SQL queries

select Salary / 12 as MonthlySalary
from Employee
where Surname = 'White'

From clause When we need to formulate a query that involves rows
belonging to more than one table, the argument of the from clause is given as
a list of tables. The conditions in the where clause are applied to the cartesian
product of these tables; a join can be specified by explicitly indicating
comparisons between attributes of different tables.

Query 4: Find the names of the employees and the cities in which they work.

select Employee.FirstName, Employee.Surname, Department.City
from Employee, Department
where Employee.Dept = Department.DeptName

Taking the contents of EMPLOYEE and DEPARTMENT respectively from
Figure 4.3 and Figure 4.7, the result of the evaluation of Query 4 is the table
shown in Figure 4.8.

In the above query we note the use of the dot operator to identify the tables
from which attributes are extracted. For example, Employee.Dept denotes the
Dept attribute of the table EMPLOYEE. This use is common in many
programming languages, to identify the fields of a structured variable. It is
necessary to use this notation when the tables listed in the from clause have
attributes with the same name, in order to distinguish among the references
to the homonym attributes. When there is no danger of ambiguity, because

Figure 4.5 Result of Query 2.

Figure 4.6 Result of Query 3.

Figure 4.7 Contents of the DEPARTMENT table.

FirstName Surname Dept Office Salary City

Mary Brown Administration 10 45 London
Charles Brown Planning 14 80 London

MonthlySalary

3.00

DEPARTMENT DeptName Address City

Administration Bond Street London
Production Rue Victor Hugo Toulouse
Distribution Pond Road Brighton
Planning Bond Street London
Research Sunset Street San José

104 Chapter 4
SQL

the attribute name appears in only one of the tables, we can specify the
attribute without declaring the table to which it belongs.

Query 5: The only homonym attribute in the tables EMPLOYEE and DEPARTMENT

is the attribute City. The preceding query can therefore be expressed as
follows, by using an alias for table DEPARTMENT with the intention of
abbreviating the reference to it:

select FirstName, Surname, D.City
from Employee, Department as D
where Dept = DeptName

Where clause The condition in the where clause is a boolean expression
constructed by combining simple predicates with the operators and, or and
not. Each simple predicate uses the operators =, <>, <, >, <= and >= to build a
comparison that has on one side an expression formed from the values of the
attributes of the row and, on the other side, a constant value or another
expression. The syntax gives precedence to the operator not in the
evaluation, but does not introduce a precedence between the operators and
and or. If we need to express a query that requires the use of both and and
or, then we have to indicate the order of evaluation by using brackets.

Query 6: Find the first names and surnames of the employees who work in
office number 20 of the Administration department.

select FirstName, Surname
from Employee
where Office = '20' and Dept = 'Administration'

The result in Figure 4.9 is obtained from the database in Figure 4.3.

Figure 4.8 Result of Query 4.

Figure 4.9 Result of Query 6.

FirstName Surname City

Mary Brown London
Charles White Toulouse
Gus Green London
Jackson Neri Brighton
Charles Brown London
Laurence Chen London
Pauline Bradshaw London
Alice Jackson Toulouse

FirstName Surname

Gus Green

Section 4.2 105
SQL queries

Query 7: Find the first names and surnames of the employees who work in
either the Administration department or the Production department.

select FirstName, Surname
from Employee
where Dept = 'Administration' or
 Dept = 'Production'

By applying the query to the table in Figure 4.3, we obtain the result in
Figure 4.10.

Query 8: Find the first names of the employees named ‘Brown’ who work in
the Administration department or the Production department. The result is
shown in Figure 4.11.

select FirstName
from Employee
where Surname = 'Brown' and
 (Dept = 'Administration' or
 Dept = 'Production')

As well as the usual predicates for relational comparisons, sql provides an
operator like for the comparison of strings. This operator performs pattern
matching with partially specified strings, obtained by using the special
characters _ (underscore) and % (percentage). The underscore represents an
arbitrary character in the comparison, while the percent sign represents a
string (possibly empty) of arbitrary characters. The comparison like
‘ab%ba_’ will thus be satisfied by any string of characters beginning with ab
and having the pair of characters ba before the final position (for example,
abcdedcbac or abbaf).

Query 9: Find the employees with surnames that have ‘r’ as the second letter
and end in ‘n’. The result is shown in Figure 4.12.

Figure 4.10 Result of Query 7.

Figure 4.11 Result of Query 8.

FirstName Surname

Mary Brown
Charles White
Gus Green
Pauline Bradshaw
Alice Jackson

FirstName

Mary

106 Chapter 4
SQL

select *
from Employee
where Surname like '_r%n'

Management of null values As we saw in Section 2.1.5, a null value in an
attribute can mean that a certain attribute is not applicable, or that the value
is applicable but unknown, or even that we do not know which of the two
situations applies.

For the selection of terms with null values, sql supplies the is null
predicate, the syntax of which is simply:

Attribute is [not] null

The predicate is null gives a true result only if the attribute has the value
NULL. The is not null predicate produces the opposite result.

Null values have a particular impact on the evaluation of normal
predicates. Consider a simple predicate for the comparison of the value of an
attribute with a constant value:

Salary > 40

This predicate will be true for the rows in which the salary attribute is
greater than 40. Bearing in mind what we said in Section 3.1.8, note that
there are two different solutions for dealing with the situation in which the
Salary attribute has the null value. The first solution, which was adopted by
sql-89, uses traditional two-valued logic and simply allows the predicate to
be considered false. The second solution, on the other hand, is the one
adopted by sql-2. This uses a three-valued logic, in which a predicate
returns the unknown value when any of the terms of the predicate has a null
value. Note that the is null predicate is an exception, since it always returns
either of the values true or false, never the unknown value.

The difference between the solutions based on two- or three-valued logic
emerges only when complex expressions are evaluated. In some cases, the
behaviour of the system when null values are present can be far from
intuitive, particularly when complex predicates are constructed using
negation or nested queries (introduced in Section 4.2.6).

Algebraic interpretation of sql queries We can construct a correspond-
ence between sql queries and the equivalent queries expressed in relational
algebra.

Given a query in sql in its simplest form:

Figure 4.12 Result of Query 9.

FirstName Surname Dept Office Salary City

Mary Brown Administration 10 45 London
Charles Brown Planning 14 80 London
Gus Green Administration 20 40 Oxford

Section 4.2 107
SQL queries

select T1.Attribute11, …, Th.Attibutehm
from Table1 T1, …, Tablen Tn
where Condition

we can use the following translation, where preliminary renamings (omitted
here for simplicity) are applied to each TABLEi so that joins are indeed
cartesian products:

For more complex sql queries, the conversion formula shown above is no
longer directly applicable. We could, however, demonstrate a technique for
translating an sql query into an equivalent query in relational algebra.

The link between sql and tuple calculus with range declarations is even
stronger (Section 3.2.3).

Assuming that the aliases T1, T2, …, Th appear in the target list and that
Th+1, Th+2, …, Tn do not,3 the generic statement select has a meaning that is
equal to that of the following expressions of tuple calculus with range
declarations:

{ t1.Attribute11, …, th.Attributehm|
t1(TABLE1), …, th(TABLEh)
|∃ th+1(TABLEh+1), (…,(∃ tn(TABLEn) (Condition′)) …)}

where Condition′ is the formula obtained from Condition, substituting the
relational calculus notation into the sql one. Note how each variable in
calculus corresponds to a table alias. We will see that some uses of aliases in
sql make this similarity even more apparent.

It should be noted that these correspondences between sql and the other
languages do not hold any more if we consider some advanced features of
sql, such as the evaluation of aggregated operators (Section 4.2.3). Results of
sql queries and of algebraic or calculus expressions differ on duplicate
tuples, as discussed below.

Duplicates A significant difference between sql and relational algebra and
calculus is the management of duplicates. In algebra and calculus, a table is
seen as a relation from the mathematical point of view, and thus as a set of
elements (tuples) different from each other. In sql a table can have many rows
with the same values for all their attributes. These are known as duplicates.

For emulating the behaviour of relational algebra in sql, it would be
necessary to eliminate all the duplicates each time a projection operation is
executed. However, the removal of duplicates is time consuming and often
unnecessary, in that frequently the result contains no duplicates. For
example, when the result includes a key for every table that appears in the
from clause, the resulting table cannot contain identical rows. For this reason
it was decided to allow the presence of duplicates in sql, leaving it to the

3. Note that it is always possible to reorder the variables in such a way that this
condition is satisfied.

πT1 .Attribute11 ,…,ThAttributehm
σCondition TABLE1J…JTABLEn()()

108 Chapter 4
SQL

person writing the query to specify when the removal of duplicates is
necessary.

The elimination of duplicates is specified by the keyword distinct, placed
immediately after the keyword select. The syntax also allows for the
specification of the keyword all in place of distinct, indicating the
requirement that the duplicates should be retained. The use of the word all
is optional, in that the conservation of duplicates constitutes the default
option.

Given the table PERSON(TaxCode, FirstName, Surname, City) (Figure 4.13), we
wish to retrieve the cities in which the people named Brown live; we will
show two examples, the first of which allows the presence of duplicates while
the second uses the distinct option and therefore removes them.

Query 10: Find the cities of people named Brown:

select City
from Person
where Surname = 'Brown'

Query 11: Find the cities of people named Brown, with each city appearing
only once:

select distinct City
from Person
where Surname = 'Brown'

By executing the two queries shown above on the table in Figure 4.13, we
obtain the results shown in Figure 4.14.

Inner and outer joins An alternative syntax introduced in sql-2 for the
specification of joins makes it possible to distinguish between the conditions
that represent join conditions and those that represent selections of rows. In
this way we can also specify outer joins and other extensions.

Figure 4.13 The PERSON table.

Figure 4.14 The results of Query 10 and Query 11.

PERSON TaxCode FirstName Surname City

BRWMRA55B21T234J Mary Brown Verona
LBLCLR69T30H745Z Charles Leblanc Paris
BRWGNN41A31B344C Giovanni Brown Verona
BRWPRT75C12F205V Pietro Brown Milan

City

Verona
Verona
Milan

City

Verona
Milan

Section 4.2 109
SQL queries

 The proposed syntax is as follows:

select AttrExpr [[as] Alias] { , AttrExpr[[as] Alias]}
from Table [[as] Alias]

{[JoinType] join Table [[as] Alias] on JoinCondition}
[where OtherCondition]

Using this syntax, the join condition does not appear as the argument of
the where clause, but instead is moved into the from clause, associated with
the tables that are involved in the join.

The parameter JoinType specifies which type of join to use, and for this we
can substitute the terms inner, right outer, left outer, or full outer (the
term outer is optional). The inner join is the traditional theta-join of
relational algebra.

Query 12: Query 5 can be rewritten using the syntax of the inner join in the
following way:

select FirstName, Surname, D.City
from Employee inner join Department as D on Dept = DeptName

With the inner join between the two tables, the rows involved in the join
are generally a subset of the rows of each table. It can happen that some rows
are not included because there exists no corresponding row in the other table
for which the condition is satisfied. This property often conflicts with the
demands of applications that might need to retain the rows that would be
eliminated by the join. In writing the application, we might prefer to use null
values to represent the absence of information in the other table. As we have
seen in Section 3.1.5, the outer join has precisely the task of executing a join
while maintaining all the rows that appear in one or both the tables involved.

There are three different types of outer join: left, right and full. The left
join gives the same result as the inner join, but includes the rows of the
table that appears in the left of the join for which no corresponding rows
exist in the right-hand table. The right join behaves symmetrically (keeps
the rows of the right-hand table); finally, the full join gives the result of the
inner join along with the rows excluded from both tables.

Consider the tables DRIVER and AUTOMOBILE shown in Figure 4.15.

Query 13: Find the drivers with their cars, including the drivers without cars:

select FirstName, Surname, Driver.DriverID, CarRegNo, Make, Model
from Driver left join Automobile on

(Driver.DriverID = Automobile.DriverID)

The result is shown in Figure 4.16. Note the last row that shows a driver
for whom there is no automobile.

Query 14: Find all the drivers and all the cars, showing the possible
relationship between them:

110 Chapter 4
SQL

select FirstName, Surname, Driver.DriverID, CarRegNo, Make, Model
from Driver full join Automobile on

(Driver.DriverID = Automobile.DriverID)

The query produces the table shown in Figure 4.17. Note the last row of
the table, describing an automobile for which there is no corresponding
element in DRIVER.

Some implementations of sql specify the outer join in a non-standard way
by adding a particular character or sequence of characters (for example * or
(+)) to the attributes involved in the join condition. In this way we can
formulate the outer join without using the syntax above. For example,
Query 13 could be formulated in the following way:

Figure 4.15 DRIVER and AUTOMOBILE tables

Figure 4.16 Result of Query 13.

Figure 4.17 Result of Query 14.

DRIVER FirstName Surname DriverID

Mary Brown VR 2030020Y
Charles White PZ 1012436B
Marco Neri AP 4544442R

AUTOMOBILE CarRegNo Make Model DriverID

ABC 123 BMW 323 VR 2030020Y
DEF 456 BMW Z3 VR 2030020Y
GHI 789 Lancia Delta PZ 1012436B
BBB 421 BMW 316 MI 2020030U

Firstname Surname DriverID CarRegNo Make Model

Mary Brown VR 2030020Y ABC 123 BMW 323
Mary Brown VR 2030020Y DEF 456 BMW Z3
Charles White PZ 1012436B GHI 789 Lancia Delta
Marco Neri AP 4544442R NULL NULL NULL

Firstname Surname DriverID CarRegNo Make Model

Mary Brown VR 2030020Y ABC 123 BMW 323
Mary Brown VR 2030020Y DEF 456 BMW Z3
Charles White PZ 1012436B GHI 789 Lancia Delta
Marco Neri AP 4544442R NULL NULL NULL

NULL NULL NULL BBB 421 BMW 316

Section 4.2 111
SQL queries

Query 15:

select FirstName, Surname, Driver.DriverID, CarRegNo, Make, Model
from Driver, Automobile
where Driver.DriverID * = Automobile.DriverID

 These solutions, being outside the sql-2 standard, are not portable from
one system to another.

A further feature of sql-2 is the possibility of using the keyword natural
before the join type. This makes it possible to define the natural join of
relational algebra. Therefore, in the joining of two tables, we can use an
implicit condition of equality on all the attributes having the same name (see
Section 3.1.5). For example, Query 14 could be written as:

Query 16:

select FirstName, Surname, Driver.DriverID, CarRegNo, Make, Model
from Driver natural full join Automobile

In spite of the advantage of an increased compactness, the natural join is
not normally available on commercial systems. One reason is that a query
that uses a natural join can introduce risks to the applications, because its
behaviour can change significantly as a result of small variations on the
schema. Another reason is that the natural join makes it necessary to analyze
completely the schema of the tables involved in order to understand the join
condition. This is a disadvantage when writing and when reading the query,
because in both situations it is necessary to do a careful comparison of the
schemas of the joined tables in order to be sure of the behaviour of the query.

Use of variables We have already seen how we can associate alternative
names, called aliases, with the tables that appear in the from clause. The name
is used to refer to the table in the context of the query. This feature can be
used to avoid the necessity for writing out the full name of the table each
time it is requested, as seen already in Query 5, and for other reasons.

In the first place, by using aliases we can refer more than once to the same
table, in a way similar to the use of the renaming operator Q of relational
algebra. Each time an alias is introduced, we declare a variable of type table,
which possesses as a value the contents of the table for which it is an alias.
When a table appears only once in a query, there is no difference between
interpreting the alias as a pseudonym or as a new variable. When a table
appears more than once, however, it is essential to see aliases as new
variables.

Query 17: Find all the employees who have the same surname (but different
first names) of an employee belonging to the Production department.

select E1.FirstName, E1.Surname
from Employee E1, Employee E2
where E1.Surname = E2.Surname and
 E1.FirstName <> E2.FirstName and
 E2.Dept = 'Production'

112 Chapter 4
SQL

This query compares each row of EMPLOYEE with all the rows of EMPLOYEE

associated with the Production department. Note that in this query, each row
whose Dept attribute has the value Production is also compared with itself,
but the comparison of the row with itself will never be satisfied, in that the
predicate of inequality on the attribute FirstName can never be true.

To illustrate the execution of this query, we can imagine that when we
define the aliases, two different tables E1 and E2 are created, each containing
all the rows of EMPLOYEE. Figure 4.18 shows the idea and the fact that there is
a comparison of each row of E1 with each row of E2.

The definition of aliases is also important for the specification of nested
queries, as we will see in Section 4.2.6.

To demonstrate the correspondence between the renaming operator of
relational algebra and the use of variables in sql, we can use sql to formulate
the query shown in Section 3.1.6 (Expression 3.3). Suppose the table
SUPERVISION(Head, Employee) describes the relationship between employees
and supervisors.

Query 18: Find the names and salaries of the supervisors of the employees
who earn more than 40 thousand.

select E1.Name as NameH, E1.Salary as SalaryH
from Employee E1, Supervision, Employee E2
where E1.Number = Supervision.Head and
 E2.Number = Supervision.Employee and
 E2.Salary > 40

Figure 4.18 Description of the execution of Query 17.

Employee

Employee E1 Employee E2

Section 4.2 113
SQL queries

Ordering Whereas a relation is made up of a non-ordered set of tuples,
applications often require an ordering of the rows. Consider the case in
which the user wants to know which are the highest salaries paid by the
company. This needs a query that returns the employees’ data ordered on the
value of the Salary attribute.

sql makes it possible to impose an order on the rows of the result of a
query by means of the order by clause, with which the query is ended. The
clause obeys the following syntax.

order by OrderingAttribute [asc | desc]
{ , OrderingAttribute [asc | desc]}

In this way, the query specifies the attributes that must be used for the
ordering. The rows are ordered according to the first attribute in the list. For
rows that have the same value for this attribute, the values of the attributes
that follow are taken into account, in sequence. The order on each attribute
can be ascending or descending, and it is specified by means of the qualifiers
asc or desc. If the qualifier is omitted, the ascending order is assumed.

Consider the database in Figure 4.15.

Query 19: Extract the content of the AUTOMOBILE table in descending order of
make and model.

select *
from Automobile
order by Make desc, Model desc

The result is shown in Figure 4.19.

4.2.3 Aggregate queries
Aggregate operators constitute one of the most important extensions of sql
in comparison with relational algebra.

In relational algebra, all the conditions are evaluated one tuple at a time:
the condition is always a predicate that is evaluated on each tuple
independently of all the others.

Often, however, it is necessary to evaluate properties that are dependent
on sets of tuples. Suppose that we wish to find the number of employees in
the Production department. The number of employees will correspond to the
number of tuples in the relation EMPLOYEE having Production as the value of
the attribute Dept. This number, however, is not a property possessed by one

Figure 4.19 Result of Query 19.

CarRegNo Make Model DriverID

GHI 789 Lancia Delta PZ 1012436B
DEF 456 BMW Z3 VR 2030020Y
ABC 123 BMW 323 VR 2030020Y
BBB 421 BMW 316 MI 20220030U

114 Chapter 4
SQL

tuple in particular, and therefore the query is not expressible in relational
algebra. In order to express it in sql we use the aggregate operator count.

Query 20: Find the number of employees in the Production department:

select count(*)
from Employee
where Dept = 'Production'

The query is first executed in the normal manner, taking into account only
the from and where clauses. The aggregate operator is then applied to the table
containing the result of the query. In the example above, firstly a table is
constructed containing all the rows of EMPLOYEE having Production as the
value of the attribute Dept. Then, the aggregate operator is applied to the
table, counting the number of rows that appear in it.

Standard sql provides five aggregate operators; they are count, sum, max,
min and avg.

The count operator uses the following syntax:

count (〈* | [distinct | all] AttributeList〉)
The first option (*) returns the number of rows. The distinct option

returns the number of different values for the attributes in AttributeList. The
all option returns the number of rows that possess values different from the
null value for the attributes in AttributeList. If an attribute is specified
without distinct or all, all is assumed as default.

Query 21: Find the number of different values on the attribute Salary for all
the rows in EMPLOYEE:

select count(distinct Salary)
from Employee

Query 22: Find the number of rows of EMPLOYEE having a not null value on the
attribute Salary:

select count (all Salary)
from Employee

Let us turn to the other four operators sum, max, min and avg. They allow as
argument an attribute or expression, possibly preceded by one of the
keywords, distinct or all. The aggregate functions sum and avg allow as
argument only expressions that represent numeric values or intervals of
time. The functions max and min require only that an order be defined in the
expression, making them applicable also to character strings and instants of
time.

〈sum | max | min | avg〉 ([distinct | all] AttributeExpression)

The operators apply to the rows that are selected by the where clause of the
query, and have the following meanings:

• sum: returns the sum of the values possessed by the attribute expression;

• max and min: return respectively the maximum and minimum values;

Section 4.2 115
SQL queries

• avg: returns the average of the values of the attribute expression.

The keywords distinct and all have the meaning already discussed:
distinct ignores duplicates, while all leaves out only null values; the use of
distinct or all with the max and min operators has no effect on the result.

The various implementations of sql frequently offer a wider range of
aggregate operators, providing statistical operators such as variance,
standard deviation, median, etc.

Query 23: Find the sum of the salaries of the Administration department:

select sum(Salary)
from Employee
where Dept = 'Administration'

We can also evaluate several aggregate operations in a single query.

Query 24: Find the maximum, the average and the minimum salaries of all
employees:

select max(Salary), avg(Salary), min(Salary)
from Employee

Aggregate evaluation may take place after an arbitrary query, such as the
following one, which has a join.

Query 25: Find the maximum salary among the employees who work in a
department based in London.

select max(Salary)
from Employee, Department
where Dept = DeptName and
 Department.City = 'London'

Note that the following version of the same query is not correct:

Query 26:

select FirstName, Surname, max(Salary)
from Employee, Department
where Dept = DeptName and
 Department.City = 'London'

On an intuitive level, this query would select the highest value of the
Salary attribute, and thus would automatically select the attributes FirstName
and Surname of the corresponding employee. However, such semantics could
not be generalized to the aggregate queries, for two reasons. In the first place,
there is no guarantee that the operator will select a single element, given that
there could be more than one row containing a particular salary. In the
second place, written like this, the query could be applied to the operators
max and min, but would have no meaning for the other aggregate operators.
Therefore, the sql syntax does not allow aggregate functions and attribute
expressions (such as, for example, attribute names) within the same target list
(except for queries with the group by clause, described in the next section).

116 Chapter 4
SQL

4.2.4 Group by queries
We have described the aggregate operators as those that are applied to a set
of rows. The examples that we have seen up to now operate on all the rows
that are produced as the result of the query. It is often necessary to apply an
aggregate operator more finely, to specific subsets of rows. To use the
aggregate operator like this, sql provides the group by clause, which makes
it possible to specify how to divide the table up into subsets. The clause
accepts as argument a set of attributes, and the query will operate separately
on each set of rows that possess the same values for this set of attributes.

To understand the meaning of the group by clause better, let us analyze
how an sql query using the group by clause is executed.

Query 27: Find the sum of salaries of all the employees of the same
department:

select Dept, sum(Salary)
from Employee
group by Dept

Suppose that the table contains the information shown in Figure 4.20.

First, the query is considered as if the group by clause did not exist,
selecting the attributes that appear either as the argument of group by or
within an expression that is the argument of the aggregate operator. In the
query we are looking at, it is as if the following query were executed:

select Dept, Salary
from Employee

The result is shown in Figure 4.21.
The resulting table is then analyzed, dividing the rows into subsets

sharing the same value on the attributes that appear in the group by clause.
In the example, the rows are grouped according to the same value of the
attribute Dept (Figure 4.22).

Once the rows are partitioned into subsets, the aggregate operator is
applied separately to each subset. The result of the query consists of a table

Figure 4.20 Contents of the EMPLOYEE table.

EMPLOYEE FirstName Surname Dept Office Salary City

Mary Brown Administration 10 45 London
Charles White Production 20 36 Toulouse
Gus Green Administration 20 40 Oxford
Jackson Neri Distribution 16 45 Dover
Charles Brown Planning 14 80 London
Laurence Chen Planning 7 73 Worthing
Pauline Bradshaw Administration 75 40 Brighton
Alice Jackson Production 20 46 Toulouse

Section 4.2 117
SQL queries

with rows that contain the results of the evaluation of the aggregate
operators, possibly alongside the values of the attributes used for the
aggregation. In Figure 4.23 the final result of the query is shown, giving the
sum of the salaries paid to the employees of the department, for each
department.

The sql syntax imposes the restriction that, whenever the group by clause
is used, the attributes that can appear in the select clause must be a subset of
the attributes used in the group by clause. References to these attributes are
possible because each tuple of the group will be characterized by the same
values. The following example shows the reasons for this limitation:

Figure 4.21 Projection on the attributes Dept and Salary of the EMPLOYEE
table.

Figure 4.22 Regrouping according to the value of the Dept attribute.

Figure 4.23 Result of Query 27.

Dept Salary

Administration 45
Production 36
Administration 40
Distribution 45
Planning 80
Planning 73
Administration 40
Production 46

Dept Salary

Administration 45
Administration 40
Administration 40
Distribution 45
Planning 80
Planning 73
Production 36
Production 46

Dept Salary

Administration 125
Production 82
Distribution 45
Planning 153

118 Chapter 4
SQL

Query 28:

select Office
from Employee
group by Dept

This query is incorrect, in that a number of values of the Office attribute
will correspond to each value of the Dept attribute. Instead, after the
grouping has been carried out, each sub-group of rows must correspond to a
single row in the table resulting from the query.

On the other hand, this restriction can sometimes seem excessive, such as
when we need to show the values of attributes that exhibit single values for
given values of the grouping attributes. (We say that the attributes
functionally depend on the grouping attributes; see Section 8.2 for a
discussion of functional dependencies.)

Query 29:

select DeptName, count(*), D.City
from Employee E join Department D on (E.Dept = D.DeptName)
group by DeptName

This query should return the department name, the number of employees
of each department, and the city in which the department is based. Given
that the attribute DeptName is the key of DEPARTMENT, a particular value of
City corresponds to each value of DeptName. The system could therefore
provide a correct response, but sql prohibits queries of this nature. In
theory the language could be modified in such a way as to allow the
identification of the attributes that are keys to the schemas of the tables, and
highlight the attributes that could appear in the target list. In practice it was
preferred to keep the language simple, possibly requiring that the query use
a redundant group of attributes. The query can be correctly rewritten as
follows:

Query 30:

select DeptName, count(*), D.City
from Employee E join Department D on (E.Dept = D.DeptName)
group by DeptName, D.City

Group predicates We have seen how rows can be organized into subsets
by means of the group by clause. It is sometimes possible that an application
needs to consider only the subsets that satisfy certain conditions. If the
conditions that must be satisfied by the subsets are verifiable at the single
row level, then it is sufficient to use the appropriate predicates as the
argument of the where clause. If, however, the conditions have to refer to
values that are the result of aggregations, we have to use a new construct, the
having clause.

The having clause describes the conditions that must be applied at the end
of the execution of a query that uses the group by clause. Each subset of rows

Section 4.2 119
SQL queries

forms part of the result of the query only if the predicate argument of having
is satisfied.

Query 31: Find which departments spend more than 100 thousand on
salaries:

select Dept
from Employee
group by Dept
having sum(Salary) > 100

Applying the query to the table shown in Figure 4.20, we follow the steps
described for group by queries. Once the rows have been grouped according
to the value of the Dept attribute, the predicate argument of the having clause
is evaluated. This selects the departments for which the sum of the values of
the attribute Salary, for all the rows of the subset, is higher than 100. The
result of the query is shown in Query 4.24.

The syntax also allows for the definition of queries using the having clause,
without a corresponding group by clause. In this case the entire set of rows
is treated as a single group, but this has very limited application possibilities,
because if the condition is not satisfied, the resulting table will be empty.
Like the where clause, the having clause will also accept as argument a
boolean expression of simple predicates. The simple predicates are generally
comparisons between the result of the evaluation of an aggregate operator
and a generic expression. The syntax also allows the presence of predicates
on the attributes forming the argument of the group by, but it is preferable to
collect all such simple conditions into the context of the where clause. To
establish which predicates of a query that uses grouping are arguments of the
where clause and which are arguments of the having clause, we establish only
the following criterion: only the predicates containing aggregate operators
should appear in the argument of the having clause.

Query 32: Find the departments in which the average salary of employees
working in office number 20 is higher than 25 thousand:

select Dept
from Employee
where Office = '20'
group by Dept
having avg(Salary) > 25

The general concise form of an sql query thus becomes:

Figure 4.24 Result of Query 31.

Dept

Administration
Planning

120 Chapter 4
SQL

SelectSQL ::=select TargetList
from TableList
[where Condition]
[group by GroupingAttributeList]
[having AggregateCondition]
[order by OrderingAttributeList]

4.2.5 Set queries
sql also provides set operators, similar to those we saw in relational algebra.
The available operations are union (for which the operator is union),
intersection (intersect) and difference (except or minus). Each has a meaning
similar to the corresponding relational algebra operator.

Note that each query that uses the intersect and except operators can be
expressed using other constructs of the language (generally using nested
queries, which we will discuss in Section 4.2.6). On the other hand, for the
same reasons discussed in Section 3.2.3 for relational calculus with range
declarations, the union operator enhances the expressive power of sql and
allows the definition of queries that would otherwise be impossible.

The syntax for the use of the operators is as follows:

SelectSQL {〈 union | intersect | except〉 [all] SelectSQL}

Set operators, unlike the rest of the language, assume the elimination of
duplicates as a default. We can see two reasons for this. Firstly, the
elimination of duplicates is much closer to the intuitive semantics of these
operators. Secondly, their execution (particularly difference and intersection)
requires a computation for which the additional cost of eliminating
duplicates would be negligible. If we wish to adopt a different interpretation
of the operators in the query, and we wish to use set operators that maintain
the duplicates, it is sufficient to specify the all keyword when using the
operator. In the following examples we will compare what happens in both
cases. A further observation is that sql does not require the schemas on
which the operations are executed to be identical (unlike relational algebra),
but only that the attributes have compatible domains. The correspondence
between the attributes is not based on the name but on the position of the
attributes. If the attributes have different names, the result normally uses the
names of the first operand.

Query 33: Find the first names and surnames of the employees:

select FirstName as Name
from Employee

union
select Surname
from Employee

The query first obtains the values of the attribute FirstName for the rows
of EMPLOYEE. It then obtains the values of the attribute Surname for the same
rows and finally constructs the table by uniting the two partial results. Given
that the set operators eliminate the duplicates, there will be no repeated

Section 4.2 121
SQL queries

elements in the resulting table, in spite of the presence of duplicates in both
the initial tables, and in spite of the presence of some identical values in both
tables. Taking the initial data to be that of the table in Figure 4.20, the result
of the evaluation of the query is shown in Figure 4.25.

Query 34: Find the first names and the surnames of all the employees, except
those belonging to the Administration department, keeping the duplicates:

select FirstName as Name
from Employee
where Dept <> 'Administration'

union all
select Surname
from Employee
where Dept <> 'Administration'

In this case all the duplicates are retained. The result of the query, again
based on the table in Figure 4.20, is shown in Figure 4.26.

Query 35: Find the surnames of employees that are also first names:

select FirstName as Name
from Employee

intersect
select Surname
from Employee

From this query, we obtain the result in Figure 4.27.

Query 36: Find the first names of employees that are not also surnames:

select FirstName as Name
from Employee

except

Figure 4.25 Result of Query 33.

Name

Mary
Charles
Gus
Jackson
Laurence
Pauline
Alice
Brown
White
Green
Neri
Chen
Bradshaw

122 Chapter 4
SQL

select Surname
from Employee

The result of this query is shown in Figure 4.28.

4.2.6 Nested queries
Up to now, we have looked at queries in which the argument of the where
clause is based on compound conditions in which each predicate represents
a simple comparison between two values. sql also allows the use of
predicates with a more complex structure, in which a value expression can
be compared with the result of the execution of an sql query. The query
used for the comparison is defined directly in the internal predicate of the
where clause and is known as a nested query.

The value expression to be used as the first operand in the comparison is
most typically an attribute name. In this case, we are then confronted with
the problem of heterogeneity in the terms of the comparison. On one side of

Figure 4.26 Result of Query 34.

Figure 4.27 Result of Query 35.

Figure 4.28 Result of Query 36.

Name

Charles
Jackson
Charles
Laurence
Alice
White
Neri
Brown
Chen
Jackson

Name

Jackson

Name

Mary
Charles
Gus
Laurence
Pauline
Alice

Section 4.2 123
SQL queries

the comparison we have the result of the execution of a query in sql,
generally a set of values, while on the other side we have the value of the
attribute for the particular row. The solution offered by sql consists of using
the keywords all or any to extend the normal comparison operators (=, <>, <,
>, <= and >=). The keyword any specifies that the row satisfies the condition
if the comparison predicate of the attribute value for the row is true with at
least one of the elements returned by the query. The keyword all specifies
that the row satisfies the condition only if all the elements returned by the
nested query make the comparison true. The syntax requires that the
domain of the elements returned by the nested query is compatible with the
attribute with which the comparison is made.

Query 37: Find the employees who work in departments in London:

select FirstName, Surname
from Employee
where Dept = any (select DeptName
 from Department
 where City = 'London')

The query selects the rows of EMPLOYEE for which the value of the attribute
Dept is equal to at least one of the values of the DeptName attribute of the
rows of DEPARTMENT with City equal to London.

This query can also be expressed using a join between the tables EMPLOYEE

and DEPARTMENT, and, in fact, the optimizers are generally able to deal with
the two different formulations of this query in the same way. The choice
between one representation and the other can be influenced by the degree of
readability of the solution. In cases as simple as these, there is no difference,
but for more complex queries, the use of several nested queries can improve
readability.

Let us consider a query that allows us to find the employees belonging to
the Planning department who have the same first name as a member of the
Production department. The query lends itself to both possible formulations:
the first is more compact and uses variables.

Query 38:

select E1.FirstName, E1.Surname
from Employee E1, Employee E2
where E1.FirstName = E2.FirstName and
 E2.Dept = 'Production' and
 E1.Dept = 'Planning'

The second method uses a nested query, expressing the query without
needing aliases:

Query 39:

select FirstName, Surname
from Employee
where Dept = 'Planning' and
 FirstName = any (select Firstname

124 Chapter 4
SQL

 from Employee
 where Dept = 'Production')

We consider now a different query:

Query 40: Find the departments in which there is no one named Brown:

select DeptName
from Department
where DeptName <> all (select Dept
 from Employee
 where Surname = 'Brown')

The nested query selects the values of Dept for all the rows in which the
surname is Brown. The condition is therefore satisfied by the rows of
DEPARTMENT for which the value of the attribute DeptName is not among the
values produced by the nested query. This query could not be expressed by
means of a join. Note how this query could have been implemented in
relational algebra using the following expression (πDeptName(DEPARTMENT) −
QDeptName←DeptπDept(σSurname=’Brown’(EMPLOYEE))), and therefore could also
have been expressed using the set operator except as follows:

Query 41:

select DeptName
from Department

except
select Dept as DeptName
from Employee
where Surname = 'Brown'

sql offers two special operators to represent set membership and its
negation, in and not in. These are indeed shorthand for = any and <> all
respectively. Examples of their use are given in the queries of the next
section.

Finally we can observe how some queries that use the operators max and
min could be expressed by means of nested queries.

Query 42: Find the department of the employee earning the highest salary
(using the aggregate function max):

select Dept
from Employee
where Salary = any (select max(Salary)
 from Employee)

Query 43: Find the department of the employee earning the highest salary
(using only a nested query):

select Dept
from Employee
where Salary >= all (select Salary
 from Employee)

The two queries are equivalent in that the maximum value is exactly the
value that is greater than or equal to all the values of the same attribute in

Section 4.2 125
SQL queries

the other rows of the relation. In these cases, however, it is advisable to use
the aggregate operator, as it gives a more readable result (and possibly it is
executed more efficiently). It is also interesting to note that for the first
nested query there is no difference between using the keywords any and all,
since the query always returns a single row.

Complex nested queries A simple and intuitive interpretation for
understanding nested queries lies in the assumption that the nested query is
executed before the analysis of the rows of the external query. The result of
the query can be saved in a temporary variable and the predicate of the
external query can be evaluated by using the temporary result. What is
more, this interpretation produces an efficient execution, since the nested
query is processed only once. Consider again Query 40. The system can first
carry out the nested query, which returns the value of the Dept attribute for
all the employees named Brown. Once this is done, each department is then
checked to see that the name is not included in the table produced, using the
operator <> all.

Sometimes, however, the nested query refers to the context of the query
in which it is enclosed; this generally happens by means of a variable defined
within the external query and used in the internal query. Such a mechanism
is often described as the ‘transfer of bindings’ from one context to another.
This mechanism enhances the expressive power of sql. In this case, the
simple interpretation given before for nested queries is no longer valid.
Instead, it is necessary to reconsider the standard interpretation of sql
queries, which first compute the cartesian product of the tables in the from
clause and next evaluate the where clause on each row. The nested query is a
component of the where clause and it must also be evaluated separately for
every row produced by the consideration of the external query. Thus, the
new interpretation is the following: for each row of the external query, we
first evaluate the nested query, and then compute the row-level predicate of
the external query. Such a process can be arbitrarily nested for an arbitrarily
complex use of variables within the nested queries; however, the readability
and declarative nature of the language are compromised. With regard to the
visibility (or scope) of sql variables, there is a restriction on the use of a
variable: a variable can be used only within the query in which it is defined
or within a query that is recursively nested in the query where it is defined.
If a query contains nested queries at the same level (on distinct predicates),
the variables introduced in the from clause of a query cannot be used in the
context of another query. The following query, for example, is incorrect.

Query 44:

select *
from Employee
where Dept in (select DeptName
 from Department D1
 where DeptName = 'Production') or

126 Chapter 4
SQL

 Dept in (select DeptName
 from Department D2
 where D1.City = D2.City)

We exemplify the meaning of complex nested queries together with the
description of a new logical operator, exists. This operator allows a nested
query as a parameter and returns the true value only if the query does not
produce an empty result. This operator can be usefully employed only if
there is a binding transfer between the external query and the nested query.

Consider a table PERSON(TaxCode, FirstName, Surname, City) describing
people’s tax records.

Query 45: Find all the homonyms, that is, persons who have the same first
name and surname but different tax codes:

select *
from Person P
where exists (select *
 from Person P1
 where P1.FirstName = P.FirstName and
 P1.Surname = P.Surname and
 P1.TaxCode <> P.TaxCode)

The query searches the rows of the PERSON table for which there exists a
further row in PERSON with the same FirstName and Surname, but a different
TaxCode.

In this case, we cannot execute the nested query before evaluating the
external query, given that the nested query is not properly defined until a
value has been assigned to the variable P. It is necessary, instead, to evaluate
the nested query for every single row produced within the external query.
Thus, in the example, the rows of the variable P will first be examined one
by one. For each of these rows, the nested query will be executed and it will
return or not the empty result depending upon whether or not there are
persons with the same name and surname. This query could also have been
formulated with a join of the PERSON table with itself.

Consider now a different query.

Query 46: Find all persons who do not have homonyms:

select *
from Person P
where not exists (select *
 from Person P1
 where P1.FirstName = P.FirstName and
 P1.Surname = P.Surname and
 P1.TaxCode <> P.TaxCode)

The interpretation is similar to that of the preceding query, with the single
difference that the predicate is satisfied if the nested query returns an empty
result. This query could also have been implemented by a difference that
subtracted from all the first names and surnames, those of the people sharing
a first and second name, determined using a join.

Section 4.2 127
SQL queries

Another way to formulate the same query uses the tuple constructor,
represented by a pair of curved brackets that enclose the list of attributes.

Query 47: Find all the persons who do not have homonyms (using the tuple
constructor):

select *
from Person P
where (FirstName, Surname) not in (select FirstName, Surname
 from Person P1
 where P1.TaxCode <> P.TaxCode)

Consider a database with a table SINGER(Name, Song) and a table
SONGWRITER(Name, Song).

Query 48: Find the singers who have performed only their own songs:

select Name
from Singer
where Name not in (select Name
 from Singer S
 where Name not in
 (select Name
 from Songwriter
 where Songwriter.Song = S.Song))

The external query has no link with the nested queries, and therefore can
be initially suspended, waiting for the result of the first-level nested query.
Such first-level query, however, presents a binding. Therefore, the query is
executed by means of the following phases.

1. The nested query select Name from Singer S is applied to all the rows of
the table Singer.

2. For each row, the most internal query is evaluated. This returns the
names of the songwriters of the song titles appearing in the rows of S.
Thus, if the name of the singer does not appear among the names of the
songwriters (which therefore means that the singer is not the writer of
the song he sings), then the name is selected.

3. Finally, the table that contains the names of the singers who have
performed only their own songs (the more external query) is
constructed. This query returns all the rows whose Name does not
appear as result of the nested query.

The logic of this query execution is more evident when we consider that
the query can be expressed in the same way by using the except operator:

Query 49:

select Name
from Singer
 except
select Name
from Singer S

128 Chapter 4
SQL

where Name not in (select Name
 from Songwriter
 where Songwrite.Song = S.Song)

Commercial sql systems do not always carry out the nested queries
internally by scanning the external table and producing a query for every
row of the relation. Instead, they try to process as many queries as possible
in a set-oriented way, with the aim of handling a large quantity of data by
means of as few operations as possible. Several optimizations are possible,
such as retaining the results of the nested subqueries for multiple uses, and
anticipating the evaluation of the parts of query predicates that are not
nested. We will discuss optimization issues further in Section 9.6.

4.3 Data modification in SQL
The Data Manipulation Language of sql includes commands for querying
and modifying the database. The commands that allow the modification of
the contents of a database are insert, delete and update. We will analyze the
individual commands separately, although, as we shall see, they have similar
forms.

4.3.1 Insertions
The command for inserting a row into the database offers alternative
syntaxes:

insert into TableName [(AttributeList)] 〈values (ListOfValues) |
 SelectSQL〉

The first form allows the insertion of single rows into the tables. The
argument of the values clause represents explicitly the values of the
attributes of the single row. For example:

insert into Department(DeptName, City)
 values('Production', 'Toulouse')

The second form allows the addition of a set of rows, which are first
retrieved from the database.

The following command inserts the results of the selection from the table
PRODUCT of all the rows having London as the value of the attribute ProdArea,
into the table LONDONPRODUCTS.

insert into LondonProducts
 (select Code, Description
 from Product
 where ProdArea = 'London')

The two forms have different applications. The first case is typically used
in programs to fill in a table with data provided directly by the users. Each
use of the insert command is generally associated with the filling of a form,
that is, a friendly interface in which the user supplies values for various
attributes. The second case inserts data into a table based on other
information already present in the database.

Section 4.3 129
Data modification in SQL

If the values of some of the attributes of the table are not specified during
an insertion, the default value is assigned to them, or failing this, the null
value (Section 4.1.6). If the insertion of the null value violates a not null
constraint defined on the attribute, the insertion will be rejected. Finally,
note that the correspondence between the attributes of the table and the
values to be inserted is dictated by the order in which the terms appear in
the definition of the table. For this reason, the first element of the ValuesList
(for the first form of the statement) or the first element of the target list (for
the second form) must correspond to the first attribute that appears in
AttributeList (or in the definition of the table if AttributeList is omitted), and
so on for the other attributes.

4.3.2 Deletions
The delete command eliminates rows from the tables of the database,
following this simple syntax:

delete from TableName [where Condition]

When the condition forming the subject of the where clause is not
specified, the command removes all the rows from the table, otherwise only
the rows that satisfy the condition are deleted. In case there is a referential
integrity constraint with a cascade policy in which the table is referenced,
the cancellation of rows of the table can cause the cancellation of rows
belonging to other tables. This can generate a chain reaction if these
cancellations in their turn cause cancellation of rows in other tables.

delete from Department
where DeptName = 'Production'

The command deletes the row of DEPARTMENT having the name Production.
(Since DeptName was declared as the primary key for the table, there can be
only one row having that particular value.)

The condition has the same syntax as in the select statement, which means
that nested queries referring to other tables can appear within it. A simple
example is the command that deletes the departments without employees:

delete from Department
 where DeptName not in (select Dept
 from Employee)

Note the difference between the delete command and the drop command
described in Section 4.1.8. A command such as:

delete from Department

deletes all the rows of the DEPARTMENT table, possibly also deleting all the
rows of the tables that are linked by referential integrity constraints with the
table, if the cascade policy is specified in the event of deletion. The schema
of the database remains unchanged, however, and the command modifies
only the database instance. The command:

130 Chapter 4
SQL

drop table Department cascade

has the same effect as the command delete, but in this case the schema of the
database is also modified, deleting the DEPARTMENT table from the schema, as
well as all the views and tables that refer to it in their definitions. However,
the command:

 drop table Department restrict

fails if there are rows in the DEPARTMENT table.

4.3.3 Updates
The update command is slightly more complex.

update TableName
 set Attribute = 〈Expression | SelectSQL | null | default〉
 { , Attribute = 〈Expression | SelectSQL | null | default〉}
[where Condition]

The update command makes it possible to update one or more attributes of
the rows of TableName that satisfy a possible Condition. If the condition does
not appear, a true value is assumed as default, and the modification is carried
out on all the rows. The new value to which the attribute is assigned, can be
one of the following:

1. the result of the evaluation of an expression on the attributes of the
table;

2. the result of an sql query;

3. the null value; or,

4. the default value for the domain.

The command:

update Employee set Salary = Salary + 5
where RegNo = 'M2047'

operates on a single row, updating the salary of the employee number m2047
whereas the following example operates on a set of rows.

update Employee set Salary = Salary * 1.1
where Dept = 'Administration'

The command produces a 10% salary increase for all the employees who
work in Administration. The assignment operator has the usual property, for
which Salary on the right-hand side of the operator represents the old value,
which is evaluated for every row to which the update must be applied. The
result of the expression becomes the new value of the salary.

The set-oriented nature of sql should be taken into account when writing
update commands. Suppose we wish to modify the employees’ salaries,
increasing the salaries under 30 thousand by 10%, and the higher salaries by

Section 4.4 131
Other definitions of data in SQL

15%. One way to update the database to reach this goal is to execute the
following command:

update Employee set Salary = Salary * 1.1
where Salary <= 30

update Employee set Salary = Salary * 1.15
where Salary > 30

The problem with this solution is that if we consider an employee with an
initial salary of 28 thousand, this will satisfy the first update command and
the Salary attribute will be set equal to 30.8. At this point, however, the row
also satisfies the conditions of the second update command, and thus the
salary will be modified again. The final result is that for this row the total
increase is 26.5%.

The problem originates because sql is set-oriented. With a tuple-oriented
language it would be possible to update the rows one by one and apply one
or the other modification according to the value of the salary. In this
particular case, the solution is to invert the order of execution of the two
commands, first increasing the higher salaries and then the remaining ones.
In more complex situations, the solution might require the introduction of
intermediate updates, or a complete change of approach using a program in
a high-level programming language, using cursors. This technique will be
described in Section 4.6.

4.4 Other definitions of data in SQL
Having described how to formulate queries in sql, we can complete the
summary of the components of a schema. We will now describe the check
clause, assertions and the primitives for the definition of views.

4.4.1 Generic integrity constraints
We have seen how sql allows the specification of a certain set of constraints
on the attributes and tables, satisfying the most important, but not all, of the
application requirements. For the specification of further constraints, sql-2
has introduced the check clause, with the following syntax:

check (Condition)

The conditions that can be used are those that can appear in the where
clause of an sql query. The condition must always be verified to maintain the
correctness of the database. In this way it is possible to specify all the tuple
constraints we discussed in Section 2.2.1, and even more, because the
Condition can include references to other fields.

An effective demonstration of the power of the construct is to show how
the predefined constraints can all be described by means of the check clause.
For this, we can redefine the schema of the first version of the EMPLOYEE table
given in Section 4.1.7:

132 Chapter 4
SQL

create table Employee
(
 RegNo character(6)
 check (RegNo is not null and
 1 = (select count(*)
 from Employee E
 where RegNo = E.RegNo)),
 Surname character(20) check (Surname is not null),
 Name character(20) check (Name is not null and
 1 = (select count(*)
 from Employee E
 where Name = E.Name
 and Surname = E.Surname)),
 Dept character(15) check (Dept in
 (select DeptName
 from Department))
)

By comparing this specification with the one using predefined constraints,
we can make a number of observations. First, the predefined constraints
allow a more compact and readable representation; for example, the key
constraint requires a fairly complex representation, which uses the aggregate
operator count. Note also that using the check clause, we lose the possibility
of assigning a policy of reaction to violations to the constraints. Finally, when
the constraints are defined using the predefined constructs, the system can
recognize them immediately and can verify them more efficiently.

To understand the power of the new check construct, we can, for example,
describe a constraint that forces the employee to have a supervisor of his own
department only if the registration number does not begin with the value 1.
The above table definition can be extended with the following declaration:

Superior character(6)
check (RegNo like "1%" or
 Dept = (select Dept
 from Employee E
 where E.RegNo = Superior))

4.4.2 Assertions
Besides the check clause, we can define a further component of the schema of
the database, assertions. Introduced in sql-2, these represent constraints
that are not associated with any row or table in particular, and belong to the
schema.

Using assertions, we can express all the constraints that we have already
specified when dealing with table definitions. But assertions also allow the
expression of constraints that would not otherwise be expressible, such as
constraints on more than one table or constraints that require that a table
have a minimum cardinality. Assertions are named, and therefore they can be
explicitly dropped by means of the drop instruction for schema updates (see
Section 4.1.8).

The syntax for the definition of assertions is as follows:

Section 4.4 133
Other definitions of data in SQL

create assertion AssertionName check (Condition)

An assertion can for example impose that in EMPLOYEE there is always at
least one row present.

create assertion AlwaysOneEmployee
 check (1 <= (select count(*)
 from Employee))

Every integrity constraint, either check or assertion, is associated with a
check policy that indicates whether it is immediate or deferred. Immediate
constraints are verified immediately after each modification of the database,
while deferred constraints are verified only at the end of a series of
operations, called a transaction. When an immediate constraint is not
satisfied, it is because the specific data modification operation causing the
violation was just executed and it can be ‘undone’; this is called partial
rollback. All the fixed format constraints, introduced in Section 4.1.6 (not
null, unique, primary key) and Section 4.1.7 (foreign key), are immediately
verified, and their violation causes a partial rollback. When instead a
violation of a deferred constraint is detected at the end of a transaction, the
data modification operation causing the violation is not known, and
therefore the entire transaction has to be undone; this is called rollback.
Transactions and rollbacks are discussed further in Chapter 9, on database
technology. Due to the above mechanisms, the execution of a data
manipulation instruction on a database instance that satisfies all the
constraints will always produce a database instance that also satisfies all the
constraints. We also say that they produce a ‘consistent database state’.
Consistency is defined in Section 9.1.

Within a program, we can change the attribute of a constraint, by setting
it immediate or deferred; this is done by means of the commands set
constraints [ConstraintName] immediate and set constraints [Constraint-
Name] deferred.

4.4.3 Views
In Chapter 3 views were introduced as ‘virtual’ tables, whose contents
depend on the contents of the other tables in the database. Views are defined
in sql by associating a name and a list of attributes with the result of the
execution of a query. Other views can also appear within the query that
defines the view. However, views cannot be mutually dependent, either
immediately (defining a view in terms of itself), or transitively (defining a
view V1 using a view V2, V2 using V3 and so on until Vn is defined by means
of V1),

A view is defined using the command:

create view ViewName [(AttributeList)] as SelectSQL
[with [local | cascaded] check option]

134 Chapter 4
SQL

The sql query and the schema of the view must have the same number of
attributes. We can, for example, define a view ADMINEMPLOYEE that contains
all the employees in the Administration department with a salary higher
than 10 thousand.

create view AdminEmployee(RegNo, FirstName, Surname, Salary) as
select RegNo, FirstName, Surname, Salary
from Employee
where Dept ='Administration' and
 Salary > 10

We can now construct a view JUNIORADMINEMPLOYEE based on the
ADMINEMPLOYEE view, which will contain the administrative employees with
a salary between 10 thousand and 50 thousand:

create view JuniorAdminEmployee as
select *
from AdminEmployee
where Salary < 50
with check option

On certain views, we can carry out modification operations; these must be
translated into the appropriate modification commands on the base tables on
which the view depends. As we have already mentioned in Chapter 3, we
cannot always find an unambiguous way of modifying the base table or
tables. Difficulties are encountered, particularly when the view is defined by
means of a join between more than one table. In standard sql, a view can be
updated only when a single row of each base table corresponds to a row in
the view.

Commercial sql systems generally consider that a view can be updated
only if it is defined on a single table; some systems require that the attributes
of the view should contain at least a primary key of the table. The check
option clause can be used only in the context of views that can be updated.
It specifies that update operations can be carried out only on rows belonging
to the view, and after the update the rows must continue to belong to the
view. This can happen, for example, if a value is assigned to an attribute of
the view that makes one of the selection predicates false. When a view is
defined in terms of other views, the local or cascaded option specifies
whether the control over row removal must be made only at the (local) view
or whether it must be propagated to all the views on which the view
depends. The default option is cascaded.

Since the JUNIORADMINEMPLOYEE view has been defined using the check
option, an attempt to assign a value of 8 thousand to the Salary attribute
would not be accepted by the present definition of the view, but would be
accepted if the check option were defined as local. A modification of the
Salary attribute of a row of the view to allocate the value 60 thousand would
not be accepted even with the local option.

Section 4.4 135
Other definitions of data in SQL

4.4.4 Views in queries
Views can be used in sql to formulate queries that it would otherwise be
impossible to express. Using the definition of appropriate views, we can
define queries in sql that require a nesting of various aggregate operators, or
that make a sophisticated use of the union operator. In general, views can be
considered as a tool that increases the possibility of creating nested queries.

We wish to determine which department has the highest expenditure on
salaries. In order to achieve this we define a view that will be used by
Query 50.

create view SalaryBudget (Dept, SalaryTotal) as
select Dept, sum(Salary)
from Employee
group by Dept

Query 50: Find the department with the highest salary expenditure.

select Dept
from SalaryBudget
where SalaryTotal = (select max(SalaryTotal)
 from SalaryBudget)

The definition of the view SALARYBUDGET builds a table in which there
appears a row for every department. The attribute Dept corresponds to the
attribute Dept of EMPLOYEE and contains the name of the department. The
second attribute SalaryTotal contains, for each department, the sum of the
salaries of all the employees of that department

Another way to formulate the same query is as follows:

Query 51:

select Dept
from Employee
group by Dept
having sum(Salary) >= all (select sum(Salary)
 from Employee
 group by Dept)

This solution is not recognized by all sql systems, which may impose that
the condition in the having clause must be a simple comparison with an
attribute or a constant, and cannot use a nested query. We can give another
example of the use of views to formulate complex queries.

create view DeptOffice(DeptName,NoOfOffices) as
select Dept, count(distinct Office)
from Employee
group by Dept

Query 52: Find the average number of offices per department:

select avg(NoOfOffices)
from DeptOffice

We could think of expressing the same query like this:

136 Chapter 4
SQL

Query 53:

select avg(count(distinct Office))
from Employee
group by Dept

The query is, however, incorrect, because the sql syntax does not allow
the cascading of aggregate operators. The basic problem is that the
evaluation of the two different operators happens at different levels of
aggregation, whereas a single occurrence of the group by clause for every
query is admissible.

4.5 Access control
The presence of data protection mechanisms takes on great importance in
modern applications. One of the most important tasks of a database
administrator is the choice and implementation of appropriate access control
policies. sql recognizes the importance of this aspect and a set of instructions
is dedicated to this function.

sql is designed so that every user is identifiable by the system in a way
that is unambiguous. The user identification can exploit the capabilities of
the operating system (so that each user of the system corresponds to a user
of the database), or database users can be independent of system users. Most
commercial systems offer an independent organization, each with its own
identification procedure. In this way, more than one system user can
correspond to a database user and vice versa.

4.5.1 Resources and privileges
The resources that are protected by the system are usually tables, but we can
protect any of the system components, such as the attributes of a table, views
and domains.

As a rule, the user who creates a resource is its owner and is authorized to
carry out any operation upon it. A system in which only the owners of the
resources were authorized to make use of them would be of limited use, as
would a system in which all the users were able to use every resource in an
arbitrary manner. sql however, offers flexible organization mechanisms that
allow the administrator to specify those resources to which the users may
have access, and those that must be kept private. The system bases access
control on a concept of privilege. The users possess privileges of access to the
systems resources.

Every privilege is characterized by the following:

1. the resource to which it refers;

2. the user who grants the privilege;

3. the user who receives it;

4. the action that is allowed on the resource; and,

Section 4.5 137
Access control

5. whether or not the privilege can be passed on to other users.

When a resource is created, the system automatically concedes all the
privileges on that resource to its creator. In addition, there is a predefined
user, _system, which represents the database administrator, who possesses all
privileges on all resources.

The available privileges are as follows:

• insert: allows the insertion of a new object into the resource (this can be
applied only to tables or views);

• update: allows the value of an object to be updated (this can be used on
tables, views, and attributes);

• delete: allows the removal of an object from the resource (tables or views
only);

• select: allows the user to read the resource, in order to use it within a
query (used on tables, views and attributes);

• references: allows a reference to be made to a resource in the context of
the definition of a table. It can be associated only with tables and specific
attributes. With the references privilege (say on the table DEPARTMENT,
property of Paolo), a user who is granted the privilege (say, Stefano) is
able to define a foreign key constraint (for example, on his table EMPLOYEE)
referencing the resource that is granted (for example, the key of
DEPARTMENT). At this point, if Stefano specifies a no action policy on the
referential integrity constraint, Paolo is prevented from cancelling or
modifying rows of his own table DEPARTMENT, if such an update command
renders the contents of EMPLOYEE incorrect. Thus, giving out a references
privilege on a resource might limit the ability to modify that resource;

• usage: applies to domains, and allows them to be used, for example, in the
definition of the schema of a table.

The privilege of carrying out a drop or an alter on an object cannot be
granted, but remains the prerogative of the creator of the object itself.
Privileges are conceded or remitted by means of the instructions grant and
revoke.

4.5.2 Commands for granting and revoking privileges
The syntax of the grant command is as follows:

grant Privilege on Resource to Users [with grant option]

The command allows the granting of Privileges on the Resource to the
Users. For example, the command:

grant select on Department to Stefano

grants to the user Stefano the select privilege on the DEPARTMENT table. The

138 Chapter 4
SQL

with grant option clause specifies whether the privilege of propagating the
privilege to other users must also be granted. We can use the keywords all
privileges in place of the distinct privileges. These identify all the privileges
that the user can grant on a particular resource. Thus the command:

grant all privileges on Employee to Paolo, Riccardo

concedes to the users Paolo and Riccardo all the privileges on the EMPLOYEE

table that can be granted by whoever executes the command.
The revoke command does the reverse, taking away privileges that a user

had already been granted.

revoke Privileges on Resource from Users [restrict | cascade]

Among the privileges that can be revoked, apart from those that can
appear as subject of the grant command, there is also the grant option
privilege, which derives from the use of the clause with grant option.

The only user who can revoke privileges from another user is the user who
granted the privileges in the first place; a revoke can take away all or a subset
of the privileges that were originally granted. The default option restrict
specifies that the command must not be carried out in case revoking this
user’s privilege causes a further revoking of privileges. This can happen
when the user has received the privileges with the grant option and has
propagated the privileges to other users. In a situation of this nature, the
restrict option will cause an error to be signalled. With the cascade option,
instead, the execution of the command is imperative; all the privileges that
were propagated are revoked and all the elements of the database that were
constructed by exploiting these privileges are removed. Note that in this case
too, the cascade option can generate a chain reaction, in which for each
element removed, all the objects that have some dependent relation to it are
also removed. As in other such cases, it is necessary to be very careful that a
simple command does not produce extensive and undesirable modifications
on the database.

It is not only the revoke command that can produce chain reactions: the
grant command can also produce similar effects. It can happen that a user has
received a privilege on a table that has allowed him to create views that refer
to this table, by means of, for example, the select privilege. If the user is
granted further privileges on the table, then these privileges will be
automatically extended to cover the views (and subsequently to views
constructed on these views).

4.6 Use of SQL in programming languages
It is rare that access to information contained in a database happens as a
result of personal interaction using sql. In practice, by far the most typical
use of a database happens by means of integrated applications built into the
information system, while direct use of the sql interpreter is reserved for a
few expert users.

Section 4.6 139
Use of SQL in programming languages

The use of special applications rather than the sql interpreter to gain
access to information is justified by a number of factors. Very often, access to
the information is not required directly by a user but by a non-interactive
(batch) application. Further, for interactive users, the access techniques are
often simple and predictable. It is therefore useful to reduce the complexity
of access to the database by constructing an application that provides a
simplified interface for carrying out the task. Finally, the presentation of the
data offered by the system might be unsuitable for the user’s requirements,
while a special application is free from constraints and can provide a
representation adequate for the requirements.

There are many tools that can be used for the creation of database
applications. A thriving market is that of the fourth generation languages
(4gls), highly sophisticated development tools that make it possible to
develop complete database management applications with little effort. Most
database vendors offer, together with the database manager, a set of tools for
the development of applications. Moreover there is a rich supply of products
that are not linked to any database in particular, all of which are able to
manage a dialogue with the relational system by means of standard sql.
These tools make possible the effective definition of database schemas, and
the construction of complex interfaces.

Another method for writing applications uses traditional high-level
programming languages. We will concentrate our analysis on this method,
because it is still of considerable importance, and because of the lack of
uniformity among 4gls.

4.6.1 Integration problems
In order to use sql instructions within a procedural program, the sql
instructions must be encapsulated within the program. From the
implementation point of view, it is necessary to provide the high-level
language compiler with a preprocessor. This preprocessor is able to detect
the calls to the dbms services, and submit them to the dbms query execution
environment, which includes the query optimizer. This solution offers the
usual advantages of portability and abstraction that already characterize the
use of a standard language such as sql. At execution, the program begins a
dialogue with the database, sending the query directly to the system.

One particular problem lies in the fact that programming languages access
the elements of a table by scanning the rows one by one, using what is
known as a tuple-oriented approach. In contrast, sql is a set-oriented
language, which always acts upon entire tables and not upon single rows.
Even the result of an sql query is an entire table. These aspects cause the
problem known as impedance mismatch.4 We will talk further about this
problem in Chapter 11, dedicated to object-oriented systems.

4. The term is derived from electrical engineering, which requires the entry and
exit impedances of circuits connected to each other to be as similar as possible.

140 Chapter 4
SQL

There are two possible solutions to this problem. The first consists of using
a programming language that makes more powerful data constructs available
and in particular is able to organize a ‘set of rows’ type structure in a natural
way. This solution is gaining more interest due to the increasing spread of
object-oriented programming languages, characterized by powerful type-
definition mechanisms. However, most applications are written using
languages that do not possess this capability. A further difficulty with this
solution is the lack of a standard solution accepted by all systems, for
example, by object-oriented and object-relational systems (see Chapter 11).

The second strategy, more commonly used, has been standardized and
does not need a complicated extension of existing programming languages,
although it is not as high-level and friendly to the programmer as one would
like it to be. This solution is based on the use of cursors.

4.6.2 Cursors
A cursor is a mechanism that allows a program to access the rows of a table
one at a time; the cursor is defined using a query. Let us look first at the
syntax for the definition and use of cursors.

declare CursorName [scroll] cursor for SelectSQL
[for 〈read only | update [of Attribute { , Attribute}]〉]

The declare cursor command defines a cursor associated with a particular
query on the database. The scroll option specifies whether we wish to allow
the program to move freely on the result of the query. The final option for
update specifies whether the cursor can be used for expressing an update
command, possibly adding the specification of the attributes that will be
updated.

open CursorName

The open command applies to a cursor; when invoked, the query is carried
out and the query result can be accessed using the fetch command.

fetch [Position from] CursorName into FetchList

The fetch command takes a row from the cursor and returns its values into
the variables of the program that appear in FetchList. The FetchList must
include a variable for every element in the target list of the query, such that
every element of the FetchList is type-compatible with the domains of the
elements of the target list of the query. An important concept is that of
current row, which represents the last row used by the fetch operation. The
Position parameter is used to set the current row. It can assume the following
values:

• next (the current row becomes the row that follows the current one);

• first (the first row of the query result);

• last (the last row);

Section 4.6 141
Use of SQL in programming languages

• absolute IntegerExpression (the row that appears in the i-th position of the
query result, where i is the result of the evaluation of the expression);

• relative IntegerExpression (the row that appears in the i-th position,
starting from the current position).

These options can be used only on condition that the scroll option (which
guarantees the possibility of free movement within the result of the query)
was specified when the cursor was defined. If the scroll option is not
specified, the only value available for the parameter is next; in this case,
implementation is easier, as the rows of the result can be discarded
immediately after being returned. This can be very useful for reducing
response times, particularly when the query returns a large number of rows.

update TableName
 set Attribute = 〈Expression | null | default〉
 { , Attribute = 〈Expression | null | default〉}
 where current of CursorName

The update and delete commands allow modifications to be made to the
database by means of cursors. The only extension required to the syntax of
update and delete lies in the possibility of using in the where clause, the
keywords current of CursorName, which indicates the current row (that
must be updated or removed). The modification commands can be used only
if the cursor gives access to an actual row of a table, and is not applicable
when the query associated with the cursor requires a join between different
tables.

close CursorName
The close command frees the cursor, i.e., communicates to the system that

the result of the query is no longer needed. At this point, the resources
dedicated to the cursor are released, particularly the memory space storing
the result.

A simple example is as follows:

declare EmployeeCursor scroll cursor for
 select Surname, Firstname, Salary
 from Employee
 where Salary < 100 and Salary > 40

In this way, the cursor EmpoloyeeCursor is allocated to the query that makes
it possible to obtain data relating to the employees who earn between 40
thousand and 100 thousand.

Let us now look at a simple example of a c program that uses cursors. The
sql commands are identified by the character ‘$’ in the first column, and the
variables of the program are distinguished by the fact that their names are
preceded by the ‘:’ (colon) character. The variables must be of a type
compatible with the values that they will contain. A predefined variable,
sqlcode, is used. It contains zero if the execution of the last command has
been successful, and a non-zero error code otherwise. Its main use is to
detect when the rows of a cursor have all been fetched.

142 Chapter 4
SQL

void DisplayDepartmentSalaries(char DeptName[])
{
 char FirstName[20], Surname[20];
 long int Salary;

$ declare DeptEmp cursor for
 select FirstName, Surname, Salary
 from Employee
 where Dept = :Deptname;
$ open DeptEmp;
$ fetch DeptEmp into :FirstName, :Surname, :Salary;
printf("Department %s\n",DeptName);
while (sqlcode == 0)
{
 printf("Name of the employee: %s %s",FirstName,Surname);
 printf("Salary: %d\n",Salary);
$ fetch DeptEmp into :FirstName, :Surname, :Salary;
 }

$ close cursor DeptEmp;
}

Certain queries whose results are guaranteed to consist of a single tuple,
called scalar queries, have a simpler interface with the programming
language; we do not need to define a cursor on them, but we can use the into
clause. In this way, we can directly establish to which variables of the
program the result of the query must be assigned. Let us examine how the
syntax of the select instruction is extended:

SelectSQL ::=select TargetList [into VariableList]
from TableList
[where Condition]
[group by GroupingAttributeList]
[having AggregateCondition]
[order by OrderingAttributeList]

Here is an example:

$ select Firstname, Surname into :EmpFName, :EmpSurname
 from Employee
 where Number = :EmpNumber

The values of the attributes FirstName and Surname of the employee whose
registration number is contained in the variable EmpNumber will be copied into
the variables EmpFName and EmpSurname.

4.6.3 Dynamic SQL
There are many situations in which it is necessary to allow the user to
formulate arbitrary queries on the database.

If the queries have a predefined structure and the part that varies is merely
the parameter used in the query, then we can construct the application by
means of cursors, as illustrated in the examples in the previous section. There
are other cases, however, in which it is necessary to manage queries that
require more flexibility. These queries differ not only in the parameters used,

Section 4.6 143
Use of SQL in programming languages

but also in the structure of the queries and in the set of tables being accessed.
The mechanisms for invoking sql commands seen in the previous section
will not work in this context, given that they require the structure of the
queries to be predefined. This family of mechanisms is collectively known as
static sql. An alternative family of commands permit the use of dynamic sql.
These commands make it possible to construct a program that executes sql
commands constructed when the program is run. These commands, however,
require special support from the system.

The greatest problem to be overcome is the transfer of parameters between
the sql command and the program, both incoming and outgoing. Given that
the sql command is arbitrary, the program has no way of recognizing at the
time of compilation, which are the required input and output parameters of
the command. This information is necessary for the program to be able to
organize the query internally.

The use of dynamic sql alters the mode of interaction with the system. In
static sql, the commands can be processed by a compiler, which analyzes the
structure of the command and constructs a translation into the internal
language of the system. In this way, commands do not need to be translated
and optimized each time, but can be executed immediately. This brings
considerable advantages in terms of performance. If, for example, a command
is carried out repeatedly, with this solution the translation is made only once,
whereas interacting with the engine each separate execution of the command
would require its own phase of translation.

In dynamic sql attempts are made to retain these advantages as much as
possible, making available two different types of interaction. The query can
be carried out immediately, meaning that the execution of the query follows
immediately after the analysis, or, alternatively, the management of the
query happens in two phases, analysis and execution.

Immediate execution command The execute immediate command
requires the execution of an sql statement, either directly stated or
contained in a program variable of type string of characters.

execute immediate SQLStatement

The immediate method can be used only for statements that do not require
parameters for either input or output. An example of the use of the command
is as follows:

execute immediate
"delete from Department where Name = 'Administration'"

In a c program we could write:

SQLString =
 "delete from Department where name = 'Administration'";
...
$ execute immediate :SQLString

144 Chapter 4
SQL

Instead, when a statement is executed more than once, or when the
program must organize an exchange of input/output parameters with the
query, we must distinguish between the two phases.

Preparation phase The prepare command analyzes and optimizes an sql
statement and translates it into the internal procedural language of the dbms.

prepare CommandName from SQLStatement

The sql statement can contain input parameters, represented by a
question mark. For example:

prepare :SQLStatement
 from "select City from Department where Name = ?"

In this case, the translation of the query corresponds to the variable
SQLStatement, with an entry parameter that corresponds to the name of the
department that must be selected by the query.

When a prepared sql statement is no longer needed, we can free the
memory occupied by the translated statement by using the deallocate
prepare command, with the following syntax:

deallocate prepare CommandName

For example, to deallocate the previous statement, we could use:

deallocate prepare :SQLStatement

Execution phase To invoke a statement elaborated by prepare, the execute
command is used, with the following syntax:

execute CommandName [into TargetList] [using ParameterList]

The target list contains the list of parameters in which the result of the
execution of the statement must be written. (This part is optional if the sql
command has no output parameters.) The list of parameters, on the other
hand, specifies which values must be assumed by the variable parameters on
the list. (This part can also be omitted if the sql statement has no input
parameters.)

Here is an example:

execute :SQLStatement into :city using :department

Suppose that the string Production is assigned to the variable department.
The effect of this command is to carry out the query:

select City from Department where Name = 'Production'

and as a consequence to obtain the string Toulouse in the variable city as a
result.

Use of cursors with dynamic sql The use of cursors with dynamic sql is
very similar to the use made of them with static sql. There are only two
differences. The first is that the query identifier is assigned to the cursor
instead of to the query itself. The second is that the commands for use of the

Section 4.6 145
Use of SQL in programming languages

cursor allow the specification of the into and using clauses, which allow the
specification of possible input and output parameters.

One example of the use of a dynamic cursor is as follows, in which we
suppose that the query defined in the string SQLStatement allows an input
parameter:

prepare :SQLStatement from :SQLString
declare PrgCursor cursor from :SQLStatement
open PrgCursor using :PrgVariable

4.6.4 Procedures
Standard sql allows for the definition of procedures, also known as stored
procedures because they are usually stored in the database as components of
the schema. As with programming languages, procedures make it possible to
associate a name with an sql statement, with the possibility of specifying
parameters to be used for communication to the procedure. The advantages
are an increase in the clarity of the program, easier maintenance, and in many
cases a noticeable increase in efficiency. Once the procedure has been
defined, it is treated as part of the set of predefined sql commands. As a first
example, let us look at the following sql procedure, which updates the name
of the city of a department.

procedure AssignCity(:Dep char(20), :City char(20))
update Department
set City = :City
where Name = :Dep;

The procedure is invoked by giving a value to the parameters. The
following example shows an invocation of the procedure within a c program,
using two variables, DeptName and CityName:

$ AssignCity(:DeptName, :CityName);

Standard sql-2 does not handle the writing of complex procedures, but is
limited to the definition of procedures made up of a single sql command.
Many systems remove this limitation, driven by users’ requirements.

The procedural extensions proposed by many systems differ widely among
themselves. There are systems that allow only sequences of commands
within a procedure, and others that allow the use of control structures,
declarations of local variables and the invocation of external programs. In
each case, the use of these functions is outside the scope of the sql-2
standard and renders the sql code thus generated non-portable. sql-3
extends this aspect of the language and provides a rich syntax for the
definition of procedures. In the meantime, if we decide to use the procedural
extensions provided by a given system, we must also rewrite them in case
there is a need to move the application to another environment.

The following example shows a (non-standard) procedure composed of a
sequence of two sql instructions. The procedure makes it possible to give to
the attribute City the value of :NewCity, for all the rows of DEPARTMENT and
EMPLOYEE in which the attribute is equal to :OldCity.

146 Chapter 4
SQL

procedure ChangeAllCities(:NewCity char(20), :OldCity char(20))
begin
 update Department
 set City = :NewCity
 where City = :OldCity;
 update Employee
 set City = :NewCity
 where City = :OldCity;
end;

One of the extensions usually provided by current systems is the control
structure if-then-else, which allows the expression of conditional executions
and can be used to handle exceptional conditions. We show an example of a
procedure that assigns to City of department :DeptName the value in
:NewCity; if the department is not found, a row is inserted into DEPTERROR.

procedure ChangeCity(:DeptName char(20), :NewCity char(20))
begin
 if not exists(select *
 from Department
 where Name = :DeptName)
 insert into DeptError values(:DeptName)
 else
 update Department
 set City = :NewCity
 where Name = :DeptName;
 end if;
end;

As we have already indicated, there are commercial systems that offer
powerful procedural extensions of sql; these extensions are often able to
make the language computationally complete, that is, to give it the same
expressive power as a traditional programming language. The possibility
exists therefore, of writing an entire application with this extended sql.
However, this is rarely the best solution, because generally the relational
system is optimized only for data access. Finally, let us look at an example of
a program written in pl/sql, the extension of the relational system Oracle
Server, to give an idea of the level of functionality offered by these systems.
pl/sql is described in Appendix C:

procedure Debit(ClientAccount char(5), Withdrawal integer) is
 OldAmount integer;
 NewAmount integer;
 Threshold integer;
begin
 select Amount, OverDraft into OldAmount, Threshold
 from BankAccount
 where AccountNo = ClientAccount
 for update of Amount;
 NewAmount := OldAmount - Withdrawal;
 if NewAmount > OverDraft then
 update BankAccount set Amount = NewAmount
 where AccountNo = ClientAccount;
 else
 insert into OverDraftExceeded

Section 4.7 147
Summarizing examples

 values(ClientAccount,Withdrawal,sysdate);
 end if;
 end Debit;

The example shows a procedure that subtracts Withdrawal from the
account with the code ClientAccount, if there is enough money in the
account. The procedure uses local variables (OldAmount, NewAmount and
Threshold) and applies the control structure if-then-else.

4.7 Summarizing examples
1. Consider the following relational schema, which describes the schedule

of a competition among national teams:

STADIUM(Name, City, Capacity)
MATCH(StadiumName, Date, Time, Country1, Country2)

NATIONALITY(Country, Continent, Category)

Express the following queries in sql:

(a) Find the names of the stadiums in which no European teams will play.

Solution:

select Name
from Stadium
where Name not in
 (select StadiumName
 from Match
 where (Country1 in
 (select Country
 from Nationality
 where Continent = 'Europe'))
 or
 (Country2 in
 (select Country
 from Nationality
 where Continent = 'Europe')))

(b) Express query (a) in relational algebra, calculus and Datalog.

Solutions:

i. Relational algebra:

πName(STADIUM) −
QName←StadiumNameπStadiumName((πCountry

(σContinent ='Europe' (NATIONALITY)))
JCountry1=Country ∨ Country2=Country

(πStadiumName,Country1,Country2(MATCH)))

ii. Relational calculus:

{ s.Name | s(STADIUM)
| ¬(∃ m(MATCH) (∃ n(NATIONALITY)

148 Chapter 4
SQL

(m.StadiumName = s.Name ∧
n.Continent = 'Europe' ∧
(m.Country1 = n.Country ∨ m.Country2 = n.Country))))}

iii. Datalog:

STADIUMWITHEUROPE(StadiumName : n) ←
MATCH(StadiumName : n, Date : d, Time : t,

Country1 : c1, Country2 : c2),
NATIONALITY(Country : c1, Continent : cn, Category : ct),
cn = 'Europe'

STADIUMWITHEUROPE(StadiumName : n) ←
MATCH(StadiumName : n, Date : d, Time : t,

Country1 : c1, Country2 : c2),
NATIONALITY(Country : c2, Continent : cn, Category : ct),
cn = 'Europe'

?STADIUM(Name : n, City : c, Capacity : cp),
not STADIUMWITHEUROPE(StadiumName : n)

(c) Extract the total capacity of the stadiums in which matches are played
and that have a South American national team as the first team. (Note: to
evaluate the total capacity, summarize the capacities allocated to each
contest, even if many contests take place in the same stadium).

Solution:

select sum(Capacity)
from Stadium join Match on Name = StadiumName
where Country1 in
 (select Country
 from Nationality
 where Continent = 'South America')

(d) Extract the city in which the Brazil team plays the most matches.

Solutions:

Here are two solutions.

i. With a specific view:

create view BrazilStad(StadiumName,NumberOfMatches) as
select StadiumName, count(*)
from Match
where Country1 = 'Brazil' or
 Country2 = 'Brazil'
group by StadiumName

select City
from Stadium
where Name in
 (select StadiumName

Section 4.7 149
Summarizing examples

 from BrazilStad
 where NumberOfMatches =
 (select max(NumberOfMatches)
 from BrazilStad))

ii. With a more general view:

create view Teams(StadiumName,Team,NumberOfMatches) as
 select StadiumName, Country, count(*)
 from Match, Nationality
 where (Country1 = Country or Country2 = Country)
 group by StadiumName, Country

select City
from Stadium
where Name in
 (select StadiumName
 from Teams
 where Team = 'Brazil' and
 NumberOfMatches =
 (select max(NumberOfMatches)
 from Teams
 where Team = 'Brazil'))

2. Given the following relational schema:

MOTORCYCLE(Number, Make, Nationality, Tax)
OWNER(Name, Number)

write the following queries in sql:

(a) Find the names of the owners of only Japanese motorcycles of at least
two different makes

Solutions:

i. First solution:

select Name
from Owner join Motorcycle on Owner.Number = Motorcycle.Number
where Name not in (select Name
 from Owner join Motorcycle on
 Owner.Number = Motorcycle.Number
 where Nationality <> 'Japanese')
group by Name
having count(distinct Make) >= 2

ii. Second solution:

select P1.Name
from Owner P1, Motorcycle M1, Owner P2, Motorcycle M2
where P1.Name not in (select Name
 from Owner join Motorcycle on
 Owner.Number = Motorcycle.Number
 where Nationality <> 'Japanese') and
 P1.Number = M1.Number and
 P2.Number = M2.Number and
 P1.Name = P2.Name and
 M1.Make <> M2.Make

150 Chapter 4
SQL

(b) Formulate the query in relational algebra.

Solution:

πName((OWNER J MOTORCYCLE)
JMake≠Make2∧ Name=Name2

(QName2←Name(OWNER) J QMake2←Make(MOTORCYCLE))) −
πName(OWNER J σNationality≠'Japanese'MOTORCYCLE)

(c) For each owner, highlight the tax he or she must pay for all the
motorcycles owned, taking into account that if there is more than one
owner for a motorcycle, the total tax will be equally divided among the
owners.

Solution:

create view IndTax(Number, Tax) as
 select Number, Tax/count(*)
 from Motorcycle join Owner
 on Motorcycle.Number = Owner.Number
 group by Number, Tax

select Name, sum(Tax)
from Owner join IndTax
 on Owner.Number = IndTax.Number
group by Name

4.8 Bibliography
sql was first proposed by Chamberlin et al. [21] and [22]. The official
description of standard sql can be obtained from the international standards
organization iso. These documents are, indeed, very expensive and not easy
to read. However, there are a great number of books on sql-2, including
those by Cannan and Otten [12], Date and Darwen [34], and Melton and
Simon [61]. Eisenberg and Melton [36] discuss the standardization process in
general and with specific reference to the database field. Melton [60] gives an
overview of the main issues in sql-3.

Most of the manuals accompanying commercial relational systems are very
detailed and can provide a useful reference point. The manual of each system
is also essential to know which sql features have been implemented in that
particular system.

4.9 Exercises
Exercise 4.1 Order the following domains according to the maximum value
that can be represented, taking integer to have 32 bits for its representation
and smallint 16 bit: numeric(12,4), decimal(10), decimal(9), integer,
smallint, decimal(6,1).

Section 4.9 151
Exercises

Exercise 4.2 Define an attribute that allows the representation of strings of
maximum length of 256 characters, on which no null values are admitted
and with an ‘unknown’ default value.

Exercise 4.3 Give the sql definitions of the tables

CROSSCOUNTRYSKIER(Name, Country, Age)
COMPETES(SkierName, ContestName, Placement)

 CONTEST(Name, Place, Country, Length)

showing particularly the foreign key constraints of the COMPETES table.

Exercise 4.4 Give the sql definitions of the tables

 AUTHOR(FirstName, Surname, DateofBirth, Nationality)
BOOK(BookTitle, AuthorFirstName, AuthorSurname, Language)

For the foreign key constraint specify a cascade policy on deletions and set
null on updates.

Exercise 4.5 Given the schema in Exercise 4.4, explain what can happen as
a result of the execution of the following update commands:

delete from Author
 where Surname = 'Russell'
update Book set FirstName = 'Umberto'
 where Surname = 'Eco'
insert into Author(FirstName, Surname)
 values('Isaac', 'Asimov')
update Author set FirstName = 'Emile'
 where Surname = 'Zola'

Exercise 4.6 Given the definitions:

create domain Domain1 integer default 10
create table Table1(Attribute1 Domain1 default 5)

indicate what will happen as a result of these commands:

alter table Table1 alter column Attribute1 drop default
alter domain Domain1 drop default
drop domain Domain1

Exercise 4.7 Given the following schema:

AIRPORT(City, Country, NumberOfRunways)
FLIGHT(FlightID, Day, DepartCity, DepartTime, ArrCity, ArrTime, PlaneType)

PLANE(PlaneType, NumberOfPassengers, Payload)

write the sql queries with which we can find out:

1. The cities with airports for which the number of runways is not known.

2. The arrival and departure countries of flight az 274.

152 Chapter 4
SQL

3. The types of aircraft used for flights leaving Boston.

4. The types of aircraft and the corresponding number of passengers for the
types of aircraft used for flights leaving Boston. If the description of the
aircraft is not available, give only the type.

5. The cities from which international flights leave.

6. The cities from which direct flights to Sydney leave, in alphabetical
order.

7. The number of international flights that leave Paris on Thursdays.

8. The number of international flights that leave Canadian cities each week
(to be done in two ways, one showing the airports without international
flights and one not.)

9. The French cities from which more than twenty direct flights to
Germany leave each week.

10.The Belgian airports that have only domestic flights. Show this query in
four ways: (i) with set-theory operators, (ii) with a nested query with the
not in operator, (iii) with a nested query with the not exists operator,
(iv) with the outer join and the count operator. Express the query also in
relational algebra.

11. The cities served by the type of aircraft able to carry the maximum
number of passengers.

12.The maximum number of passengers who could arrive in a Greek airport
from Norway on Thursday. If there are several flights, the total number
of passengers must be found.

Exercise 4.8 Given the following schema:

CD(CDNumber, Title, Year, Price)
TRACK(CDNumber, PerformanceCode, TrackNo)

RECORDING(Performance, SongTitle, Year)
COMPOSER(CompName, SongTitle)

SINGER(SingerName, PerformanceCode)

write sql queries that will find:

1. The people who have written and sung a particular song and whose
names begin with ‘D’.

2. The titles of the CDs that contain songs of which the year of recording is
not known.

3. The tracks on the CDs with the serial number 78574. Provide these in
numerical order, indicating the performers for the tracks having a singer.

Section 4.9 153
Exercises

4. The exclusive composers and singers. That is, composers who have never
recorded a song and singers who have never written a song.

5. The singers on the CD that contains the largest number of songs.

6. The CDs on which all the songs are by a single singer and on which at
least three recordings are from years preceding the release year of the
CD.

7. The singers who have never recorded a song as soloists.

8. The singers who have never made a CD in which they appear as the only
singers.

9. The singers who have always recorded songs as soloists.

Exercise 4.9 Give a sequence of update commands that alter the attribute
Salary in the EMPLOYEE table, increasing by 10% the salaries below 30
thousand and decreasing by 5% those above 30 thousand.

Exercise 4.10 Define on the EMPLOYEE table the constraint that the
‘Administration’ department has fewer than 100 employees, with an average
salary higher than 40 thousand.

Exercise 4.11 Define at schema level the constraint that the maximum
salary of the employees of departments based in London is less than the
salary of all the employees in the Directors department.

Exercise 4.12 Define a view that shows for each department the average
value of the salaries higher than the average.

Exercise 4.13 Using the definition of a view, allow the user ‘Fred’ to access
the contents of EMPLOYEE, excluding the Salary attribute.

Exercise 4.14 Describe the effect of the following instructions: which
authorizations are present after each instruction? (Each row is preceded by
the name of the person who issues the command.)

Stefano: grant select on Table1 to Paolo, Riccardo
 with grant option
Paolo: grant select on Table1 to Piero
Riccardo: grant select on Table1 to Piero with grant option
Stefano: revoke select on Table1 from Paolo cascade
Piero: grant select on Table1 to Paolo
Stefano: revoke select on Table1 from Riccardo cascade

154 Chapter 4
SQL

Part II

IIDatabase design

5
5Design techniques

and models

In the preceding chapters we analyzed database models and languages,
assuming in most cases the existence of the database with which the users
were to interact. In this chapter, we will begin to deal with the issue of
designing a database according to the users’ requirements. Designing a
database means defining its structure, characteristics and contents. As we
might imagine, this is a process in which many delicate decisions must be
taken. The use of the appropriate techniques is therefore essential for the
creation of a high-quality product.

In this introductory chapter, we will begin to look at the problem of
database design in general terms and suggest suitable methods for this job.
In particular, in Section ., we will give an overall picture of the
background of information systems development and we will present a
structured approach to the design process. In Section . we will illustrate
the Entity-Relationship model, which provides the designer with a means for
data representation, known as the conceptual schema, which is used during
the first phase of database design. The design process is divided into three
main phases: conceptual design, logical design and physical design. The first
two will be presented in detail in the next two chapters. The third will be
presented further on, in Section ., once the technological concepts to
which it refers have been introduced. This part of the book is completed with
a chapter on normalization, an important technique for the analysis of
database schemas.

158 Chapter 5
Design techniques and models

5.1 The database design process

5.1.1 The life cycle of information systems
Database design is just one of the many activities in the development of an
information system within an organization. It should therefore be presented
within the wider context of the information system life cycle.

As shown in Figure ., the life cycle of an information system generally
consists of the following activities.

• Feasibility study. This serves to define, as precisely as possible, the costs
of the various possible solutions and to establish the priorities for the
creation of the various components of the system.

• Collection and analysis of requirements. This consists of the definition
and study of the properties and functionality of the information system.
It requires interaction with the users in order to capture the application

Figure 5.1 Life cycle of an information system.

Feasibility study

Implementation

Operation

Collection & analysis
of requirements

Design

Validation and
testing

Section 5.1 159
The database design process

requirements; it produces a complete (informal) description of the data
involved and of the operations to be carried out on it. The hardware and
software requirements of the information system are also established.

• Design. This is generally divided into two tasks: database design and
operational design. In the first, the necessary structure and organization of
the data are established, and in the second, the characteristics of the
application programs are defined. The two steps are complementary and
can take place either simultaneously or consecutively. The descriptions of
data and programs produced during this activity are formal and refer to
specific models.

• Implementation. This consists of the creation of the information system
according to the structure and the characteristics defined in the design
activity. The database is constructed and populated and the programs are
coded.

• Validation and testing. This is to check the correct functioning and
quality of the information system. The tests should encompass, as far as
possible, all possible operating conditions.

• Operation. This is the activity in which the information system becomes
live, and, it is hoped, performs the tasks for which it was originally
designed. Assuming there are no major errors to be repaired or changes to
the functionality required, this activity requires only management and
maintenance operations.

It should be stressed that the process is rarely strictly sequential, given
that during one of the activities above it is often necessary to reconsider
decisions made during an earlier one, thus forming a ‘cycle’. Moreover,
sometimes another activity is added, called prototyping, which consists of the
use of specific software tools for the rapid creation of a simplified version of
the information system, with which to test its functionality. The prototype
can be shown to the users in order to verify that the high-level requirements
of the information system were correctly collected and modelled. This
activity is often the basis for the modification of the requirements and
possibly the revision of the project.

The database constitutes only one of the components of an information
system, which also includes application programs, user interfaces and other
service programs. However, the central role that the data itself plays in an
information system more than justifies an independent study of database
design. For this reason, we deal with only those aspects of information
system development that are closely of databases, focusing on data design
and on the related activities of collection and analysis of the requirements.
This process is in keeping with the data-driven approach to information
system development, in which attention is concentrated on the data and its

160 Chapter 5
Design techniques and models

properties. With this approach, the database is designed first, followed by
the applications that use it.

5.1.2 Methodologies for database design
In this part of the book, we follow a structured approach to database design
that can be regarded as a ‘design methodology’; as such, it is presented by
means of:

• a decomposition of the entire design activity in successive steps,
independent one from the other;

• a series of strategies to be followed in the various steps and some criteria
from which to choose in the case of there being options;

• some reference models to describe the inputs and outputs of the various
phases.

The properties that such a methodology must guarantee are principally:

• generality with regard to the application and the systems in play (and thus
the possibility of use that is independent of the specific application and of
the available systems);

• the product quality in terms of accuracy, completeness and efficiency;

• the ease of use both of the strategies and of the reference models.

Within the field of databases, a design methodology has been consolidated
over the years, which satisfies all the properties described. This methodology
is divided into three phases to be followed consecutively (see Figure .). It
is based on a simple but highly efficient engineering principle: that of
cleanly separating the decisions relating to ‘what’ to represent in the
database (first phase), from those relating to ‘how’ to do it (second and third
phases).

• Conceptual design. The purpose of this is to represent the informal
requirements of an application in terms of a formal and complete
description, but independent of the criteria for representation used in
database management systems. The product of this phase is called the
conceptual schema and refers to a conceptual data model. As we mentioned
in Section ., conceptual models allow the description of the
organization of data at a high level of abstraction, without taking into
account the implementation aspects. In this phase, the designer must try
to represent the information content of the database, without considering
either the means by which this information will be implemented in the
actual system, or the efficiency of the programs that make use of this
information.

Section 5.1 161
The database design process

• Logical design. This consists of the translation of the conceptual schema
defined in the preceding phase, into the data model adopted by the
database management system available. The product of this phase is called
the logical schema of the database and refers to a logical data model. As we
have noted, a logical model represents data in a way that is still
independent of the physical details, although the dbms used for the
implementation must be one that supports that data model. In this phase,
the designer must also take into account some optimization criteria, based
on the operations to be carried out on the data. Formal techniques for
verification of the quality of the logical schema are often used. In the case
of the relational data model, the most commonly used technique is that of
normalization.

Figure 5.2 The phases of database design.

Application
requirements

Database
design

Logical design

Physical design

CONCEPTUAL SCHEMA

LOGICAL SCHEMA

PHYSICAL SCHEMA

Conceptual design

Database structure and
related documentation

162 Chapter 5
Design techniques and models

• Physical design. In this phase, the logical schema is completed with the
details of the physical implementation (file organization and indexes) on a
given dbms. The product of this phase is called the physical schema, and
refers to a physical data model. This model depends on the specific
database management system chosen and takes into account the criteria
for the physical organization of the data in that system.

Let us now look at how the application requirements are used in the
various phases of design. We can distinguish between data requirements,
concerning the content of the database, and operational requirements,
concerning the use of the database by users or programs. In conceptual
design, data requirements provide most of the information, whereas
operational requirements are used only to verify that the conceptual schema
is complete. (That is, it contains the information necessary to carry out all the
operations that will be needed.) In logical design, on the other hand, the
conceptual schema, given as input, summarizes the data requirements;
whereas the operational requirements, together with the predicted
application load, are used to obtain a logical schema, which allows for the
efficient execution of such operations. Finally, in the physical design, the
logical schema and the operational requirements are used to optimize the
performance of the information system. In this phase, it is necessary to take
into account the characteristics of the particular dbms used.

The result of the design process of a database is not only the physical
schema, but also the conceptual schema and the logical schema. The
conceptual schema provides a high-level representation of the database,
which can be very useful for documentation purposes. The logical schema
provides a description of the contents of the database that, leaving aside the
implementation aspects, is useful as a reference for writing queries and
updates.

In Figure ., we show the products of the various phases in the case of the
design of a relational database based on the use of the best-known
conceptual data model, the Entity-Relationship model. An Entity-
Relationship schema can be represented by a diagram, which shows the
database at conceptual level. This representation is then translated into a
relational schema, made up of a collection of tables. Finally, the data is
described from a physical point of view (type and size of the fields), and
auxiliary structures, such as indexes, are specified for efficient access to data.

In the next chapters we will examine in detail the various activities of
database design described in Figure . and with reference to the models
used in Figure .. Before we begin, we will present, in Section ., the
Entity-Relationship model, which is recognized as the standard conceptual
data model for database design. Conceptual design, which we will discuss in
the next chapter, is based on this model. During logical design we will use
the relational data model, which, as we have seen in earlier chapters, is the
most widely used by current dbmss.

Section 5.2 163
The Entity-Relationship model

5.2 The Entity-Relationship model

The Entity-Relationship (e-r) model is a conceptual data model, and as such
provides a series of constructs capable of describing the data requirements of
an application in a way that is easy to understand and is independent of the
criteria for the management and organization of data on the system. These

Figure 5.3 The products of the various phases of the design of a relational
database with the Entity-Relationship model.

Conceptual design

Logical design

Physical design

164 Chapter 5
Design techniques and models

constructs are used to define schemas, which describe the organization and
dictate which the legal occurrences1 of data are, that is, the actual values that
the database could hold at different times.

In the table in Figure . all the constructs that the e-r model provides are
listed: note that, for every construct, there is a corresponding graphical

1. The term instance is generally used rather than occurrence, but we have
preferred to use occurrence here in order to avoid confusion with the
concept of instance (set of tuples) used in the relational model.

Figure 5.4 The constructs of the e-r model and their graphical
representation.

Construct Graphical representation

Relationship

Entity

Simple attribute

Composite attribute

Cardinality of a (m1,M1) (m2,M2)

Cardinality of an
attribute

(m,M)

Internal identifier

Generalization

External identifier

Subset

Section 5.2 165
The Entity-Relationship model

representation. As we shall see, this representation allows us to define an
schema diagrammatically.

5.2.1 The basic constructs of the model
We will begin by analyzing the main constructs of this model: the entities,
the relationships and the attributes.

Entities These represent classes of objects (facts, things, people, for
example) that have properties in common and an autonomous existence:
CITY, DEPARTMENT, EMPLOYEE, PURCHASE and SALE are examples of entities in an
application for a commercial organization. An occurrence of an entity is an
object of the class that the entity represents. The cities of Stockholm,
Helsinki, and Oslo are examples of occurrences of the entity CITY, and the
employees Petersen and Johanssen are examples of occurrences of the
EMPLOYEE entity. Note that an occurrence of an entity is not a value that
identifies an object (for example, the surname of the employee or a social
security number) but it is the object itself (the employee ‘in the flesh’). An
interesting consequence of this fact is that an occurrence of an entity has an
existence (and an identity) independent of the properties associated with it.
(In the case of an employee, the employee exists regardless of having a name,
a surname, an age, etc.) In this respect, the e-r model shows a marked
difference from the relational model in which, as we saw in Chapter , it is
not possible to represent an object without knowing its properties. (An
employee is represented by a tuple containing the name, surname, age, and
other attributes.)

In a schema, every entity has a unique name and is graphically represented
by means of a box containing the entity name. Figure . shows some
entities.

Relationships These represent logical links between two or more entities.
RESIDENCE is an example of a relationship that can exist between the entities
CITY and EMPLOYEE, whereas EXAM is an example of a relationship that can
exist between the entities STUDENT and COURSE. An occurrence of a
relationship is an n-tuple (a pair in the most frequent case of the binary

Figure 5.5 Examples of entity of the e-r model.

e-r

EMPLOYEE

DEPARTMENT

CITY

SALE

166 Chapter 5
Design techniques and models

relationship) made up of occurrences of entities, one for each of the entities
involved. The pair of objects made up of the employee named Johanssen and
the city named Stockholm, or the pair of objects made from the employee
named Petersen and the city named Oslo, are examples of occurrences in the
relationship RESIDENCE. Examples of occurrences of the relationship EXAM

between the entities STUDENT and COURSE are the pairs e1, e2, e3, e4, e5 and e6
shown in Figure ., in which the occurrences of the entities involved are
also shown.

In an e-r schema, each relationship has a unique name and is graphically
represented by means of a diamond, containing the name of the relationship,
and by lines that connect the diamond with each component entity of the
relationship. Figure . shows examples of schemas with relationships
between entities. Note that there can be different relationships between the
same entities, such as the relationships WORKPLACE and RESIDENCE between
the entities EMPLOYEE and CITY. In the choice of names of relationships it is
preferable to use nouns rather than verbs, so as not to imply or suggest a
‘direction’ in the relationship. For example, WORKPLACE is preferable to
WORKSIN.

A very important aspect of relationships is that the set of occurrences of a
relationship is, to all intents and purposes, a mathematical relation between
the occurrences of the involved entities, as shown by Figure .. A
mathematical relation on two sets of entities is a subset of their cartesian
product. This means that no n-tuples can be repeated among the occurrences
of a relationship of the e-r model. This aspect has important consequences:
for example, the relationship EXAM in Figure . does not have the capacity
to report the fact that a certain student has taken the same exam more than
once (because this would produce identical pairs). In this case, the exam
should be represented by an entity on its own, linked to the entities STUDENT

and COURSE by means of two binary relationships.

Figure 5.6 Example of occurrences of the EXAM relationship.

S1

S2

S 5

S 3

S 4

Student Course

e1

e2

e3

e4

e5

e6

C1

C2

C3

Section 5.2 167
The Entity-Relationship model

Recursive relationships are also possible, that is, relationships between an
entity and itself. For example, in Figure ., the recursive relationship
COLLEAGUE on the entity EMPLOYEE connects pairs of people who work
together, while the relationship SUCCESSION on the entity SOVEREIGN allocates
the next in line to each sovereign of a dynasty. Note that, unlike the first
relationship, the relationship SUCCESSION is not symmetrical. In this case it is
necessary to indicate the two roles that the entity involved plays in the
relationship. This can be achieved by associating identifiers with the lines
emanating from the recursive relationship (in this case, Successor and
Predecessor).

Finally, we can have relationships that involve more than two entities. An
example is shown in Figure .: an occurrence of the relationship SUPPLY

describes the fact that a given supplier supplies a certain product to a
department.

Figure 5.7 Examples of relationships in the e-r model.

Figure 5.8 Examples of recursive relationships in the e-r model.

Figure 5.9 Example of a ternary relationship in the e-r model.

STUDENT EXAM COURSE

WORKPLACE

EMPLOYEE RESIDENCE CITY

Predecessor Successor

COLLEAGUE

EMPLOYEE

SUCCESSION

SOVEREIGN

SUPPLIER

DEPARTMENT

PRODUCTSUPPLY

168 Chapter 5
Design techniques and models

A possible set of occurrences of this relationship could establish that the
firm Acme supplies printers to the sales department and calculators to the
research department, while the firm Nakio supplies photocopiers to the sales
department. A graphical representation of the possible occurrences of the
SUPPLY relationship is shown in Figure . (triples s1, s2, s3, and s4). In the
diagram, the occurrences of the entities involved are also shown.

Attributes These describe the elementary properties of entities or
relationships. For example, Surname, Salary and Age are possible attributes of
the EMPLOYEE entity, while Date and Mark are possible attributes for the
relationship EXAM between STUDENT and COURSE. An attribute associates with
each occurrence of an entity (or relationship) a value belonging to a set
known as the domain of the attribute. The domain contains the admissible
values for the attribute. For example, the attribute Surname of the entity
EMPLOYEE can have any 20-character string as a domain, while the Age
attribute can have as a domain the integers between and . Figure .
shows how the attributes are represented graphically. Domains are not
shown, as they are usually described in the associated documentation.

It can sometimes be convenient to group attributes of the same entity or
relationship that have closely connected meanings or uses. The set of
attributes obtained in this manner is called a composite attribute. We can, for
example, group together the attributes Street, HouseNumber and PostCode in
the PERSON entity to form the composite attribute Address. A graphical
representation of a composite attribute is shown in Figure .. Composite
attributes can be very useful in practice as a means for summarizing several

Figure 5.10 Example of occurrences of the SUPPLY relationship.

P1

P2

P5

S 1

S 2

S 3

P3

P4

ProductSupplier

s1

D1

D2

D3

D4

Department

s2

s3

s4

S 4

Section 5.2 169
The Entity-Relationship model

related attributes, for example, all clinical exams of a patient, omitting their
detailed description.

Schemas with basic constructs The three constructs of the e-r model
seen up to now already allow us to define schemas of a certain level of
complexity. Consider for example the e-r schema shown in Figure .. It
represents some information concerning a firm with several branches.
Beginning with the entity BRANCH and continuing in an anti-clockwise
direction, we can see that each branch of the firm is situated in a city and has
an individual address (attributes City and Address). A branch is organized
into departments (COMPOSITION relationship), and each department has a
name and a telephone number (DEPARTMENT entity and related attributes).
The employees of the company belong to these departments, starting on a
particular date (MEMBERSHIP relationship and StartDate attribute) and some
employees manage such departments (MANAGEMENT relationship). For each
employee, the surname, salary and age and an identification code are shown
(EMPLOYEE entity and related attributes). The employees work on projects
beginning on a certain date (PARTICIPATION relationship and StartDate
attribute). Each project has a name, a budget and a release date (PROJECT

entity and related attributes).

Figure 5.11 e-r schemas with relationships, entities and attributes.

Figure 5.12 An example of an entity with a composite attribute.

STUDENT EXAM COURSE

WORKPLACE

EMPLOYEE BIRTHPLACE CITY

Number

EnrolmentDate

Mark Date

Name

Year

Name

NumberOf
InhabitantsDateOfBirth

Surname

Salary

Age

Address

Surname
Age
Sex Street

HouseNumber
PostCode

PERSON

170 Chapter 5
Design techniques and models

5.2.2 Other constructs of the model
Let us now examine the remaining constructs of the e-r model: the
cardinality of relationships and attributes, the identifiers and the
generalizations. As we shall see, only the last is a ‘new’ construct. The others
constitute integrity constraints on constructs we have already seen, that is,
properties that must be satisfied by the occurrences of entities and
relationships in order to be considered ‘valid’.

Cardinality of relationships These are specified for each entity
participating in a relationship and describe the maximum and minimum
number of relationship occurrences in which an entity occurrence can
participate. They state therefore, how many times in a relationship between
entities an occurrence of one of these entities can be linked to occurrences of
the other entities involved. For example, suppose that in a relationship
ASSIGNMENT between the entities EMPLOYEE and TASK we specify for the first
entity a minimum cardinality equal to one and a maximum cardinality equal
to five. This means that we wish to indicate that an employee can participate
in a minimum of one and a maximum of five occurrences of the ASSIGNMENT

relationship. In other words, we wish to say that, in our application, at least
one task must be assigned to an employee, but not more than five may be.
Again, suppose that for the TASK entity we specify a minimum cardinality
equal to zero and a maximum cardinality equal to . In this case we only
impose the constraint that a task can appear in a maximum of occurrences
of the ASSIGNMENT relationship. Thus, a certain task could be assigned to no
employees or to a number of employees less than or equal to . In an e-r
schema, the minimum and maximum cardinalities of the participation of
entities in relationships is specified in brackets, as shown in Figure ..

In principle, it is possible to assign any non-negative integer to the
cardinality of a relationship with the only constraint that the minimum
cardinality must be less than or equal to the maximum cardinality. In most

Figure 5.13 An Entity-Relationship schema.

Code

Surname

Salary

Age

Name

Budget

ReleaseDate

PROJECT

EMPLOYEE

BRANCH

City

Phone

Name

Number

Street
PostCode

Address

StartDate

MANAGEMENT

MEMBERSHIP DEPARTMENT

COMPOSITION

StartDate
PARTICIPATION

Section 5.2 171
The Entity-Relationship model

cases, however, it is sufficient to use only three values: zero, one and the
symbol ‘N’ (which is called ‘many’ and indicates generically an integer
greater than one). In particular:

• for the minimum cardinality, zero or one; in the first case we say that the
participation in the relationship is optional, in the second we say that the
participation is mandatory;

• for the maximum cardinality, one or many (N); in the first case each
occurrence of the entity is associated at most with a single occurrence of
the relationship, while in the second case each occurrence of the entity is
associated with an arbitrary number of occurrences of the relationship2.

Let us reconsider Figure .; it shows that the STUDENT entity participates
in the EXAM relationship with a cardinality equal to (0,N). This means that
there are students who do not participate in any occurrence of the
relationship (student S4), and others who participate in more than one
occurrence of the relationship (for example, student S2 who participates in e2
and e3).

In Figure ., various cases of cardinality for relationships are shown. For
example, the cardinality of the relationship RESIDENCE tells us that each
person can be resident in one city and one only, while each city can have no
resident, or many of them.

By observing the maximum cardinalities, it is possible to classify the
binary relationships based on the type of correspondence that is established
among the occurrences of the involved entities. The relationships having a
maximum cardinality equal to one for both the entities involved, such as the
SALE relationship in Figure ., define a one-to-one correspondence between
such entities and are therefore called one-to-one relationships. Similarly,
relationships between an entity with maximum cardinality equal to one and
another with maximum cardinality equal to N, such as the relationship
RESIDENCE in Figure ., are called one-to-many relationships. Finally,
relationships having a maximum cardinality equal to N for both the entities
involved, such as the relationship RESERVATION in Figure ., are called
many-to-many relationships.

Figure 5.14 Cardinality of a relationship in the e-r model.

2. In the case of a binary relationship, the participation of the entity with
maximum cardinality set to one can be seen as a function (partial if the
minimum cardinality is equal to zero) that associates with an occurrence of the
entity a single occurrence (or none) of the other entity involved in the
relationship.

EMPLOYEE TASKASSIGNMENT
(1,5) (0,50)

172 Chapter 5
Design techniques and models

For minimum cardinality, on the other hand, note that the case of
mandatory participation for all the entities involved is rare. This is because,
when a new entity occurrence is added, very often the corresponding
occurrences of the other entities linked to it are not yet known or even do
not exist. For example, consider the first schema in Figure .. When a new
order is received, there exists as yet no invoice relating to it and therefore it
is not possible to construct an occurrence for the SALE relationship that
contains the new order.

In n-ary relationships, the entities involved almost always have a maximum
cardinality that is equal to N. An example is provided by the ternary
relationship SUPPLY in Figure .: as we can see in Figure ., there are
examples of occurrences of each of the entities involved (S1, P3 and D4) that
appear in many occurrences of this relationship. When an entity is involved
in an n-ary relationship with a maximum cardinality equal to one, it means
that one of its occurrences can be linked to a single occurrence of the
relationship, and thus to a single n-tuple of occurrences of the other entities
involved in the relationship. This means that it is possible (and at times can
seem more natural) to replace the n-ary relationship with n binary one-to-
many relationships that link such an entity with the others. We will return
to this subject in Chapter , which deals with normalization, where we give
more precise criteria for analysis.

Cardinality of attributes These can be specified for the attributes of
entities (or relationships) and describe the minimum and maximum number
of values of the attribute associated with each occurrence of an entity or a
relationship. In most cases, the cardinality of an attribute is equal to (,) and
is omitted. In these cases, the attribute represents a function that associates
a single value with each entity occurrence. The value of a certain attribute
however can be null (under the same conditions as those introduced in
Section .. for the relation model), or there can exist various values of a
certain attribute associated with an entity occurrence. These situations can
be represented by allocating to the attribute a minimum cardinality equal to

Figure 5.15 Examples of cardinality of relationships.

PERSON CITY

TOURIST

(0,1)

(1,1)

(1,N)

(1,1)

(0,N)

(0,N)

RESIDENCE

ORDER SALE

RESERVATION

INVOICE

VOYAGE

Section 5.2 173
The Entity-Relationship model

zero in the first case, and a cardinality equal to many (N) in the second.
Figure . shows an example of an entity whose attributes have cardinality.
Due to cardinalities, we know that a person has one and only one surname,
can have a driving license (but if he or she has one, it is unique) and can have
several cars, but also none.

In a similar way to the participation of entity occurrences to relationships,
we say that an attribute with a minimum cardinality equal to zero is optional
for the related entity (or relationship), while it is mandatory if the minimum
cardinality is equal to one. Also, we say that an attribute is multivalued if its
maximum cardinality is equal to N. As we discussed in Chapter , it can
happen in many situations that certain information is not available, and
therefore optional attributes are quite common. Multivalued attributes, on
the other hand, should be used with great caution, because they represent
situations that can be modelled, sometimes, with additional entities linked
by one-to-many (or many-to-many) relationships to the entity to which they
refer. To give an example, assume we have a multivalued attribute
Qualifications for the PERSON entity in Figure ., because a person can have
many qualifications. The qualification is, however, a concept shared by many
people: it can therefore be natural to model it with an entity QUALIFICATION

linked to the PERSON entity by a many-to-many relationship. We will,
however, leave this discussion until Section ., in which we will give
criteria for the choice of e-r construct most appropriate for the
representation of a ‘real-world’ concept.

Identifiers These are specified for each entity of a schema and describe the
concepts (attributes and/or entities) of the schema that allow the
unambiguous identification of the entity occurrences. In many cases, an
identifier is formed by one or more attributes of the entity itself: in this case
we talk about an internal identifier (also known as a key). For example, an
internal identifier for the entity AUTOMOBILE with attributes Model,
Registration, and Colour, will be the attribute Registration, assuming that there
cannot exist two cars with the same registration number. In the same way, an
internal identifier for the PERSON entity with attributes FirstName, Surname,
Address, and DateOfBirth can be the set of the attributes FirstName, Surname
and DateOfBirth. This assumes, of course, that in our application there are no
two people sharing the same first name, surname and date of birth. In
Figure . the symbols used to represent the internal identifiers in an e-r
schema are shown. Note the different notation used to indicate internal

Figure 5.16 Example of entity attributes with cardinality.

PERSON

CarRegistration

Surname

LicenceNumber

(0,N)

(0,1)

174 Chapter 5
Design techniques and models

identifiers made up of a single attribute and identifiers made up of several
attributes.

Sometimes, however, the attributes of an entity are not sufficient to
identify its occurrences unambiguously. Consider, for example, the entity
STUDENT in Figure .. At first glance, it can seem that the attribute
Registration can be an identifier for such an entity, but this is not the case. The
schema, in fact, describes students enrolled in various universities, and two
students enrolled in different universities could have the same registration
number. In this case, in order to identify a student unambiguously, we need
the relevant university, as well as the registration number. Thus, a correct
identifier for the STUDENT entity in this schema is made up of the attribute
Registration and of the UNIVERSITY entity. This is called an external identifier.
It should be observed that this identification is made possible by the
mandatory one-to-many relationship between the entities UNIVERSITY and
STUDENT, which associates every student with a single university. Thus, an
entity E can be identified by other entities only if each such entity is
involved in a relationship in which E participates with cardinality (,). The
diagrammatic representation of an external identifier is shown in
Figure ..

Based on what we have said on the subject of identifiers, we can make some
general observations:

• an identifier can involve one or more attributes, provided that each of
them has (,) cardinality;

• an external identifier can involve one or more entities, provided that each
of them is member of a relationship to which the entity to identify
participates with cardinality equal to (,);

• an external identifier can involve an entity that is in its turn identified
externally, as long as cycles are not generated;

Figure 5.17 Examples of internal and external identifiers.

Figure 5.18 Example of an external entity identifier.

PERSON

DateOf Birth
Surname

FirstName
Address

AUTOMOBILE

Registration

Model

Colour

STUDENT ENROLMENT
(1,1) (1,N) UNIVERSITY

Registration

Year

Surname

Name

City

Address

Section 5.2 175
The Entity-Relationship model

• each entity must have one (internal or external) identifier, but can have
more than one. Actually, if there is more than one identifier, then the
attributes and entities involved in an identification can be optional
(minimum cardinality equal to).

At this point we can re-examine the schema shown in Figure .,
introducing cardinality and identifiers. The resulting schema is shown in
Figure ..

We can observe that the name of a city identifies a branch of the company.
This means that there is only one branch in a city. A department, on the other
hand, is identified by the name and by the branch of which it is part. (We
can deduce from the cardinality that a branch has many departments but
every department belongs to a single branch.) A department has at least one
telephone number, but can have more than one. An employee (identified by
a code) can belong to a single department (but it can happen that he or she
belongs to no department, for example if new to the company) and can
manage zero or one department. Further, each department has a sole
manager, and one or more employees. Many employees (but at least one)
work on each project (identified unambiguously by their names) and each
employee works in general on many projects (but it is also possible that they
work on no projects). Finally, the release date of a project need not be fixed.

Generalizations These represent logical links between an entity E,
known as parent entity, and one or more entities E1 ,…, En, called child
entities, of which E is more general, in the sense that it comprises them as a
particular case. In this situation we say that E is a generalization of E1 ,…, En
and that the entities E1 ,…, En are specializations of the E entity. For
example, PERSON is a generalization of MAN and WOMAN, while PROFESSIONAL

Figure 5.19 The schema shown in Figure . completed by identifiers and
cardinality.

Code
Surname

Salary

Age

Name

Budget

ReleaseDate

EMPLOYEE

BRANCH

City

Phone

Name

Number
Street

PostCode
Address

StartDate

MANAGEMENT

MEMBERSHIP DEPARTMENT

COMPOSITION

StartDate
PARTICIPATION

(0,N)

(0,1)

(0,1) (1,1)

(1,N)

(1,N)

(0,1)

(1,N)

(1,N)

(1,1)

PROJECT

176 Chapter 5
Design techniques and models

is a generalization of ENGINEER, DOCTOR and LAWYER. Conversely, MAN and
WOMAN are specializations of PERSON.

Among the entities involved in a generalization the following properties
are valid.

• Every occurrence of a child entity is also an occurrence of the parent
entity. For example, an occurrence of LAWYER is also an occurrence of
PROFESSIONAL.

• Every property of the parent entity (attributes, identifiers, relationships
and other generalizations) is also a property of a child entity. For
example, if the PERSON entity has attributes Surname and Age, then the
entities MAN and WOMAN also possess these attributes. Furthermore, the
identifier of PERSON is also a valid identifier for the entities MAN and
WOMAN. This property of generalizations is known as inheritance.

Generalizations are represented graphically by means of arrows that join
the child entities with the parent entity as shown in the examples in
Figure .. Observe that, for the child entities, the inherited properties are
not explicitly represented.

Generalizations can be classified on the basis of two orthogonal properties:

• a generalization is total if every occurrence of the parent entity is also an
occurrence of one of the child entities, otherwise it is partial;

• a generalization is exclusive if every occurrence of the parent entity is at
most an occurrence of one of the child entities, otherwise it is overlapping.

The generalization, PERSON, of MAN and WOMAN in Figure . is, for
example, total (the men and the women constitute ‘all’ the people) and
exclusive (a person is either a man or a woman). The generalization, VEHICLE,
of AUTOMOBILE and BICYCLE, is, on the other hand, partial and exclusive,
because there are other types of vehicles (for example, motor bikes) that are
neither cars nor bicycles. Finally, the generalization PERSON of STUDENT and
EMPLOYEE is partial and overlapping, because there are students who are also
employed.

Figure 5.20 Examples of generalizations among entities.

PROFESSIONALPERSON Address

TaxCode

Surname

Age

Specialization

MAN WOMAN LAWYER ENGINEER DOCTOR

TaxCode

MaternityStatus

Section 5.2 177
The Entity-Relationship model

This last example suggests that in reality, overlapping generalizations can
be easily transformed into exclusive generalizations by adding one or more
child entities, to represent the concepts that constitute the ‘intersections’ of
the entities that overlap. In the case of students and employees, it is sufficient
to add the entity EMPLOYEDSTUDENT in order to obtain an exclusive
generalization. Thus, we assume from here on, without significant loss of
generality, that generalizations are always exclusive.

Total generalizations are usually represented by drawing the arrow with a
solid line (see the example in Figure .).

In general, an entity can be involved in many different generalizations.
There can also be generalizations on more than one level: this is known as a
generalization hierarchy. Finally, a generalization can have a single child
entity: this is known as a subset. In Figure . a generalization hierarchy is
shown. The relation that exists between the entities PROJECT MANAGER and
ANALYST is an example of a subset.

5.2.3 Final overview of the E-R model
We have seen how the Entity-Relationship model provides the designers
with some constructs for describing the data involved in an application,
associated with a graphical representation that is easy to understand.

All the constructs of the e-r model are illustrated in the schema in
Figure ., which at the same time provides an example of an e-r schema
and a simplified description of the e-r model itself. Let us now analyze this
schema and consider this exploration as an exercise of ‘reading an e-r
schema’; this is an activity that we need to practice, as it is one that occurs
frequently in the analysis and maintenance of existing information systems.

Figure 5.21 Hierarchy of generalizations between entities.

TaxCode

Surname

Age

PEOPLE

WOMAN MAN

Maternity
Status

Salary

EMPLOYEE STUDENT

Number

ANALYSTPROGRAMMERMANAGER

Language
PROJECT

MANAGER

178 Chapter 5
Design techniques and models

We can see that the model is made up of a series of constructs of which two
are considered ‘basic’: the entity and the relationship. An entity can
participate in zero or more relationships, whereas a relationship involves two
or more entities. The participation of an entity in a relationship has a
minimum and a maximum cardinality. The other constructs of the model are
attributes and generalizations. An attribute has a name and a minimum and
maximum cardinality, and belongs to a basic concept, that is, to an entity or
a relationship. Due to the generalization, the relationship MEMBERSHIP is
inherited by the children of the entity BASICCONSTRUCT. Composite attributes
are a specialization of attributes and are made up of one or more attributes.
According to the cardinalities, a generalization has exactly one parent entity
and one (in the case of subsets) or more child entities. An entity can be parent
or child of many generalizations (and also of none). Finally, note that a basic
construct is identified unambiguously by its name (in fact, it is essential in a
schema to avoid using the same name for different entities or relationships).
Two attributes can have the same name if they belong to different
relationships or entities as described by the external identification. (See for
example the attribute Name in Figure ..) Generalizations do not usually
have a name and to identify them we assume that they are numbered.

There exist, finally, other constraints on the use of constructs that cannot
be expressed in the schema. For example, a hierarchy of generalizations
cannot contain cycles. Also, a minimum cardinality must be less than or
equal to the related maximum cardinality. The problem of documentation of
constraints that can not be expressed in the e-r model will be discussed more
fully in the next section.

We will conclude the section with a consideration of a general nature. e-r
schemas provide an abstract representation of the data involved in an
application, and therefore they can be used for purposes other than database

Figure 5.22 Description of the e-r model using the e-r model.

BASIC
CONSTRUCT

GENERALIZATION

Name

PARENT

CHILD
ENTITY

CONSTRUCT

ATTRIBUTE

COMPOSITE
ATTRIBUTE

COMPOSITION

(0,N)

(1,N)

(1,1)

(0,N)

(0,N)

PARTICIPATION

(1,1)

(0,1)

(1,N)

Name

Minimum
Cardinality

Maximum
Cardinality

(0,N) (2,N)

Minimum
Cardinality

Maximum
Cardinality

MEMBERSHIP

RELATIONSHIP

Number

Section 5.3 179
Documentation of E-R schemas

design. There are various examples of the possible use of conceptual schemas
apart from design.

• e-r schemas can be used for documentation purposes, as non-specialists
easily understand them.

• They can be used to describe the data of an information system already in
existence (for example, to integrate it with other databases). In the case of
a system made up of heterogeneous subsystems, there is the advantage
that the e-r schema can represent the various components with an
abstract language, which is therefore unifying.

• In the case of modification of the requirements of an application, e-r
schemas can be used to understand which portion of the system must be
changed and what modifications are to be carried out.

5.3 Documentation of E-R schemas
We have seen how the Entity-Relationship model provides highly expressive
modelling tools that allow the easy and efficient description of very complex
situations. An e-r schema, however, is rarely sufficient by itself to represent
all the aspects of an application in detail. Firstly, in an e-r schema, only the
names of the various concepts appear, and this can be insufficient to explain
their meaning. If we look again at the example given in Figure ., it might
not be clear if the PROJECT entity refers to projects internal to the company or
to external projects, in which the company is taking part.

Moreover, when a schema is particularly complex, it might not always be
possible to represent all the properties of the various concepts, in a way that
is comprehensible. With reference to the example in Figure ., it would,
for instance, be difficult to represent other attributes for EMPLOYEE, without
reducing the readability of the schema. In general, representing large
schemas graphically requires a certain ability in devising a readable layout;
this is further discussed in Section ..

Other limitations concern the expressive power of the e-r model. It is
actually impossible in certain cases to represent some properties of data by
means of the constructs that the e-r model provides. Look again at the
example in Figure . and suppose that in our company an employee can be
manager only of the department to which he belongs. This property cannot
be directly expressed in the schema because it refers to two independent
concepts (management and membership) described by two relationships, and
there are no constructs in the model that allow the correlation of two
relationships. Another example of properties that cannot be directly
expressed by the constructs of the e-r model is the fact that an employee
cannot have a salary higher than the manager of his or her department. Both
the above properties correspond to integrity constraints on the data. In fact,

180 Chapter 5
Design techniques and models

while the e-r model is sufficiently expressive to represent data, it does not
provide suitable means for the representation of complex constraints on data.

Thus, it is indispensable to provide every e-r schema with support
documentation, which can facilitate the interpretation of the schema itself
and describe properties of the data that cannot be expressed directly by the
constructs of the model. In the next sections we will therefore describe
structures and techniques for the documentation of an e-r schema. The
concepts introduced should not be taken as new representation constructs,
but simply as tools suitable for completion and enrichment of the description
of the data in an application created using a conceptual model. They should
therefore be considered as a support for the conceptual analysis and cannot
be a substitute for it.

5.3.1 Business rules
Business rules are one of the tools used by information systems analysts to
describe the properties of an application that cannot be directly expressed
with a conceptual model. As suggested by their name, they allow the
specification of ‘rules’ of the particular application domain that we are
considering. Returning to the example given above, the fact that an employee
cannot earn more than his or her own manager is actually a rule of the
business.

The term business rule is often used with a broader meaning by analysts,
to indicate any information that defines or constrains some aspect of an
application. In particular a business rule can be:

. the description of a concept relevant to the application, or rather the
precise definition of an entity, an attribute or a relationship of the e-r
model;

. an integrity constraint on the data of the application, whether it be the
documentation of a constraint expressed by means of some construct of
the e-r model (for example, the cardinality of a relationship) or the
description of a constraint that is not directly expressible using the
constructs of the model;

. a derivation, or rather a concept that can be obtained, by means of an
inference or an arithmetical calculation, by other concepts of the schema
(for example an attribute Cost whose value can be obtained from the sum
of the attributes Net and Taxes).

For rules of the first type, it is clearly impossible to define a precise syntax,
and in general, we have to use sentences in natural language. As we will
describe in the following section, these rules are typically represented in the
form of glossaries, grouping the descriptions as appropriate (for example, by
entity, or by relationship).

Section 5.3 181
Documentation of E-R schemas

The rules that describe integrity constraints and derivations, on the other
hand, lend themselves more to formal definitions and rather complex syntax
has been proposed for expressing them. Given, however, that there are no
standards and that every formalization runs the risk of not being sufficiently
expressive, we will continue to use definitions in natural language, taking
care, however, to structure such definitions in the appropriate manner.

In particular, integrity constraints can always be expressed in the form of
assertions, that is, statements that must always be satisfied in our database.
For reasons of clarity and ease of creation, such statements must be ‘atomic’.
That is, they cannot be decomposed into phrases that constitute assertions
in themselves. Furthermore, since they are used to document an e-r schema,
assertions should be stated in a declarative manner, which should not
suggest ways to satisfy them, because such suggestion would give insights
on the implementation, but this is not relevant to conceptual representation.
For this reason, a notation of the type if <condition> then <action> is not
suitable to express business rules, when they document an e-r schema. An
appropriate structure to state business rules in the form of assertions could
be the following:

<concept> must/must not <expression on concepts>

where the concepts cited can correspond either to concepts of the e-r schema
to which it refers, or to concepts that can be derived from them. For example,
returning to the example given for the schema in Figure ., business rules
that express integrity constraints are:

(br) the manager of a department must belong to that department;

(br2) an employee must not have a salary greater than that of the manager
of the department to which he or she belongs;

(br3) a department of the Rome branch must be managed by an employee
with more than years’ employment with the company.

Note how concepts such as ‘department manager’ and ‘employee with
more than years’ employment with the company’ are not represented
directly on the schema, but can nonetheless be retrieved from it.

Let us now consider the business rules that describe derivations. These
rules can be expressed by specifying the operations (arithmetical or
otherwise) that allow us to obtain the derived concept. A possible structure
is thus:

<concept> is obtained by <operations on concepts>

For example, if, in our example, the entity DEPARTMENT has an attribute
NumberOfEmployees, there could be a rule of the type:

(br4) the number of employees in a department is obtained by counting the
employees who belong to it

182 Chapter 5
Design techniques and models

 We have said that business rules constitute a form of documentation of a
conceptual schema. When the conceptual schema is translated into a
database (logical and physical phases of design), non-descriptive business
rules (that is, those that express constraints or derivations) should be
implemented in some way to guarantee the consistency of the data with
respect to the properties that they represent. It is possible to follow different
approaches:

• using sql to define the logical schema of a database, by means of
predefined and generic constraints or sql-2 assertions (as described in
Chapter);

• using triggers or active rules (as we will explain in Chapter);

• with appropriate sql manipulation statements invoked from within a
program.

5.3.2 Documentation techniques
We have said that an e-r schema should be supplied with support
documentation, to facilitate the interpretation of the schema itself and to
describe properties of the data that cannot be expressed directly by the
constructs of the model. We have seen furthermore, that this documentation
can be expressed in terms of business rules. Let us now see in which form it
is possible to produce this documentation, referring to an example.

The documentation of the various concepts represented in a schema, that
is, the business rules of the descriptive type, can be easily organized as a data
dictionary. This is made up of two tables: the first describes the entities of the
schema with their names, an informal definition in natural language, the list
of all the attributes (with possible descriptions associated with them) and the
possible identifiers. The other table describes the relationships with their
names, an informal description, the list of attributes (with possible
descriptions) and the list of the entities involved, together with their
participation cardinalities. An example of a data dictionary for the schema in
Figure . is shown in Figure .. Note how the dictionary can also be
used to document some constraints on the data and thus other forms of
business rules. As we have already indicated, the use of the data dictionary
is particularly important when the schema is complex and it is laborious to
specify all the attributes of entity and relationship directly on the schema.

As regards the other business rules, we can resort to another table, which
lists the various rules, organized by type. Such rules can be expressed in the
forms suggested in the section above, if possible referring explicitly to the
concepts of the schema. Remember that it is important to represent all the
rules that describe constraints not expressed in the schema, but it can
sometimes be useful also to represent rules that document constraints
already expressed in the schema. An example of documentation of this type
for the schema in Figure . is shown in Figure ..

Section 5.4 183
Bibliography

5.4 Bibliography

There are many texts on information system development and, more in
general, on software engineering, among which we mention Davis [],
Fairly [], Senn [] and Pressman []. The organization of the database
design process in four phases (conceptual, logical, and physical design,
preceded by requirement analysis) was proposed by Lum et al. [] as the

Entity Description Attributes Identifier

EMPLOYEE Employee working in the
company.

Code, Surname, Salary,
Age

Code

PROJECT Company project on which
employees are working.

Name, Budget,
ReleaseDate

Name

DEPARTMENT Department of a company
branch.

Phone, Name Name,
BRANCH

BRANCH Company branch in a
particular city.

City, Address (Number,
Street and PostCode)

City

Relationship Description Entities involved Attributes

MANAGEMENT Associates a manager with a
department.

Employee (0,1)
Department (1,1)

MEMBERSHIP Associates an employee with
a department.

Employee (0,1)
Department (1,N)

StartDate

PARTICIPATION Associates employees with
projects.

Employee (0,N)
Project (1,N)

StartDate

COMPOSITION Associates a department
with a branch.

Department (1,1)
Branch (1,N)

Figure 5.23 The data dictionary for the schema in Figure ..

Constraints

(br) The manager of a department must belong to that department.

(br2) An employee must not have a salary greater than that of the
manager of the department to which he or she belongs.

(br3) A department of the Rome branch must be managed by an
employee with more than years’ employment with the company.

(br4) An employee who does not belong to a particular department must
not participate in any project.

Derivations

(br5) The budget for a project is obtained by multiplying the sum of the
salaries of the employees who are working on it by .

Figure 5.24 Business rules of the schema in Figure ..

184 Chapter 5
Design techniques and models

result of a workshop held in . A detailed treatment of conceptual and
logical design is offered by Batini, Ceri and Navathe []. Additional readings
on database design include Mannila and Raiha [], Teorey and Fry [],
Teorey [], and Wiederhold []. Most of these books also include a detailed
description of a version of the Entity-Relationship model. The e-r model is
usually attributed to Chen [], who presented a simplified version compared
to that presented in this chapter, systematizing concepts already discussed
in the literature. Many extensions were later proposed, the most important
of which are included in our treatment. The generalization construct was
introduced by Smith and Smith []. Tsichritzis and Lochovski [] and Hull
and King [] present and compare several data modelling features.
Business rules have been discussed in depth by Fleming and von Halle [].

5.5 Exercises
Exercise 5.1 Consider the e-r schema in Figure .: the schema represents
various properties of men and women.

. Correct the schema, taking into account the fundamental properties of
the generalizations.

. The schema represents only the female workers; modify the schema to
represent all the workers, men and women.

. Among the properties of cities, the State attribute can be seen also as an
subproperty of the attribute County. Restructure the schema in this
sense.

Figure 5.25 E-R schema for Exercise ..

Age

Name

County

State

CITY

Age
WOMANMAN

BIRTHPLACE

WORKER

Age
Height

MILITARY
SERVICE

BIRTHPLACE

RESIDENCE

SERVICE

PERSON
Surname

Firstname

Section 5.5 185
Exercises

Exercise 5.2 Add the minimum and maximum cardinalities and the
identifiers to the schema produced in Exercise .. State whether there are
integrity constraints on the schema that cannot be expressed by the Entity-
Relationship model.

Exercise 5.3 Represent the following, using the constructs of the Entity-
Relationship model.

. In a zoological garden there are animals belonging to a species and
having a certain age; each species is situated in a sector (having a name)
of the zoo.

. An automobile rental firm has a vehicle pool, in which each automobile
has a registration number and a colour and belongs to one category; for
each category, there is a rental tariff.

. A company produces cds with a code and a title; each cd has been
recorded by one or more singers, each of whom has a name and an
address and some of whom have a stage name.

Exercise 5.4 Complete the schemas produced in the exercise above with
further information based on reasonable assumptions about each one.

Exercise 5.5 Show the following concepts, using, where appropriate, the
generalization construct of the Entity-Relationship model. Indicate, in each
case, the attributes of the various entities and the type of generalization,
resolving the cases of overlapping.

. The employees of a company are divided into managers, programmers,
analysts, project leaders and secretaries. There are analysts who are also
programmers. The project leader must be a manager. Each employee has a
code, a name and a surname. Each category of employee has its own
basic salary. Each employee, apart from the managers, has fixed working
hours.

. A French airline offers flights, each of which has a number that identifies
the flight (for example Paris–Boston), a date (March), a departure
time (:) and an arrival time (:), a departure airport and a
destination airport. There are national and international flights. The
international flights can have one or more stopovers. For completed
flights, information to be recorded is the actual time of departure and
arrival (for example with reference to the flight given above, : and
:). For future flights, the number of seats available must be known.

. An automobile company produces cars, motor cycles, lorries and
tractors. The vehicles are identified by a chassis number and have a name
(for example Punto), a cylinder capacity and a colour. The cars are sub-

186 Chapter 5
Design techniques and models

divided according to size: compact (up to .m in length) and family
(over .m); and according to engine capacity: small (up to cc),
medium (from to cc) and large (over cc). The motorcycles
are divided into mopeds (cylinder capacity below cc) and roadsters
(above cc). The lorries have a weight and can be articulated.

Exercise 5.6 Consider the Entity-Relationship schema in Figure ..
Describe in words the information it represents.

Exercise 5.7 Translate into business rules the following properties of the
data in the schema in Figure ..

. There can be no more than five players in a team who play in the same
position.

. A team earns points if it wins, if it draws, zero if it loses.

Figure 5.26 Schema e-r for Exercise ..

Name

Surname
City

Region

REFEREE

REFEREEING

(1,N)

(1,1)

MATCH

Result

HOME

(1,1)

NEUTRAL
GROUND POSTPONED

DateCityReason

(1,N)

Number

PLACINGDAY

Number
Series

Date

MonthDay Year

(1,N) (1,1)

POSITION

VISITING

TEAM

(1,1)

(1,N)

CONTRACT

(1,N)

PLAYER

(1,N)

(1,N)

Points
Trainer

City
Name

(1,1)
SSN

FirstName
Surname
Position

BirthPlace
DateOfBirth

Day

Month

Year

PARTICIPATION
(1,N)(0,N)

Position

Section 5.5 187
Exercises

. If a team plays a match at home, then it is the visiting team in the next
match.

Produce the complete documentation for such a schema.

Exercise 5.8 Modify the Entity-Relationship schema in Figure . so as to
describe also the past contracts between players and teams with the date of
beginning and end of the contracts and the main position played by each
player in each team. It is possible that a player can have different contracts
with the same team in different periods. For current contracts we wish to
know the date of commencement.

Exercise 5.9 In each of the following cases, reference is made to two or more
entities defined in an Entity-Relationship schema and to a concept that
involves them. Specify the schemas, defining the constructs (one or more
relationships and, if necessary, further entities with the relative identifier)
necessary to represent the concept, maintaining the entities indicated.

. Entities: sport, country and surface. Concept: the fact that in one
country a sport is practised on a certain surface (for example, tennis is
played on grass in England and in Australia, on red shale in Italy and
France, on Astroturf in the usa, Italy and France; soccer on grass in
Italy, on grass and Astroturf in the usa, on grass in England).

. Entities: scientist and department. Concept: the fact that the scientist has
held seminars in the department. For every seminar, it is necessary to
show the date, time and title, with the constraint that a scientist cannot
hold more than one seminar in one day.

. Entities: professional and company. Concept: the fact that the
professional has been a consultant for the company. It is necessary to
show the number of consulting sessions held by the professional for each
company, with the total cost.

Exercise 5.10 Consider a ternary relationship involving the entities
EMPLOYEE, PROJECT and CONSULTANT. Show in which of the following cases it
is appropriate to substitute two or three binary relationships for such
relationship. In the cases where it is possible, show how it is done.

. Each employee is involved in zero or more projects and interacts with
zero or more consultants. Each consultant is involved in zero or more
projects and interacts with zero or more employees. Each project
involves one or more employees and one or more consultants (who need
not interact among themselves). An employee and a consultant
collaborate in the field of a project if and only if they collaborate
between themselves and are both involved in the project.

188 Chapter 5
Design techniques and models

. Each employee is involved in zero or more projects, in each of which
they interact with one or more consultants (who can be different from
project to project and who can in general be a subset of the consultants
involved in the project). Each consultant is involved in zero or more
projects in each of which he or she interacts with one or more employees
(who can be different from project to project and who can in general be a
subset of the employees involved in the projects). Each project involves
one or more employee-consultant pairs.

. Each employee is involved in zero or more projects. Each consultant is
involved in zero or more projects. Each project involves one or more
employees and one or more consultants. An employee and a consultant
interact if and only if there is at least one project in which they are both
involved.

6
6Conceptual design

The conceptual design of a database consists of the construction of an Entity-
Relationship schema, providing an optimal description of the user
requirements. Even for simple applications, the schema can contain many
concepts, correlated in a quite complex way. It follows that the construction
of the final schema is, often, an incremental process. The conceptual schema
is refined and enriched during a series of transformations and possibly
corrections. In this chapter, we describe the strategies that can be followed
during the development of a conceptual schema.

Before we begin to discuss these strategies, it is worth devoting some
attention to the activity that precedes the actual design process itself: the
collection and analysis of the requirements. This phase is not entirely
separate from design, but often tends to overlap with it. The construction of
an e-r schema begins well before the collection of requirements is completed
and it can influence further collection activity.

The discussion of requirements collection and analysis is followed by a
presentation of some general criteria for transforming informal requirements
into Entity-Relationship constructs. We then move on to illustrate the most
important design strategies and to analyze the qualities that a well-designed
conceptual schema must possess. We close the chapter with a comprehensive
method for conceptual design. To give a better explanation of the various
aspects, we use a practical example, which refers to the design of an
application for a training company.

6.1 Requirements collection and analysis
It must first be stated that the activities of requirements collection and
analysis are difficult to standardize, because they depend greatly on the
application. We will, however, discuss some practical rules that it is helpful
to follow in this phase of the development of a database.

190 Chapter 6
Conceptual design

By requirements collection we mean the complete identification of the
problems that the application must solve, and the features that should
characterize such an application. By this, we mean both the static aspects
(the data) and the dynamic aspects (the operations on the data). The
requirements are first gathered into specifications that are generally
expressed in natural language; therefore, they are often ambiguous and
disorganized. The requirements analysis consists of the clarification and
organization of the requirements specification. Obviously, we are dealing
with activities that are closely related to one another: the task of analysis can
begin as soon as the first requirements are known and can then proceed in
step with the task of collection. Moreover, the need for further collection of
requirements can be identified as the result of the analysis of previously
obtained requirements. The requirements generally come from different
sources, as follows.

• The users of the application. In this case, the information is acquired
through interviews or by means of documents specifically written and
exchanged for this purpose.

• All the existing documentation that has some connection with the
problem: forms, internal rules, business procedures, laws and regulations,
etc. In this case, gathering and selection are required. The user will
usually help here, but the responsibility rests with the designer.

• Possible earlier applications that are to be replaced or that must interact in
some way with the new application. The knowledge of these software
packages (record formats, screen forms, algorithms, associated
documentation) can provide us with important information that also
relates to existing problems that must be resolved.

It should be stressed that, in the requirement acquisition process, an
important role is played by the interactions with the users of the information
system. During this interaction, the various users can provide different
information, often complementary, but also at times contradictory. In
general, the higher-level users have a view that is wider but less detailed.
They can, however, direct the designer to the experts on individual
problems.

As a rule, during the course of the interviews, it is a good idea to make
continual checks on the consistency of the information being gathered. This
can be done by means of practical examples or by asking for precise
definitions and classifications. It is furthermore very important to try to
identify which aspects are essential and which marginal, and to work
towards further refinements.

As we mentioned earlier, the requirements specifications are often written
in natural language, at least in the first draft. Natural language is, by nature,
subject to ambiguity and misinterpretation. Therefore, we need to carry out
an in-depth analysis of the specification document in order to remove any

Section 6.1 191
Requirements collection and analysis

inaccuracies and ambiguous terms. To develop some practical rules for
carrying out this task, consider this example. Imagine that we need to design
a database for a training company and that we have gathered the data
specifications shown in Figure .. The data was gathered through
interviews with the company personnel. Note that we have also acquired
information on the expected data load.

It is evident that such material contains a number of ambiguities and
inaccuracies. For example, we have interchangeable use of participants or
trainees, tutors or instructors, courses or seminars. We will now establish some
rules for writing requirements specifications more precisely and without
ambiguities.

• Choose the appropriate level of abstraction. It is wise to avoid terms that
are too general or too specific since they can make a concept less clear. For
example, in our case, the terms period (on line), title (line) and
assessment (line) could be specified more precisely (for example, as start
date and end date, professional title and marks out of ten).

Training Company

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

We wish to create a database for a company that runs training courses.
For this, we must store data about the trainees and the instructors. For
each course participant (about 5000), identified by a code, we want to
store the social security number, surname, age, sex, place of birth,
employer’s name, address and telephone number, previous employers
(and period employed), the courses attended (there are about 200
courses) and the final assessment of each course. We need also to
represent the seminars that each participant is attending at present
and, for each day, the places and times the classes are held. Each course
has a code and a title and any course can be given any number of times.
Each time a particular course is given, we will call it an ‘edition’ of the
course. For each edition, we represent the start date, the end date, and
the number of participants. If a trainee is a self-employed professional,
we need to know his or her area of expertise, and, if appropriate, his or
her title. For somebody who works for a company, we store the level and
position held. For each instructor (about 300), we will show the
surname, age, place of birth, the edition of the course taught, those
taught in the past and the courses that the tutor is qualified to teach.
All the instructors’ telephone numbers are also stored. An instructor
can be permanently employed by the training company or can be
freelance.

Figure 6.1 Example of requirements expressed in natural language.

192 Chapter 6
Conceptual design

• Standardize sentence structure. In specifying requirements, it is
preferable always to use the same style. For example, ‘for <concept> we
hold <properties>’.

• Avoid complex phrases. Definitions should be kept clear and simple. For
example, employee is preferable to somebody who works for a company
(line).

• Identify synonyms and homonyms, and standardize terms. Synonyms are
words that have the same meaning, for example, tutor (line) and
instructor (line), course participant (line) and trainee (line);
homonyms are words with more than one meaning, for example, place,
meaning both town of birth (line) and classroom where the classes are
held (line). These situations can cause ambiguities and must be clarified:
for synonyms, single terms must be chosen, and for homonyms, different
terms must be used.

• Make cross-references explicit. The absence of a reference between terms
can make certain concepts ambiguous. For example, in line , it is not
clear whether the terms address and telephone number are referring to the
trainees or to their employers. Furthermore, in the phrase somebody who
works for … (line), we must clarify to whom exactly we are referring
(trainees, instructors?) in order to avoid confusion.

• Construct a glossary of terms. It is very useful, both for understanding
and for accuracy of terms used, to build a glossary. For each term, the
glossary contains a brief description, possible synonyms and reference to
other terms contained in the glossary with which there is a logical link. A
brief glossary for our application is shown in Figure ..

Once the various ambiguities and inaccuracies have been identified, they
can be eliminated by substituting more appropriate terms for the incorrect
ones. Where doubt remains, the user who provided the information must be
re-interviewed, or the particular document must be consulted again.

Term Description Synonym Links

Trainee Participant in a course. Can be an
employee or self-employed.

Participant Course,
Company

Instructor Course tutor. Can be freelance. Tutor Course
Course Course offered. Can have various

editions.
Seminar Instructor,

Trainee
Company Company by which participant is

employed or has been employed.
Trainee

Figure 6.2 An example of a glossary of terms.

Section 6.1 193
Requirements collection and analysis

Let us look at the main modifications to be made to our text. First, all the
instances of course participant must be replaced by trainee. Then, as we have
said, place of birth (lines &) should be substituted by town of birth.
Moreover, we have to make explicit that address and telephone number (line
) refer to the employers of the trainees. The terms period (line) and
assessment (line), must be replaced by start date and end date and marks out
of ten, respectively. It must also be clear that a trainee does not attend
seminars (line) but rather editions of courses. Also, the term place (line)
must be replaced by classroom, title (line) by professional title, and tutor
(line) by instructor. Finally, title of course (line) is a homonym of
professional title of a trainee. In this case, we could replace title of course by
name of course.

At this point, we can rewrite our specifications using the suggested
modifications. It is very useful, in this phase, to break down the text into
groups of homogenous phrases, referring to the same concept. In this way,
we can begin to impose a structure on the data requirements as shown in
Figure ..

Of course, as well as the specification of the data itself, we also need to
specify the operations to be executed on this data. For this, we must use the
same terminology as that chosen for the data and we must find out how often
the various operations will need to be carried out. As we shall see, this
knowledge will be important in the logical design phase. For our application,
the operations on the data could be as follows:

• operation : insert a new trainee including all his or her data (to be
carried out approximately times a day);

• operation : assign a trainee to an edition of a course (times a day);

• operation : insert a new instructor, including all his or her data and the
courses he or she is qualified to teach (twice a day);

• operation : assign a qualified instructor to an edition of a course (
times a day);

• operation : display all the information on the past editions of a course
with title, class timetables and number of trainees (times a day);

• operation : display all the courses offered, with information on the
instructors who are qualified to teach them (times a day);

• operation : for each instructor, find the trainees for all the courses he or
she is teaching or has taught (times a week);

• operation : carry out a statistical analysis of all the trainees with all the
information about them, about the editions of courses they have attended
and the marks obtained (times a month).

194 Chapter 6
Conceptual design

Once the structuring of the requirements is complete, we are ready to
begin the first design phase. This step consists of the construction of a
conceptual schema that describes all the specifications of the collected data.

6.2 General criteria for data representation
As an introduction to design techniques, we will establish some general
criteria for the translation of informal specifications into Entity-Relationship
constructs. It must be stressed that the same information can be modelled in

Phrases of a general nature

We wish to create a database for a company that runs training courses. We
wish to hold the data for the trainees and the instructors.

Phrases relating to the trainees

For each trainee (about), identified by a code, we will hold the social
security number, surname, age, sex, town of birth, current employer,
previous employers (along with the start date and the end date of the
period employed), the editions of the courses the trainee is attending at
present and those he or she has attended in the past, with the final marks
out of ten.

Phrases relating to the employers of the trainees

For each employer of a trainee we will hold the name, address and
telephone number.

Phrases relating to the courses

For each course (about), we will hold the name and code. Each time a
particular course is given, we will call it an ‘edition’ of the course. For each
edition, we will hold the start date, the end date, and the number of
participants. For the editions currently in progress, we will hold the dates,
the classrooms and the times in which the classes are held.

Phrases relating to specific types of trainee

For a trainee who is a self-employed professional, we will hold the area of
expertise and, if appropriate, the professional title. For a trainee who is an
employee, we will hold the level and position held.

Phrases relating to the instructors

For each instructor (about), we will hold surname, age, town of birth,
all telephone numbers, the edition of courses taught, those taught in the
past and the courses the instructor is qualified to teach. The instructors can
be permanently employed by the training company or can be freelance.

Figure 6.3 Example of structuring of requirements.

Section 6.2 195
General criteria for data representation

many different ways. This is because two designers can have different
perceptions of the same situation. We can however establish some general
guidelines for the e-r model. It is recommended, overall, that the ‘conceptual
rules’ of the model should be followed.

• If a concept has significant properties and/or describes classes of objects with
an autonomous existence, it is appropriate to represent it by an entity. For
example, referring to the specifications for the training company above, it
makes sense to represent the concept of instructor with an entity, because
it possesses various properties (surname, age, town of birth) and its
existence is independent of the other concepts.

• If a concept has a simple structure, and has no relevant properties associated
with it, it is convenient to represent it by an attribute of another concept to
which it refers. For example, the concept of age can certainly be
represented as an attribute of the trainee. In general, the concept of town
could have significant properties. In our application, however, it is better
to model it as an attribute, because, apart from the name, none of its other
properties is of interest to us.

• If the requirements contain a concept that provides a logical link between
two (or more) entities, this concept can be represented by a relationship. For
example, in our application, the concept of attending a course can
certainly be represented by a relationship between the entities that
represent the trainees and the editions of courses. It must be stressed that
this is valid only in the situation in which the concept does not, itself,
have the characteristics of the entity. A typical example, which we have
already mentioned in Section .., is the concept of exam relating to
students and courses. This concept can be represented by a relationship
between student and course if the aspect of interest is, say, only the
individual student marks. Suppose however, that we are also interested in
the date, the location and the examining board, and, above all, that we
wish to represent the fact that a student can take an exam more than once
for the same course. In this case the exam must be represented by an
entity linked by one-to-many relationships to the entities representing
students and courses.

• If one or more concepts are particular cases of another concept, it is
convenient to represent them by means of a generalization. In our
application, it is obvious that the concepts of professional and employee
constitute particular examples of the concept of trainee and it is therefore
a good idea to define a generalization between the entities that represent
these concepts.

These criteria are valid in general, and are thus independent of the chosen
design strategy. In fact, for every strategy, it is eventually necessary to
translate a specification into an e-r construct.

196 Chapter 6
Conceptual design

6.3 Design strategies
The development of a conceptual schema based on its specification must be
considered to all intents and purposes an engineering process, and, as such,
design strategies used in other disciplines can be applied to it. Let us
examine these strategies with specific reference to the modelling of a
database.

6.3.1 Top-down strategy
In this strategy, the conceptual schema is produced by means of a series of
successive refinements, starting from an initial schema that describes all the
requirements by means of a few highly abstract concepts. The schema is then
gradually expanded by using appropriate modifications that increase the
detail of the various concepts. This procedure is shown in Figure . where
the various levels of refinement are shown. Each of these levels contains a
schema that describes the same information with a different degree of detail.
Thus, in a pure top-down strategy, all the concepts present in the final
schema are present, in principle, at each level of refinement.

Moving from one level to another, the schema is modified using some basic
transformations called top-down transformation primitives. Major examples

Figure 6.4 The top-down strategy.

Specifications

Initial schema

Intermediate schema

Final schema

Intermediate schema

Refinement

Refinement

Refinement

Section 6.3 197
Design strategies

of top-down transformation primitives are shown in Figure .. As we can
see, these primitives operate on a single concept of the schema and transform
it into a more complex structure, capable of describing the original concept
in more detail.

Transformation Initial concept Result

T1

From one entity to two
entities and a

relationship between
them

T2

From one entity to a
generalization

T3

From one relationship
to multiple

relationships

T4

From one relationship
to an entity with

relationships

T5

Adding attributes to an
entity

T6

Adding attributes to a
relationship

Figure 6.5 Top-down transformation primitives.

198 Chapter 6
Conceptual design

Transformation T₁: this is applied when an entity describes two different
concepts logically linked to each other. For example, in the training company
application, we could have begun with an entity COURSE. Then we realize
that this is too abstract and that COURSETYPE (having a code and a title) should
be distinct from COURSEEDITION (having a start date and an end date) and that
these entities are linked by a relationship that we can call TYPE.

Transformation T₂: this is applied when an entity is made up of distinct
subentities. In our application, this happens when we realize that among the
trainees there are the distinct cases EMPLOYEE and PROFESSIONAL.

Transformation T₃: this is applied when a relationship describes two or
more different concepts linking the same entities. For example, in the
relationship TEACHING between instructors and courses, CURRENTTEACHING

should be distinguished from PASTTEACHING.

Transformation T₄: this is applied when a relationship describes a concept
having an autonomous existence. For example, if a relationship CONTRACT

between an entity CONSULTANT and an entity COMPANY has many attributes,
then it is better represented by an entity linked to the others by means of
binary relationships.

Transformation T₅: this is applied for the addition of properties (attributes)
to entities. This happens, for example, when we refine the entity TRAINEE by
adding its attributes SocialSecurityNumber, Surname, Age, Sex, and
TownOfBirth.

Transformation T6: this is applied to add properties to relationships, in a
similar way to transformation T₅.

The advantage of the top-down strategy is that the designer can start with
a full representation of the requirements, even though some details are
missing. Obviously, this is possible only if we possess a global view of all the
relevant concepts. However, this is extremely difficult when dealing with
complex cases.

6.3.2 Bottom-up strategy
In this strategy, the initial specifications are decomposed into smaller and
smaller components, until each component describes an elementary
fragment of the specifications. At this point, the various components are
represented by simple conceptual schemas that can also consist of single
concepts. The various schemas thus obtained are then amalgamated until a
final conceptual schema is reached. This procedure is shown in Figure .,
which shows the decomposition of the requirements, the subsequent
construction of the basic e-r schemas, and the final phase in which the
elementary schemas are integrated. In contrast to the top-down strategy, the
various concepts present in the final schema are progressively introduced.

Section 6.3 199
Design strategies

In this case also, the final schema is obtained by means of some elementary
transformations, here called bottom-up transformation primitives. In
Figure ., the main bottom-up transformation primitives are shown. As we
can see, these primitives introduce into the schema new concepts that were
not present previously and are capable of describing aspects of the
application that have not been taken into account before.

Transformation T₁: this is applied when a class of objects with properties
in common is identified in the specifications. For example, in the application
for the training company, this can happen when we identify the entity
COURSECLASS (held in a certain classroom at a certain time) from the course
specification.

Transformation T₂: this is applied when a logical link between two entities
is identified in the specifications. In our application, this can happen when

Figure 6.6 The bottom-up strategy.

.

Specifications

Component 1 Component n

Component 1,1 Component 1,m Component n,1 Component n,p

Schema 1,1 Schema 1,m Schema n,1 Schema n,p

Integration of schemas

Final schema

.

.

200 Chapter 6
Conceptual design

we identify the relationship QUALIFICATION between the entities INSTRUCTOR

and COURSE.

Transformation T₃: this is applied when a generalization between entities is
identified in the specification. For example, in our application this can
happen when we understand that the entity INSTRUCTOR is a generalization
of the entities PERMANENT and FREELANCE.

Transformation T₄: this is applied when we identify an entity that can be
regarded as an aggregation of a series of attributes. For example, this happens
in our application if we identify the entity TRAINEE from the properties
SocialSecurityNumber, Surname, Age, Sex, and TownOfBirth.

Transformation Initial concept Result

T1

Generation of
an entity

T2

Generation of a
relationship

T3

Generation of a
generalization

T4

Aggregation of
attributes on

an entity

T5

Aggregation of
attributes on a

relationship

Figure 6.7 Bottom-up transformation primitives.

Section 6.3 201
Design strategies

Transformation T₅: this is applied in a way similar to transformation T₄,
when a relationship is identified that can be regarded as an aggregation of
attributes.

The advantage of the bottom-up strategy is that it allows the
decomposition of a problem into simple components, which are often easily
identified, and whose design can be handled by different designers if
necessary. It therefore lends itself to work undertaken in groups or sub-
divided within a group. On the other hand, its disadvantage is the fact that
it requires the integration of many conceptual schemas, an operation that
often presents difficulties.

6.3.3 Inside-out strategy
This strategy can be regarded as a particular type of bottom-up strategy. It
begins with the identification of only a few important concepts and, based
on these, the design proceeds, spreading outward ‘radially’. That is, first the
concepts nearest to the initial concepts are represented, and we then move
towards those further away by means of ‘navigation’ through the
specification.

An example of inside-out development of a conceptual schema is shown in
Figure . with reference to an example seen in the previous chapter. In this

diagram, the various areas indicate a possible chronological development of
the schema.

Note that the entity EMPLOYEE was identified first, along with its attributes.
On this basis, the employee participation in projects was then represented,
together with the properties of the projects. Following this, the correlation
between the employees and the company departments was analyzed,

Figure 6.8 An example of the inside-out strategy.

Name

Budget

ReleaseDate

EMPLOYEE

Code

Surname

Salary

Age

(0,N)

(0,N)

(0,1)

StartDate(1,N)

PROJECT

PARTICIPATION

DEPARTMENT

(1,1)

(1,N)

Phone

Name(1,1)

(1,N)

MANAGEMENT

MEMBERSHIP

StartDate

COMPOSITION

BRANCH

City

Address

Number

Street

PostCode

202 Chapter 6
Conceptual design

identifying the relationships MANAGEMENT and MEMBERSHIP and the entity
DEPARTMENT. Finally, based on this last entity, the branches of the company
were represented (BRANCH entity with its attributes), together with the fact
that the various departments belong to the branches (COMPOSITION

relationship).
This strategy has the advantage of not requiring integration steps. On the

other hand, from time to time, it is necessary to examine all of the
specification looking for concepts not yet represented and to describe these
new concepts in detail.

6.3.4 Mixed strategy
As is often the case, it turns out that each of the strategies has both positive
and negative aspects. Therefore, we can devise a mixed strategy that tries to
combine the advantages of top-down strategy with those of bottom-up and
inside-out. The designer decomposes the requirements into a number of
components, as in the bottom-up strategy, but not to the extent where all the
concepts are separated. At the same time he or she defines a skeleton schema
containing, at the abstract level, the principal concepts of the application.
This skeleton schema gives a unified, although synthetic, view of the whole
design and favours the integration of the schemas developed separately.

For example in Figure ., we show a possible skeleton schema for our
training company application. From a simple inspection of the requirements

in Figure ., we can immediately identify three principal concepts that can
be represented by entities: the trainees, the courses and the instructors.
There are relationships between these entities that we can assume to be
descriptions of the attendance of the trainees to the editions of courses and
of the teaching activities undertaken by the instructors of the courses. At
this point we can move on, examining separately these main concepts and
can proceed with gradual refinements (thus following the top-down strategy)
or extending the various components of the schema with concepts that are
not yet represented (thus following the bottom-up strategy).

The mixed strategy is probably the most flexible of those we have seen,
because it lends itself well to contrasting requirements: that of subdividing
a complex problem into smaller ones and that of proceeding by gradual
refinement. In fact, this strategy also encompasses the inside-out strategy,
which as we have seen, is only a variation of the bottom-up strategy. It is
actually quite natural, during the bottom-up development of a sub-
component of the project, to proceed from the inside out in order to

Figure 6.9 Skeleton schema for the training company.

TRAINEE COURSE INSTRUCTORATTENDANCE TEACHING

Section 6.4 203
Quality of a conceptual schema

represent the parts of the specification of the database that are not yet
represented. It must also be stated that, in almost all practical cases, the
mixed strategy is the only one that can actually be adopted. In fact, it is often
necessary to begin the design before all the data requirements are available,
and of the data that is known, our knowledge of detail can vary.

6.4 Quality of a conceptual schema
A ‘good’ conceptual schema should possess a number of properties, which
can be used to verify the quality of the schema itself. Let us analyze the most
important of these properties, and see how we can check them during the
conceptual design stage.

Correctness A conceptual schema is correct when it uses properly the
constructs made available by the conceptual model. As with programming
languages, the errors can be syntactic or semantic. The first relates to illegal
use of a construct, as for example, in specifying a generalization between
relationships rather than between entities. The second relates to the use of a
construct that does not follow its definition. For example, the use of a
relationship to describe the fact that an entity is a specialization of another.
The correctness of a schema can be verified by inspection, comparing the
concepts present in the schema with the requirements and with the
definitions of the constructs of the conceptual model used.

Completeness A conceptual schema is complete when it includes concepts
that represent all the data requirements and allow for the execution of all the
operations included in the operational requirements. The completeness of a
schema can be verified by checking that all the requirements on the data are
represented by some concept present in the schema, and that all the concepts
involved in an operation can be reached by ‘navigating’ across the schema.

Readability A conceptual schema is readable when it represents the
requirements in a way that is natural and easy to understand. Therefore, the
schema must be self-explanatory, for example, by choosing suitable names
for concepts. Readability also depends on purely aesthetic criteria: the
comprehension of a schema is made easier if we draw it with consistent
dimensions for its components. Some suggestions for making the schema
more readable are as follows:

• arrange the constructs on a grid, choosing as central elements those that
have most links (relationships) with others;

• use only horizontal and vertical lines and try to keep intersections to a
minimum;

• arrange parent entities above the respective child entities;

The readability of a schema can be verified by carrying out comprehension
tests with the users.

204 Chapter 6
Conceptual design

Minimality A schema is minimal when all the specifications on the data
are represented only once in the schema. A schema is therefore not minimal
when there are redundancies, that is, concepts that can be derived from
others. A typical source of redundancy in an e-r schema is the presence of
cycles caused by the presence of relationships and/or generalizations.
However, a redundancy is not always undesirable, but can be the result of
precise design choices.1 In any case, these situations need always to be
documented. The minimality of a schema can be verified by inspection,
checking whether there exist concepts that can be deleted from the schema
without compromising its completeness.

In the next section we will see how the verification of the quality of a
conceptual schema can be incorporated into a comprehensive method.

6.5 A comprehensive method for conceptual design

In this section, we will sum up all that we have said concerning conceptual
database design. With regard to the design strategies we have seen, we
should stress that in practice it is rare for a project to proceed always in a top-
down or in a bottom-up manner. Independently of the chosen strategy, in
reality there is always a need to modify the schema being constructed using
both top-down transformations, which refine concepts already present, and
bottom-up transformations, which add concepts not already present. We will
therefore show a method for conceptual design with reference to the mixed
strategy, which, as we have said, includes the others as special cases. The
technique is made up of the following steps.

. Analysis of requirements
(a) Construct a glossary of terms.
(b) Analyze the requirements and eliminate any ambiguities.
(c) Arrange the requirements in groups.

. Basic step
(a) Identify the most relevant concepts and represent them in a skeleton

schema.

. Decomposition step (to be used if appropriate or necessary).
(a) Decompose the requirements with reference to the concepts present

in the skeleton schema.

. Iterative step: to be repeated for all the schemas until every
specification is represented.
(a) Refine the concepts in the schema, based on the requirements.
(b) Add new concepts to the schema to describe any parts of the

requirements not yet represented.

1. We will discuss this point further when we deal with logical design.

Section 6.6 205
An example of conceptual design

. Integration step (to be carried out if step has been used).
(a) Integrate the various subschemas into a general schema with

reference to the skeleton schema.

. Quality analysis
(a) Verify the correctness of the schema and carry out any necessary

restructuring.
(b) Verify the completeness of the schema and carry out any necessary

restructuring.
(c) Verify the minimality, list the redundancies and if necessary

restructure the schema.
(d) Verify the readability of the schema and carry out any necessary

restructuring.

Note that if Step and Step are omitted, and if in Step only refinements
are made, we have a pure top-down strategy. Conversely, if the basic step is
not carried out and if in the iterative step only new concepts are added, we
are using a pure bottom-up strategy. Finally, in the bottom-up
transformations, we can proceed according to the inside-out strategy.

In the method shown, we have only briefly mentioned an important
activity that accompanies every design phase: the documentation of the
schemas. As we said in Section ., this activity should also be suitably
organized. Specifically, it is very useful to construct, in parallel to the
development of a schema, a data dictionary that makes the interpretation of
the various concepts easier. Furthermore, we can use business rules to
describe the presence of redundancies or requirements of the application
that we are not able to translate into constructs of the e-r model.

Finally, a few comments on the analysis of the quality of the design are
needed. First, it must be stated that quality analysis should not be relegated
to the end of the conceptual design: indeed this is a parallel activity, which
should be carried out regularly during the development of a conceptual
schema. Furthermore, it is very delicate, since it often requires restructuring
to be carried out in order to remedy ‘errors’ made in previous phases. It is
necessary to pay particular attention to concepts of the schema that have
particular properties: for example, entities without attributes, groups of
concepts that form cycles, over-complex generalization hierarchies or
particularly tortuous portions of the schema. As we mentioned in
Section ., this analysis does not automatically mean the necessity for
restructuring, but only a re-organization of the schema to make it more
readable.

6.6 An example of conceptual design
Let us now look at a complete example of conceptual design, again with
reference to our training company. We have already carried out the first stage
of the method described above and we have shown a possible skeleton

206 Chapter 6
Conceptual design

schema in Figure .. With reference to this schema, we can, at this point,
decide to analyze separately the specifications that relate to the trainees, the
courses and the instructors, and to proceed inside-out for each of them.

We will now carry out the iterative step, dealing first with the trainees. Of
these, two types are immediately identifiable: the professionals and the
employees. These entities can be represented as a specialization of the TRAINEE

entity: the resulting generalization is total. At this point, the employers of the
trainees need to be represented. This can be done by introducing the entity
EMPLOYER, which is linked by a relationship to the entity EMPLOYEE. If we
analyze the requirements, we notice that we need to represent two distinct
concepts: past and present employment. We will decide therefore, to sub-
divide this relationship into two relationships: PASTEMPLOYMENT and
PRESENTEMPLOYMENT. The first has a start date and an end date and is linked to
the entity TRAINEE (because the professionals, too, could have a past
employment); the second has only a start date and is linked to the entity
EMPLOYEE. By adding the attributes to entities and relationships, the
cardinalities to the relationships and the identifiers to the entities, we obtain
the schema in Figure .. Observe that the entity TRAINEE has two

identifiers, the internal code given by the company and the social security
number. Note also that the attribute ProfessionalTitle is optional, in that the
specification states that this information can be missing.

For the instructors, we need to distinguish between those employed by the
training company and those who work for the company on a freelance basis.

Figure 6.10 The refinement of a portion of the skeleton schema.

PhoneNameAddress

EMPLOYER

EMPLOYEE

TRAINEE

PROFESSIONAL

CURRENT
EMPLOYMENT

PAST
EMPLOYMENT

StartDate EndDate
(0,N)

StartDate

(0,N)

(0,N)

(1,1) SSN

Surname
Sex

Code
Age

TownOfBirth

Position Level ProfessionalTitle Expertise

(0,1)

Section 6.6 207
An example of conceptual design

This can be done in a natural way with a total generalization of which
INSTRUCTOR is the parent entity. We can then add the attributes Surname, Age,
TownOfBirth, and Phone to the INSTRUCTOR entity. The last attribute is multi-
valued because an instructor can have more than one telephone number and
we wish to represent them all. Note that the available attributes provide no
natural identifier for the INSTRUCTOR. Here, we can decide to use the social
security number of the instructor, even if this information is not in the
requirements. As an alternative, we could have introduced an internal code,
used only for this purpose. The resulting subschema is shown in Figure ..

Let us move on to the analysis of the COURSE entity. First there are two
distinct concepts that are linked: the abstract concept of course (which has a
name and a code) and the edition of a course (which has a start date, an end
date, and a number of trainees). We will represent these two concepts with
distinct entities linked by the relationship TYPE. The classes of the course are
then considered, which we can describe by an entity linked to the editions
of the courses by a relationship COMPOSITION. We can then add the attributes,
the cardinalities and the identifiers. With regard to classes, we assume that a
class is identified by the classroom, the time and the date (it is not possible
to have two different classes with the same day, classroom and time). For the
editions of the course, on the other hand, we assume that two different
editions of the same course cannot begin on the same day and thus an
identifier for the COURSEEDITION is made up of the attribute StartDate and of
the entity COURSE. The resulting subschema is shown in Figure ..

Figure 6.11 The refinement of another portion of the skeleton schema.

Figure 6.12 The refinement of another portion of the skeleton schema.

(1,N)

INSTRUCTOR

TownOfBirth

FREELANCE PERMANENT

Age SSN Surname
Phone

CLASS

Time

(1,1)
COMPOSTION

COURSE
EDITION

(1,N) (1,1)

NoOfPart
EndDate

StartDate
Room

Date

TYPE COURSE

Name Code

(0,N)

208 Chapter 6
Conceptual design

The final schema is obtained by the integration of the schemas obtained up
to this point. We will begin with the schemas relating to the instructors and
to the courses represented in Figure . and in Figure . respectively. In
the skeleton schema, this link is represented by the TEACHING relationship.
This needs to be refined; from the analysis of the requirements, it is not
difficult to identify three types of different links between instructors and
courses: the current teaching, the past teaching and the qualification to teach
a course. We will represent these links by means of three relationships: the
first two relate the entities INSTRUCTOR and COURSEEDITION (because an
instructor teaches or has taught a specific edition of a course) while the third
relates the INSTRUCTOR entity and the COURSE entity (because an instructor is
qualified to teach a course in general). The schema obtained has now to be
integrated with the portion relating to the trainees, shown in Figure ..
Looking at the skeleton schema we see that, in order to do this, we must first
clarify the relationship that links courses and trainees. We can identify two
cases: the current attendances and the past ones. Therefore, we define two
relationships between the entity TRAINEE and the entity COURSEEDITION. For
past attendances, we are interested in the final marks. These are represented
by an attribute of the corresponding relationship. By adding the various
cardinalities, we obtain the final schema shown in Figure ..

Note that we have worked in this case by decomposing and then
integrating. However, given that we are dealing with a relatively simple
schema, we could also have worked directly on the skeleton schema,
gradually refining it without integration steps.

At this point, we have to verify the properties of the schema thus obtained.
In particular, the completeness is verified by going back over all the
requirements and checking that all the data is represented and that the

Figure 6.13 The final e-r schema for the training company.

Marks

EMPLOYER

Address Name Phone

PAST
EMPLOYMENT

CURRENT
ATTENDANCE

PAST
ATTENDANCE

EndDate StartDateStartDate

CURRENT
EMPLOYMENT

TRAINEE

EMPLOYEE

SSN
Surname

Sex

Code

Age
TownOfBirth

Position Level ProfessionalTitle Expertise

(0,1)

CLASS

COURSE
EDITION

COMPOSITION

(1,1)

(0,1) (0,N)
PAST

TEACHING

CURRENT
TEACHING

QUALIFICATIONTYPE

Time Room Date

(1,N)

(0,1) (0,1)(0,1) (0,N)

(0,N)(0,N)

COURSE

Name Code

INSTRUCTOR

FREELANCE PERMANENT

(1,N)(1,N)

(0,N)

(1,1)
NoOfPart

SSN Surname
Phone

Age

TownOfBirth
StartDate

EndDate

(1,N)

(1,1)

(0,N)

(0,N)

(0,N)

PROFESSIONAL

Section 6.7 209
CASE tools for database design

operations can be carried out. To give an example, consider operation ,
which asks for the trainees of all the courses taught by an instructor. The
data needed for this operation can be retrieved using the schema in
Figure . as follows: we start from the INSTRUCTOR entity, we then traverse
the relationships CURRENTTEACHING and PASTTEACHING, the entity
COURSEEDITION, and the relationships CURRENTATTENDANCE and
PASTATTENDANCE, and we finally reach the entity TRAINEE. With regard to
minimality, we note that there is a redundancy in the schema: the attribute
NumberOfParticipants in the entity COURSEEDITION can be derived, for each
edition, by counting the number of instances of the TRAINEE entity that are
linked to this edition. We will postpone the discussion of whether to
eliminate or maintain such a redundancy until the next design phase, where
we deal with logical design.

Finally, we must remember that the schema must have appropriate
documentation. It is particularly important to describe possible constraints
not expressed directly by the schema, possibly in the form of business rules.
For example, the fact that an instructor teaches (or may have taught) a course
only if he or she is qualified to do so.

6.7 CASE tools for database design
Database design is a complex activity that is often difficult or impossible to
carry out manually. The process can be made easier by using general-purpose
editing programs with graphical interfaces for creating tables and diagrams.
There are, however, software packages expressly designed for the creation
and development of databases. These systems belong to the class of case
(Computer Aided Software Engineering) tools and provide support for the
main phases of the development of a database (conceptual, logical and
physical design).

The functionalities vary widely from one package to another, but there are
some basic features that are present in a more or less extensive form in all
systems:

• a graphical interface with which it is possible to manipulate E-R schemas
diagrammatically;

• a data dictionary, which stores information on the various components of
the schema (entities, attributes, relationships, integrity constraints, etc.);

• a series of integrated tools, which carry out, either automatically or
through interaction with the user, specific design tasks (automatic layout
of diagrams, verification of correctness and completeness, quality analysis
of a schema, automatic production of ddl code for the creation of a
database, etc.).

Many systems are integrated directly with database management systems.
Other systems also provide support for requirements analysis. Still others

210 Chapter 6
Conceptual design

provide libraries of predefined generic projects that can be used as a starting
point for a new project.

With specific regard to conceptual design, it is generally possible to follow
the strategies suggested in the sections above, even when these systems are
used. Many of them make it possible to use a top-down strategy, allowing the
partial specification of concepts of the schema and the gradual refinement of
them. For example, we can define an entity without specifying attributes or
identifiers. There are still other systems that allow views over a schema to be
defined and manipulated separately, automatically propagating to the
schema modifications made on the view, thus proceeding in a bottom-up
manner.

Figure . shows a conceptual schema managed by one of the most
popular tools, er-win.

Note that the notation used to describe the constructs of the e-r model is
different from that used in this chapter. In particular the attributes are
directly represented within the entity, separating the identifiers from the
other attributes. The lines represent relationships and particular symbols on
the lines are used to express cardinality constraints. Generalizations are
represented by lines separated by a special symbol (relationship between
EMPLOYEE and MANAGER). This representation does not allow the specification
of attributes for relationships.

This example shows a well-known problem that must be confronted when
using a case tool for database design: there are standardizations neither of

Figure 6.14 Conceptual design using a case tool.

Section 6.9 211
Exercises

the notations used, nor of the conceptual model, and each system
substantially adopts a specific version of the e-r model. There are, for
example, systems that manage generalizations of only a certain type, others
that do not manage them at all, still others that manage only binary
relationships. Furthermore, in practice, all the products use different
notations to represent the same constructs. Thus, considerable effort is often
required on the part of the designer to adapt his or her own personal
knowledge of models and techniques to the characteristics of the chosen
product.

6.8 Bibliography
Conceptual data design is dealt with in detail in the books by Batini, Ceri and
Navathe [] and by Teorey []. Batini, Ceri and Navathe also discuss the
problem of the integration of schemas. We also mention two interesting texts
reporting on the dataid project, which has developed many aspects of
database design, by Albano, De Antonellis and Di Leva [] and Ceri []. Our
description of the activities of collection and analysis of requirements is
based on the results of this project.

An in-depth review written by David Reiner on case tools for database
design is given in Chapter of Batini, Ceri and Navathe [].

6.9 Exercises
Exercise 6.1 We wish to automate the management of loans in a library. The
specification of the application, acquired through an interview with the
librarian, is shown in Figure .. Analyze the specifications, filter the

ambiguities and then group them according to type. Pay particular
attention to the difference between the concept of book and copy of book.

The Library

A reader who uses the library has an identity card on which is written
his or her code, name and address. The user makes requests for the loan
of books catalogued in the library. Each book has a title and a list of
authors and there can be many copies of any book. Each book in the
library is identified by a code. Following a request, the archive of
available books is first consulted (that is, those not out on loan at
present). If the book is available, we look for the book on the shelves.
Once the book is found it is given to the reader. The text is then classified
as one on loan. When the reader has finished, the book is returned, put
back on the shelves and re-classified as available. For each loan the
times and dates of taking out and returning are recorded.

Figure 6.15 The library specification for Exercise ..

212 Chapter 6
Conceptual design

Identify the logical links between the various groups of specifications thus
obtained.

Exercise 6.2 Represent the specifications of the previous exercise using an
e-r model schema.

Exercise 6.3 Define an Entity-Relationship schema that describes the data
of an application relating to a chain of automobile workshops. We are
interested in:

• the workshops, with name (identifying), address and telephone number;

• the automobiles, with registration number (identifying), and model (a
string of characters with no further structure) and owner;

• the customers (automobile owners), with social security number,
surname, first name and telephone; each client can be the owner of more
than one automobile;

• the maintenance work carried out in a workshop, with a number (unique
in a particular workshop), start date and end date, parts replaced (with
quantities) and number of hours labour;

• the spare parts available with code, name and unit cost.

Show the cardinalities of the relationships and (at least) one identifier for
each entity.

Exercise 6.4 Define an e-r schema that describes the data of an application
relating to the electoral roll of the city of WhoKnowsWhere, with citizens
and families. The following are stored:

• information on the citizens born in the area and on those resident in the
area; each citizen is identified by a social security number, and has
surname, first name, sex and date of birth; furthermore:

° for anyone born in the area, the birth registration number is also
stored;

° for anyone born in another area, the city and state of birth are stored.

• information on resident families, each of which has one and one only head
of the family and zero or more other members; for each of them, the
relationship to the head of the family is recorded (spouse, child, parent or
other); each resident citizen belongs to one and one family only; all the
members of a family have the same residence (street, street number,
apartment number).

Try to use the inside-out strategy. At the end, verify the quality of the
schema obtained.

Section 6.9 213
Exercises

Exercise 6.5 Analyze the specifications relating to matches of a soccer
tournament shown in Figure . and construct a glossary of terms.

Exercise 6.6 Having organized the specifications of Exercise . into groups
of similar type, show them using an Entity Relationship model, using a top-
down strategy starting from an initial skeleton schema. Note that the
schema in Figure . represents a possible solution to this exercise.

Exercise 6.7 Try to represent again the specifications in Figure . with an
Entity-Relationship schema, using a bottom-up strategy this time.
Construct separate fragments of the schema that describe the various
homogenous components of the specification and then proceed with the
integration of the various schemas. Compare the result with the schema
obtained from Exercise ..

Exercise 6.8 We wish to carry out a reverse engineering operation. That is,
given a relational database, we wish to construct its conceptual
representation using the e-r model. The database is for an application
concerning trains and railway stations and is made up of the following
relations:

• STATION(Code, Name, City) with a referential constraint between the
attribute City and the CITY relation;

• CITY(Code, Name, Region);

Soccer Tournament

For each match, we store the series and the day on which it takes place,
which match it is (e.g. first match, second match etc.) the date with day,
month, year, the teams involved in the match with the name of the city
for the team and the trainer, and finally for each team whether played
at home. We store the name and the surname of each player in each
team with his date of birth and main position. We store, for each day,
how many points each team has and we also store, for each match, the
players of each team who played and in which position each player
played (the positions can change from one game to another). For each
match, we store the referee, with first name, surname, city and region
of birth. The matches played as scheduled must be distinguished from
those postponed. For a postponed match, we store the date in which it
is actually played. We also identify the matches played in a city other
than that of the home team; for each of these, we store the city in which
it took place, as well as the reason for the variation of venue. For each
player, we are interested in the city of birth.

Figure 6.16 Specifications for Exercise ..

214 Chapter 6
Conceptual design

• ROUTE(From, To, Distance), with referential constraints between the
attributes From and the relation STATION and between the attribute To and
the relation STATION; this relation contains all and only the pairs of
stations connected directly by a route (that is without intermediate
stations);

• TRAINTIMETABLE(Number, From, To, DepartureTime, ArrivalTime) with
referential constraints between the attributes From and the relation
STATION and between the attribute To, and the relation STATION;

• TRAINROUTE(TrainNumber, From, To) with referential constraints between
the attribute TrainNumber and the relation TRAINTIMETABLE and between
the attributes From and To and the relation STATION;

• STOPTIME(TrainNumber, Station, Arrival, Departure) with referential
constraints between the attribute TrainNumber and the relation
TRAINTIMETABLE and between the attribute Station and the relation STATION;

• ACTUALTRAIN(TrainNumber, Date, DepartureTime, ArrivalTime) with a
referential constraint between the attribute TrainNumber and the
TRAINTIMETABLE relation;

• ACTUALSTOP(TrainNumber, Date, Station, Arrival, Departure) with a
referential constraint between the two attributes TrainNumber and Station
and the STOPTIME relation.

Indicate possible redundancies.

Exercise 6.9 Define an e-r schema that describes the data of an application
for a hospital ward. We are interested in:

• each patient, with social security number, first name, surname and date of
birth;

• the admission of each patient, with admission date (an identifier for each
admission of a patient) and the doctor in charge of the case; as well as, for
a discharge, the date of discharge and the reason (cure, transfer, etc.),
and, for a patient in the ward at present, the contact number of a relative
(which we can assume is simply a string);

• each doctor, with registration number, surname, first name, specialization
and graduation date;

• each examination, with the date, time, doctors present, medicines
prescribed (with dosages) and the illnesses diagnosed – each examination
is identified by the patient involved and by the date and time;

• for each medicine, the identification code, the name and cost;

• for each illness, an identifying code, a name and a description.

Section 6.9 215
Exercises

Exercise 6.10 Define an Entity-Relationship schema that describes the data
for an application for the management of apartment blocks, according to the
following specifications:

• each apartment block has a name (which identifies it) and an address, and
has one or more buildings, each of which contains a number of
apartments;

• if the apartment block has more than one building, each of them has a
code (e.g. building ‘A’) which identifies it together with the name of the
block;

• each apartment is identified, in its respective block, by the building (if
many exist) and by a number (the apartment number) and has a rental
charge;

• each apartment has an owner and a tenant; for both of them, we are
interested in the name, surname, social security number; for the owners
we want to store also their addresses and telephone numbers; each person
can be the owner of many apartments but can be the tenant of one
apartment only.

216 Chapter 6
Conceptual design

7
7Logical design

The aim of logical design is to construct a logical schema that correctly and
efficiently represents all of the information described by an Entity-
Relationship schema produced during the conceptual design phase. This is
not just a simple translation from one model to another for two reasons. First,
there is not a close correspondence between the models involved because not
all the constructs of the Entity-Relationship model can be translated
naturally into the relational model. For example, while an entity can easily
be represented by a relation, there are various options for the
generalizations. Secondly, the aim of conceptual design is to represent the
data accurately and naturally from a high-level, computer-independent
point of view. Logical design is instead the basis for the actual
implementation of the application, and must take into account, as far as
possible, the performance of the final product. The schema must therefore be
restructured in such a way as to make the execution of the projected
operations as efficient as possible. In sum, we must plan a task that is not only
a translation (from the conceptual model to the logical) but also a
reorganization. Since the reorganization can for the most part be dealt with
independently of the logical model, it is usually helpful to divide the logical
design into two steps, as shown in Figure 7.1.

• Restructuring of the Entity-Relationship schema, which is
independent of the chosen logical model and is based on criteria for the
optimization of the schema and the simplification of the following step.

• Translation into the logical model, which refers to a specific logical
model (in our case, the relational model) and can include a further
optimization, based on the features of the logical model itself.

The input for the first step is the conceptual schema produced in the
preceding phase and the estimated database load, in terms of the amount of
data and the operational requirements. The result obtained is a restructured
e-r schema, which is no longer a conceptual schema in the strict sense of the

218 Chapter 7
Logical design

term, in that it constitutes a representation of the data that takes into account
implementation aspects.

This schema and the chosen logical model constitute the input of the
second step, which produces the logical schema of our database. In this step,
we can also carry out quality controls on the schema and, possibly, further
optimizations based on the characteristics of the logical model. An analysis
technique used for the relational model (called normalization) will be
presented separately in the next chapter. The final logical schema, the
integrity constraints defined on it and the relevant documentation,
constitute the final product of logical design.

In the remainder of this chapter, we will present the two steps that make
up the logical design of a database. We will first discuss the techniques that
can be used to analyze the efficiency of a database by referring to its
conceptual schema.

7.1 Performance analysis on E-R schemas
An e-r schema can be modified to optimize some performance indicators. We
use the term indicator, because the efficiency of a database cannot be

Figure 7.1 Logical database design.

Conceptual
schema

Database
load

Logical
model

Restructuring of
the E-R schema

Restructed E-R schema

Logical schema

Translation to a
logical schema

Logical design

Support
documen-

tation

Logical
schema

Integrity
constraints

Section 7.1 219
Performance analysis on E-R schemas

precisely evaluated with reference to a conceptual schema. The reason is that
the actual behaviour is also dependent on physical aspects that are not
pertinent to a conceptual representation. It is possible, however, to carry out
evaluations of the two parameters that influence the performance of any
software system. These are:

• cost of an operation: this is evaluated in terms of the number of
occurrences of entities and relationships that are visited to execute an
operation on the database; this is a coarse measure and it will sometimes
be necessary to refer to more detailed criteria;

• storage requirement: this is evaluated in terms of number of bytes
necessary to store the data described by the schema.

In order to study these parameters, we need the following information.

• Volume of data. That is:

° number of occurrences of each entity and relationship of the schema;

° size of each attribute.

• Operation characteristics. That is:

° type of operation (interactive or batch);

° frequency (average number of executions in a certain time span);

° data involved (entities and/or relationships).

To give a practical example, we will look at an already familiar schema,
which is shown again for convenience, in Figure 7.2.

Figure 7.2 An e-r schema on the personnel of a company.

Code
Surname

Salary

Age

Name

Budget

ReleaseDate

EMPLOYEE

BRANCH

City

Phone

Name

Number
Street

PostCode
Address

StartDate

MANAGEMENT

MEMBERSHIP DEPARTMENT

COMPOSITION

StartDate
PARTICIPATION

(0,N)

(0,1)

(0,1) (1,1)

(1,N)

(1,N)

(0,1)

(1,N)

(1,N)

(1,1)

PROJECT

220 Chapter 7
Logical design

Typical operations for this schema can be:

• operation : assign an employee to a project;

• operation : find the data for an employee, for the department in which
he or she works and for the projects in which he or she is involved;

• operation : find the data for all the employees of a certain department;

• operation : for each branch, find its departments with the surnames of
the managers and the list of the employees in each department.

Although the operations above might look oversimplifying with respect to
the actual database load, we can note that database operations follow the so-
called ‘eighty-twenty rule’. This rule states that eighty percent of the load is
generated by twenty percent of the operations. This fact allows us to
concentrate only on some operations and still give an adequate indication of
the workloads for the subsequent analysis.

The volume of data and the general characteristics of the operations can be
described by using tables such as those in Figure 7.3. In the table of volumes,

all the concepts of the schema are shown (entities and relationships) with
their estimated volumes. In the table of operations we show, for each
operation, the expected frequency and a symbol that indicates whether the
operation is interactive (I) or batch (B). Note that, in the volumes table, the
number of occurrences of a relationship depends on two parameters. These
are (i) the volume of the entities involved in the relationship and (ii) the
number of times an occurrence of these entities participates on average in an
occurrence of the relationship. The latter depends in turn on the cardinalities
of the relationship. For example, the number of occurrences of the
COMPOSITION relationship is equal to the number of departments, since the
cardinalities dictate that each department belongs to one and only one
branch. On the other hand, the number of occurrences of the relationship
MEMBERSHIP is little less than the number of employees, since few employees

Figure 7.3 Examples of volume table and operations table.

Table of volumes
Concept Type Volume

Branch E 10
Department E 80
Employee E 2000
Project E 500
Composition R 80
Membership R 1900
Management R 80
Participation R 6000

Table of operations
Operation Type Frequency

Op 1 I 50 per day
Op 2 I 100 per day
Op 3 I 10 per day
Op 4 B 2 per week

Section 7.1 221
Performance analysis on E-R schemas

belong to no department. Finally, if an employee is involved on average in
three projects, we have 2000 × 3 = 6000 occurrences for the relationship
PARTICIPATION (and thus 6000 ÷ 500 = 12 employees on average for each
project).

For each operation we can, moreover, describe the data involved by means
of a navigation schema that consists of the fragment of the e-r schema
relevant to the operation. On this schema, it is useful to draw the ‘logical
path’ that must be followed to access the required information. An example
of a navigation schema is proposed in Figure 7.4 with reference to operation
2. To obtain the required information, we begin with the EMPLOYEE entity and

we gain access to his department by means of the MEMBERSHIP relationship,
and to the projects in which he is involved by means of the PARTICIPATION

relationship.
Once this information is available, we can estimate the cost of an operation

on the database by counting the number of accesses to occurrences of entities
and relationships necessary to carry out the operation. Look again at
operation 2. According to the navigation schema, we must first access an
occurrence of the EMPLOYEE entity in order then to access an occurrence of the
MEMBERSHIP relationship and, by this means, to an occurrence of the
DEPARTMENT entity. Following this, to obtain the data of the projects on which
he or she is working, we must access on average three occurrences of the
PARTICIPATION relationship (because we have said that on average an employee
works on three projects). Then, through this, we access on average three
occurrences of the PROJECT entity. All this can be summed up in a table of
accesses such as that shown in Figure 7.5. In the last column of this table, the
type of access is shown: R for read access, and W for write access. It is
necessary to make this distinction because, as we shall see in Chapter 9, write
operations are generally more onerous than read ones.

In the next section, we will see how these simple analysis tools can be used
to make decisions during the restructuring of e-r schemas.

Figure 7.4 Example of a navigation schema.

Code
Surname

Salary

Age

Name

Budget

ReleaseDate

EMPLOYEE

Phone

Name
StartDate

MEMBERSHIP DEPARTMENT

StartDate
PARTICIPATION

(0,N)

(0,1) (1,N)

(1,N)

(0,1)

(1,N)

PROJECT

222 Chapter 7
Logical design

7.2 Restructuring of E-R schemas
The restructuring step of an e-r schema can be sub-divided into a series of
tasks to be carried out in sequence (see Figure 7.6).

• Analysis of redundancies decides whether to delete or retain possible
redundancies present in the schema.

Figure 7.5 Table of accesses for operation 2.

Figure 7.6 Restructuring tasks of an e-r schema.

Table of accesses
Concept Type Accesses Type

Employee Entity 1 R
Employment Relation 1 R
Department Entity 1 R
Participation Relation 3 R
Project Entity 3 R

Analysis of
redundancies

Restructuring of the E-R schema

Removing
generalizations

Partitioning/merging of
entities and relations

Selection of
primary identifiers

Restructured
E-R schema

E-R
schema

Database
load

Section 7.2 223
Restructuring of E-R schemas

• Removing generalizations replaces all the generalizations in the schema
by other constructs.

• Partitioning and merging of entities and relationships decides
whether is it convenient to partition concepts in the schema into more than
one concept or to merge several separate concepts into a single one.

• Selection of primary identifiers chooses an identifier for those entities
that have more than one.

Later in the section, we will examine separately the various restructuring
tasks using practical examples.

7.2.1 Analysis of redundancies
A redundancy in a conceptual schema corresponds to a piece of information
that can be derived (that is, obtained by a series of retrieval operations) from
other data. An Entity-Relationship schema can contain various forms of
redundancy. The most frequent examples are as follows.

• Attributes whose value can be derived, for each occurrence of an entity
(or a relationship), from values of other attributes of the same occurrence.
For example, the first schema in Figure 7.7 consists of an entity INVOICE in
which one of the attributes can be deduced from the others by means of
arithmetic operations.

• Attributes that can be derived from attributes of other entities (or
relationships), usually by means of aggregate functions. An example of
such a redundancy is present in the second schema in Figure 7.7. In this
schema, the attribute TotalAmount of the PURCHASE entity is a derived one.
It can be computed from the values of the attribute Price of the PRODUCT

entity, by summing the prices of the products of which a purchase is
made up, as specified by the COMPOSITION relationship.

• Attributes that can be derived from operations of counting occurrences.
For example, in the third schema in Figure 7.7, the attribute
NumberOfInhabitants of a town can be derived by counting the
occurrences of the relationship RESIDENCE in which the town participates.
This is actually a variant of the previous example, which is discussed
separately, as it occurs frequently.

• Relationships that can be derived from other relationships in the presence
of cycles. The last schema in Figure 7.7 contains an example of this type
of redundancy: the TEACHING relationship between students and lecturers
can be derived from the relationships ATTENDANCE and ASSIGNMENT. It
must be clearly stated that the presence of cycles does not necessarily
generate redundancies. If, for example, instead of the TEACHING

relationship, this schema had contained a relationship SUPERVISION

224 Chapter 7
Logical design

representing the link between students and supervisors then the schema
would not have been redundant.

The presence of a derived piece of information in a database presents an
advantage and some disadvantages. The advantage is a reduction in the
number of accesses necessary to obtain the derived information. The
disadvantages are a larger storage requirement (which is, however, a
negligible cost) and the necessity for carrying out additional operations in
order to keep the derived data up to date. The decision to maintain or delete
a redundancy is made by comparing the cost of operations that involve the
redundant information and the storage needed, in the case of presence or
absence of redundancy.

Using a practical example, let us look at how the evaluation tools
described above can be used to make a decision of this type. Consider the
schema about people and towns in Figure 7.7 and imagine that it refers to a
regional electoral roll application for which the following main operations
are defined:

• operation 1: add a new person with the person’s town of residence.

• operation 2: print all the data of a town (including the number of
inhabitants).

Figure 7.7 Examples of schemas with redundancies.

PERSON RESIDENCE TOWN

NumberOf
Inhabitants

(1,1) (1,N)

NetAmount

INVOICE Tax

GrossAmount

PURCHASE

TotalAmount

COMPOSITION PRODUCT

Price
(1,N) (1,N)

STUDENT COURSEATTENDANCE

TEACHING

ASSIGNMENT LECTURER

(1,1) (1,1)

(1,N)(0,N)

(0,N) (1,N)

Section 7.2 225
Restructuring of E-R schemas

Let us suppose, moreover, that for this application, the load is that shown
in Figure 7.8.

Let us first try to evaluate the indicators of performance in the case of
presence of redundancy (attribute NumberOfInhabitants in the TOWN entity).

Assume that the number of inhabitants of a town requires four bytes. We
can see that the redundant data requires 4 × 200 = 800 bytes, that is, less than
one Kbyte of additional storage. Let us now move on to estimating the cost
of the operations. As described in the access tables in Figure 7.9, operation 1
requires the following. A write access to the PERSON entity (to add a new

person), a write access to the RESIDENCE relationship (to add a new person-
town pair) and finally a read access (to find the relevant town) and another
write access to the TOWN entity (to update the number of inhabitants of that
occurrence). This is all repeated 500 times per day, for a total of 1500 write
accesses and 500 read accesses. The cost of operation 2 is almost negligible,
as it requires a single read access to the TOWN entity to be repeated twice a
day. Supposing a write access to cost twice as much as a read access, we have
a total of 3500 accesses a day when there is redundant data.

Let us now consider what happens when there is no redundant data.

Figure 7.8 Tables of volumes and operations for the schema in Figure 7.7.

Figure 7.9 Tables of accesses for the schema on electoral roll data in
Figure 7.7.

Table of volumes
Concept Type Volume

Town E 200
Person E 1000000
Residence R 1000000

Table of operations
Operation Type Frequency

Op 1 I 500 per day
Op 2 I 2 per day

Table of accesses in
presence of redundancy

Operation 1

Concept Type Acc. Type

Person E 1 W
Residence R 1 W
Town E 1 R
Town E 1 W

Operation 2

Concept Type Acc. Type

Town E 1 R

Table of accesses in
absence of redundancy

Operation 1

Conceto Type Acc. Type

Person E 1 W
Residence R 1 W

Operation 2

Concept Type Acc. Type

Town E 1 R
Residence R 5000 R

226 Chapter 7
Logical design

For operation 1 we need a write access to the PERSON entity and a write
access to the RESIDENCE relationship for a total of 1000 write accesses per day.
(There is no need to access the TOWN entity since there is no derived
information). For operation 2 however, we need a read access to the TOWN

entity (to obtain the data for the town), which we can neglect, and 5000 read
accesses to the RESIDENCE relationship on average, (obtained by dividing the
number of people by the number of towns) to calculate the number of
inhabitants of this town. This gives a total of 10000 read accesses per day.
Counting twice the write accesses, we have a total of 12000 accesses per day
when there is no redundant data. Thus, approximately 8500 accesses more
per day are required where there is no redundant data in order to save a mere
Kbyte. This depends on the fact that the read accesses needed to compute the
derived data are much more than the write accesses needed to keep the
derived data up to date.

It is obvious that, in this case, it worth maintaining the redundant data.

7.2.2 Removing generalizations
The relational model does not allow the direct representation of
generalizations of the e-r model. We need, therefore, to transform these
constructs into other constructs that are easier to translate. As we shall see
later in Section 7.4.2, the e-r constructs for which the translation into the
relational model is easy are entities and relationships.

To represent a generalization using entities and relationships there are
essentially three possible options. We will demonstrate these by referring to
the generic e-r schema in Figure 7.10.

The possible outcomes are shown in Figure 7.11 and are obtained by means
of the following restructurings.

1. Collapse the child entities into the parent entity. The entities E1 and
E2 are deleted and their properties are added to the parent entity E0. To
this entity, a further attribute Atype is added, which serves to distinguish
the ‘type’ (E1 or E2) of an occurrence of E0. For example, a generalization

Figure 7.10 Example of a schema with generalization.

E2

E0

E1

R1

R2

E3

E4
(X,Y)

A2111A

01A A02

Section 7.2 227
Restructuring of E-R schemas

between the parent entity PERSON and the child entities MAN and WOMAN

can be collapsed into the entity PERSON by adding to it the attribute Sex.
Note that the attributes A11 and A21 can assume null values (because they
are inapplicable) for some occurrences of E0. In addition, the relationship
R2 will have a minimum cardinality equal to zero for the E0 entity
(because the occurrences of E2 are only a subset of the occurrences of E0).

2. Collapse the parent entity into the child entities. The parent entity
E0 is deleted and, for the property of inheritance, its attributes, its
identifier and the relationships to which this entity was involved, are
added to both the child entities E1 and E2. The relationships R11 and R12

Figure 7.11 Possible restructurings of the schema in Figure 7.10.

A01

A

21A11A

A02

01AA01A

A11
02A

E0 R1

A01

R2

E3

E4

Atype

E2E1

R12

R2

E3

E4

A02

R11

(0,Y)

E2

E0

E1

R1

R2

E3

E4

RG2RG1

(1,1)(1,1)

(0,1) (0,1)

11

21

(0,1) (0,1)

(X,Y)

A21
A02

(X,Y)

228 Chapter 7
Logical design

represent respectively the restriction of the relationship R1 on the
occurrences of the entities E1 and E2. Consider, for example, a
generalization between the entities PERSON, having Surname and Age as
attributes and SSN (Social Security Number) as an identifier, and the
entities MAN and WOMAN. If this is restructured in this way, then the
attributes Surname and Age and the identifier SSN are added to both the
entities MAN and WOMAN.

3. Substitution of the generalization with relationships. The
generalization is transformed into two one-to-one relationships that link
the parent entity with the child entities E1 and E2. There are no transfers
of attributes or relationship and the entities E1 and E2 are identified
externally by the entity E0. Additional constraints hold in the new
schema: each occurrence of E0 cannot participate in both RG1 and RG2;
moreover, if the generalization is complete, each occurrence of E0 must
participate in exactly one of RG1 and RG2.

The choice among the various options can be made in a manner similar to
that used for derived data. That is, by considering the advantages and
disadvantages of each of the possible choices in terms of storage needed and
cost of the operations involved. We can, however, establish some general
rules.

• Option 1 is convenient when the operations involve the occurrences and
the attributes of E0, E1 and E2 more or less in the same way. In this case,
even if we waste storage for the presence of null values, the choice assures
fewer accesses compared to the others in which the occurrences and the
attributes are distributed among the various entities.

• Option 2 is possible only if the generalization is total, otherwise the
occurrences of E1 that are occurrences of neither E1 nor E2 would not be
represented. It is useful when there are operations that refer only to
occurrences of E1 or of E2, and so they make distinctions between these
entities. In this case, storage is saved compared to Option 1, because, in
principle, the attributes never assume null values. Further, there is a
reduction of accesses compared to Option 3, because it is not necessary to
visit E0 in order to access some attributes of E1 and E2.

• Option 3 is useful when the generalization is not total and the operations
refer to either occurrences and attributes of E1 (E2) or of E0, and therefore
make distinctions between child and parent entities. In this case, we can
save storage compared to Option 1 because of the absence of null values,
but there is an increase of the number of accesses to keep the occurrences
consistent.

There is an important aspect that must be clarified about the above. For the
restructuring of the generalizations, the simple counting of instances and
accesses is not always sufficient for choosing the best possible option. Given

Section 7.2 229
Restructuring of E-R schemas

these factors, it would seem that Option 3 would hardly ever be suitable, as
it usually requires more accesses in order to carry out operations on the data.
This restructuring, however, has the great advantage of generating entities
with fewer attributes. As we shall see, this translates into logical and then
physical structures of small dimensions for which a physical access allows
the retrieval of a greater amount of data (tuples) at once. Therefore, in some
critical cases, a more refined analysis needs to be carried out. This might take
into account other factors, such as the quantity of data that can be retrieved
by means of a single access to secondary storage. These aspects will be
discussed in more detail in Chapter 9.

The options presented are not the only ones allowed, but it is possible to
carry out restructurings that combine them. An example is given in
Figure 7.12, which consists in another possible transformation of the schema
given in Figure 7.10. In this case, based on considerations similar to those

discussed above, it was decided to incorporate E0 and E1 and to leave the
entity E2 separate from the others. The attribute Atype was added to
distinguish the occurrences of E0 from those of E1.

Finally, regarding generalizations on more than one level, we can proceed
in a similar way, analyzing a generalization at a time, starting from the
bottom of the entire hierarchy. Based on the above, various configurations
are possible, which can be obtained by combining the basic restructurings
on the various levels of the hierarchy.

7.2.3 Partitioning and merging of entities and relationships
Entities and relationships of an e-r schema can be partitioned or merged to
improve the efficiency of operations, using the following principle. Accesses
are reduced by separating attributes of the same concept that are accessed by

Figure 7.12 Possible restructuring of the schema in Figure 7.10.

21

A

E2

E0 R1

A

R2

E3

E4

RG2

(1,1)

(0,1)

Atype 11

(0,1)

A02A01

(X,Y)

230 Chapter 7
Logical design

different operations and by merging attributes of different concepts that are
accessed by the same operations. The same criteria as those discussed for
redundancies are valid in making a decision about this type of restructuring.

Partitioning of entities An example of entity partitioning is shown in
Figure 7.13: the EMPLOYEE entity is substituted by two entities, linked by a

one-to-one relationship. One of them describes personal information of an
employee. The other describes information about the employment of an
employee. This restructuring is useful if the operations that frequently
involve the original entity require, for an employee, either only information
of a personal nature or only information relating to his or her employment.

This is an example of vertical partitioning of an entity, in the sense that the
concept is sub-divided according to its attributes. It is also possible,
however, to carry out horizontal partitioning in which the sub-division
works on the occurrences of entities. For example, there could be some
operations that relate only to the analysts and others that operate only on the
salespeople. In this case, too, it could be useful to partition the EMPLOYEE

entity into two distinct entities, ANALYST and SALESPERSON having the same
attributes as the original entity. Note that horizontal partitioning
corresponds to the introduction of hierarchies at the logical level.

Horizontal partitioning has the side effect of having to duplicate the
relationships in which the original entity participated. This phenomenon
can have negative effects on the performance of the database. On the other
hand, vertical partitioning generates entities with fewer attributes. They can
therefore be translated into physical structures from which we can retrieve a
great deal of data with a single access. Partitioning operations will be further
discussed in Chapter 10, when dealing with the fragmentation of distributed
databases.

Figure 7.13 Example of partitioning of entities.

EmployeeNumber

EmployeeNumber

Level

Salary

Tax

Level

Salary

Tax

Name

Address

DateOfBirth

EMPLOYEE

Name

Address

DateOfBirth

PERSONAL
DATA

EMPLOYMENT
DATA

EMPLOYEE
DATA

(1,1) (1,1)

Section 7.2 231
Restructuring of E-R schemas

Deletion of multi-valued attributes One type of partitioning that
should be discussed separately deals with the deletion of multi-valued
attributes. This restructuring is necessary because, as with generalizations,
the relational model does not allow the direct representation of these
attributes.

The restructuring required is quite simple and is illustrated in Figure 7.14.

The AGENCY entity, is separated into two entities: an entity having name and
attributes as the original entity, apart from the multi-valued attribute
Telephone, and a new TELEPHONE entity, with the attribute Number. These
entities are linked by a one-to-many relationship. Obviously, if the attribute
had also been optional, then the minimum cardinality for the AGENCY entity
in the resulting schema would have been zero.

Merging of entities Merging is the reverse operation of partitioning. An
example of merging of entities is shown in Figure 7.15 in which the PERSON

and APARTMENT entities, linked by a one-to-one relationship OWNER, are
merged into a single entity having the attributes of both. This restructuring

Figure 7.14 Example of deletion of multi-value attributes.

Figure 7.15 Example of merging of entities.

Name

Addresss

Town

Number

Name

Town

Address
AGENCY

TELEPHONE AGENCYHOLDER
(1,1) (1,N)

Telephone(1,N)

AptNumber

AptAddress

AptNumber

AptAddress

Name

PERSON APARTMENTOWNER
(0,1) (1,1)

Address

Age

Name

Address

Age

PERSON

SSN

SSN

(0,1)

(0,1)

232 Chapter 7
Logical design

can be suggested by the fact that the most frequent operations on the PERSON

entity always require data relating to the apartment that the person
possesses. Thus, we wish to avoid the accesses necessary to retrieve this data
by means of the OWNER relationship. A side-effect of this restructuring is the
possible presence of null values because, according to the cardinalities, there
are people who do not own apartments. Therefore, there are no values for
them for the attributes APTADDRESS and APTNUMBER.

Merging is generally carried out on one-to-one relationships, rarely on
one-to-many relationships and hardly ever on many-to-many relationships.
This is because merging of entities linked by a one-to-many relationship or
a many-to-many relationship generates redundancies. In particular, it is easy
to verify that redundancies can appear in non-key attributes of the entity
that participates in the original relationship with a maximum cardinality
equal to N. We will come back to illustrate this point in Chapter 8.

Other types of partitioning and merging Partitioning and merging op-
erations can also be applied to relationships. This can be done for two
reasons. Firstly, in order to separate occurrences of a relationship that are
always accessed separately. Secondly, to merge two (or more) relationships
between the same entities into a single relationship, when their occurrences
are always accessed together. An example of partitioning of relationship is
given in Figure 7.16 in which the current players of a basketball team are
distinguished from past players.

Figure 7.16 Example of partitioning of a relationship.

Name

Position

Name

Position

Name

Town

Name

Town

DateJoined DateLeft

PLAYER TEAMCOMPOSITION
(1,N) (1,N)

DateJoined DateLeft
(0,1)

PRESENT
COMPOSITION

PAST
COMPOSITION

(0,1) (0,N)

(0,N)(0,N)

TEAMPLAYER

DateJoined

Section 7.2 233
Restructuring of E-R schemas

We should mention that the decisions about partitioning and merging can
be postponed until the physical design phase. Many of today’s database
management systems allow the specification of clusters of logical structures,
that is, grouping of tables, carried out at the physical level. Clusters allow
rapid access to data distributed throughout different logical structures.

7.2.4 Selection of primary identifiers
The choice of an identifier for each entity is essential to the translation into
the relational model, because of the major role keys play in a value-based
data model, as we discussed in Chapter 2. Furthermore, database
management systems require the specification of a primary key on which
auxiliary structures for fast access to data, known as indices, are
automatically constructed. Indices are discussed in more detail in
Section 9.5.5. Thus, where there are entities for which many identifiers (or
none) have been specified, it is necessary to decide which attributes
constitute the primary identifier.

The criteria for this decision are as follows.

• Attributes with null values cannot form primary identifiers. These
attributes do not guarantee access to all the occurrences of the
corresponding entity, as we pointed out while discussing keys for the
relational model.

• One or few attributes are preferable to many attributes. This ensures that
the indices are of limited size, less storage is needed for the creation of
logical links among the various relations, and join operations are
facilitated.

• For the same reason, an internal identifier with few attributes is
preferable to an external one, possibly involving many entities. This is
because external identifiers are translated into keys comprising the
identifiers of the entities involved in the external identification. Thus,
keys with many attributes would be generated.

• An identifier that is used by many operations to access the occurrences of
an entity is preferable to others. In this way, these operations can be
executed efficiently, since they can take advantage of the indices
automatically built by the dbms.

At this stage, if none of the candidate identifiers satisfies the above
requirements, it is possible to introduce a further attribute to the entity. This
attribute will hold special values (often called codes) generated solely for the
purpose of identifying occurrences of the entity.

It is advisable to keep track of the identifiers that are not selected as
primary but that are used by some operations for access to data. As we will
discuss in Chapter 9, for these identifiers we can explicitly define efficient
access structures, generally known as secondary indices. Secondary indices

234 Chapter 7
Logical design

can be used to access data as an alternative to those generated automatically
on the primary identifiers.

7.3 Translation into the relational model
The second step of logical design corresponds to a translation between
different data models. Starting from an e-r schema, an equivalent relational
schema is constructed. By equivalent, we mean a schema capable of
representing the same information. According to the restructuring made on
the e-r schema in the first step of logical design, it is sufficient to consider a
simplified version of the e-r model. In this version, a schema contains no
generalizations or multi-valued attributes and has only primary identifiers.

We will deal with the translation problem systematically, beginning with
the fundamental case, that of entities linked by many-to-many relationships.
This example demonstrates the general principle on which the whole
translation technique is based.

7.3.1 Entities and many-to-many relationships
Consider the schema in Figure 7.17.

Its natural translation into the relational model allows the following:

• for each entity, a relation with the same name, having as attributes the
same attributes as the entity and having its identifier as key;

• for the relationship, a relation with the same name, having as attributes
the attributes of the relationship and the identifiers of the entities
involved; these identifiers, taken together, form the key of the relation.

If the original attributes of entities or relationships are optional, then the
corresponding attributes of relations can assume null values.

The relational schema obtained is thus as follows:

EMPLOYEE(Number, Surname, Salary)
PROJECT(Code, Name, Budget)

PARTICIPATION(Number, Code, StartDate)

To make the meaning of the schema clearer it is helpful to do some
renaming. For example, in our case we can clarify the contents of the
PARTICIPATION relation by defining it as follows:

Figure 7.17 An e-r schema with a many-to-many relationship.

Surname

Number

Name

Code

EMPLOYEE PROJECTPARTICIPATION
(0,N) (0,N)

StartDate

BudgetSalary

Section 7.3 235
Translation into the relational model

PARTICIPATION(Employee, Project, StartDate)

The domain of the Employee attribute is a set of employee numbers and that
of the Project attribute is a set of project codes. There are referential
constraints between these attributes and the EMPLOYEE relation and the
PROJECT relation respectively.

Renaming is essential in some cases. For example, when we have recursive
relationships such as that in Figure 7.18.

This schema is translated into two relations:

PRODUCT(Code, Name, Cost)
COMPOSITION(Part, Subpart, Quantity)

In this schema, both the attributes Part and Subpart have product codes as
domain. There is in fact a referential constraint between each of them and the
PRODUCT relation.

The translation of a relationship involving more than two entities is similar
to the translation of a binary relationship. For example, consider the schema
with a ternary relationship in Figure 7.19.

This schema is translated into the following four relations:

Figure 7.18 e-r schema with recursive relationship.

Figure 7.19 e-r schema with ternary relationship.

PRODUCT

Cost
Name

Code

Quantity

COMPOSITION
(0,N)(0,N)

Part Subpart

Code

Type

SUPPLY
(0,N)

PRODUCTSUPPLIER

SupplierID

SupplierName

DEPARTMENT

Name Telephone

Quantity

(1,N)

(1,N)

236 Chapter 7
Logical design

SUPPLIER(SupplierID, SupplierName)
PRODUCT(Code, Type)

DEPARTMENT(Name, Telephone)
SUPPLY(Supplier, Product, Department, Quantity)

There are referential constraints for the schema thus obtained between the
attributes Supplier, Product, and Department of the SUPPLY relation and,
respectively, the SUPPLIER relation, the PRODUCT relation, and the DEPARTMENT

relation.
In this last type of translation, we need to verify whether the identifiers of

the entities, taken together, do not constitute a key but, instead, a redundant
superkey for the relation that represents the relationship of the e-r schema.
This can happen, for example, in the case of the schema in Figure 7.19, if
there is a sole supplier who supplies a given product to a given department.
Note that the cardinality is still valid, since this supplier can supply many
products to this or other departments. In this case, the key to the SUPPLY

relation would be made up of the attributes Product and Department only,
because, given a product and a department, the supplier is unambiguously
determined.

7.3.2 One-to-many relationships
Consider the schema with a one-to-many relationship in Figure 7.20.

According to the rule seen for many-to-many relationships, the translation
of this schema would be as follows:

PLAYER(Surname, DateofBirth, Position)
TEAM(Name, Town, TeamColours)

CONTRACT(PlayerSurname, PlayerDateOfBirth, Team, Salary)

Note that in the CONTRACT relation, the key consists of only the identifier
of PLAYER because the cardinalities of the relationship tell us that each player
has a contract with a single team. At this point, the relations PLAYER and
CONTRACT have the same key (the surname and the date of birth of a player)
and we can therefore merge them in a single relation with no risk of
redundancy. This is because there is a one-to-one correspondence between
the respective instances. Thus, for the schema in Figure 7.20, the following
translation is preferable, in which the PLAYER relation represents both the
entity and the relationship of the original e-r schema:

Figure 7.20 e-r schema with one-to-many relationships.

Name

Town

TeamColours

TEAMCONTRACT
(1,1)PLAYER

DateOfBirth

Surname

Position
Salary

(0,N)

Section 7.3 237
Translation into the relational model

PLAYER(Surname, DateofBirth, Position, Team, Salary)
TEAM(Name, Town, TeamColours)

In this schema, there is obviously the referential constraint between the
attribute Team of the PLAYER relation and the TEAM relation.

Note that the participation of the PLAYER entity is mandatory. If it were
optional (it is possible to have players who have no contract with a team),
then both of the translations with three relations and with two relations
would be valid. Even if in the second translation we have fewer relations, it
is in fact possible to have null values in the PLAYER relation on the attributes
Team and Salary. Conversely, in the first translation, this cannot happen.

We mentioned in Section 5.2.2, that n-ary relationships are usually many-
to-many. However, when an entity participates with a maximum cardinality
of one, we can save a relation, as happens with the translation of one-to-many
binary relationships. The entity that participates in the relationship with
maximum cardinality of one, is translated into a relation that includes the
identifiers of the other entities involved in the relationship (as well as
possible attributes of the relationship itself). There is, therefore, no longer
any need to represent the original relationship with a separate relation. For
example, assume that the PRODUCT entity participated in the relationship in
Figure 7.19 with a minimum and maximum cardinality of one. This means
that, for each product there is a sole supplier who supplies it and a sole
department that is supplied. Then the schema is translated as follows.

SUPPLIER(SupplierID, SupplierName)
DEPARTMENT(Name,Telephone)

PRODUCT(Code, Type, Supplier, Department, Quantity)

Here there are referential constraints between the attribute Supplier of the
PRODUCT relation and the SUPPLIER relation, and between the attribute
Department of the PRODUCT relation and the DEPARTMENT relation.

7.3.3 Entities with external identifiers
Entities with external identifiers give rise to relations having keys that
contain the identifier of the ‘identifying’ entities. Consider, for example, the
e-r schema shown in Figure 7.21.

The corresponding relational schema is as follows:

Figure 7.21 e-r schema with external identifier.

Name

Town

Address

UNIVERSITYENROLMENT
(1,1)STUDENT

RegistrationNumber

EnrolmentYear

Surname

(1,N)

238 Chapter 7
Logical design

STUDENT(RegistrationNumber, University, Surname, EnrolmentYear)
UNIVERSITY(Name, Town, Address)

in which there is a referential constraint between the attribute University of
the STUDENT relation and the UNIVERSITY relation.

As we can see, by representing the external identifier, we also represent
the relationship between the two entities. Remember that entities identified
externally always participate in the relationship with a minimum and
maximum cardinality of one. This type of translation is valid independently
of the cardinality with which the other entities participate in the
relationship.

7.3.4 One-to-one relationships
For one-to-one relationships, there are generally many possibilities for
translation. We will begin with one-to-one relationships with mandatory
participation for both the entities, such as that in the schema in Figure 7.22.

There are two symmetrical and equally valid possibilities for this type of
relationship:

HEAD(Number, Name, Salary, Department, StartDate)
DEPARTMENT(Name, Telephone, Branch)

With the referential constraint between the attribute Department of the HEAD

relation and the DEPARTMENT relation, or:

HEAD(Number, Name, Salary)
DEPARTMENT(Name, Telephone, Branch, Head, StartDate)

for which there is the referential constraint between the attribute Head of the
DEPARTMENT relation and the HEAD relation.

Since there is a one-to-one correspondence between the occurrences of the
two entities, a further option would seem possible in which we have a single
relation containing all the attributes in the schema. This option should be
discarded, however, because we must not forget that the schema that we are
translating is the result of a process in which precise choices were made
regarding the merging and the partitioning of entities. This means that, if the
restructured e-r schema has two entities linked by a one-to-one relation, we
found it convenient to keep the two concepts separate. It is therefore not
appropriate to merge them during the translation into the relational model.

Figure 7.22 e-r schema with one-to-one relationships.

Name

Telephone

Branch

MANAGEMENT
(1,1)

HEAD

Salary

Name

Number

(1,1)
DEPARTMENT

StartDate

Section 7.3 239
Translation into the relational model

Let us now consider the case of a one-to-one relationship with optional
participation for one of the entities, such as that in the schema in Figure 7.23.

In this case we have one preferable option:

EMPLOYEE(Number, Name, Salary)
DEPARTMENT(Name, Telephone, Branch, Head, StartDate)

for which there is the referential constraint between the attribute Head of the
DEPARTMENT relation and the EMPLOYEE relation. This option is preferable to
the one in which the relationship is represented in the EMPLOYEE relation
through the name of the department managed, because, for this attribute, we
could have null values.

Finally, consider the case in which both the entities have optional
participation. For example, assume that, in the schema in Figure 7.23, there
can be departments with no head (and thus the minimum cardinality of the
DEPARTMENT entity is equal to zero). In this case, there is a further possibility
that allows for three separate relations:

EMPLOYEE(Number, Name, Salary)
DEPARTMENT(Name, Telephone, Branch)

MANAGEMENT(Head, Department, StartDate)

Note that the key of the MANAGEMENT relation could be the attribute
Department as well. Here, we have referential constraints between the
attributes Head and Department of the MANAGEMENT relation and the EMPLOYEE

and DEPARTMENT relations, respectively.
This solution has an advantage of never having null values on the

attributes that implement the relationship. On the other hand, we need an
extra relation, with a consequent increase of the complexity of the database.
Therefore, the three-relation solution is to be considered only if the number
of occurrences of the relationship is very low compared to the occurrences of
the entities involved in the relationship. In this case, there is the advantage
of avoiding the presence of many null values.

7.3.5 Translation of a complex schema
To see how to proceed in a complex case, we will carry out a complete
example of a translation based on the schema shown in Figure 7.24.

Figure 7.23 e-r schema with one-to-one relationship

Name

Telephone

Branch

MANAGEMENT
(0,1)

EMPLOYEE

Salary

Name

Number

(1,1)
DEPARTMENT

StartDate

240 Chapter 7
Logical design

In the first phase, we translate each entity into a relation. The translation
of the entities with internal identifiers is immediate:

E3(A31, A32)
E4(A41,A42)
E5(A51, A52)

E6(A61, A62, A63)

Now we translate the entities with external identifiers. We obtain the
following relations:

E1(A11, A51, A12)
E2(A21, A11, A51, A22)

Note how E2 takes the attribute A11 and (transitively) the attribute A51,
which, together with A21, identifies E1. Some referential constraints are
defined for the relations produced (for example, there is a referential
constraint between the attribute A51 of E1 and E5).

We now move on to the translation of relationships. Relationships R1 and
R6 have already been translated because of the external identification of E2
and E1 respectively. We assume we have decided to obtain a minimum
number of relations in the final schema and we will try therefore to merge
relations where possible. We obtain the following modifications to be carried
out on the initial relations:

• in order to translate R3, we introduce, with appropriate renaming, the
attributes that identify E6, among those of E5, as well as the attribute AR3
of R3. Thus, we introduce A61R3, A62R3 and AR3 in E5;

Figure 7.24 An e-r schema for translation.

AR21

A21

A22

A52A51A12

AR22

(0,N)(0,1)
A11

(1,N)

E1

E2

E3

E5

E4

E6R1

R2

R6

R3

R4

R5

AR3

AR5

A61
A62
A63

A41

A42

A31

A32

(1,1)

(1,1)

(0,N)

(0,N)

(0,N)

(1,N)

(1,N)(0,1)

(0,1)(1,1)

Section 7.3 241
Translation into the relational model

• similarly for R4, we introduce A61R4 and A62R4 in E5;

• similarly for R5, we introduce A61R5, A62R5 and AR5 in E5.

Note that the renaming is indispensable in order to be able to distinguish
between the uses of the same attributes to represent different relationships
(for example, A61R3, which represents R3, and A61R4, which represents R4).
Finally, we translate the only many-to-many relationship:

R2(A21, A11, A51, A31, A41, AR21, AR22)

The relational schema obtained is therefore as follows:

E1(A11, A51, A12)
E2(A21, A11, A51, A22)

E3(A31, A32)
E4(A41,A42)

E5(A51, A52, A61R3, A62R3, AR3, A61R4, A62R4, A61R5, A62R5, AR5)
E6(A61, A62, A63)

R2(A21, A11, A51, A31, A41, AR21, AR22)

Let us note that we have obtained relations (E2 and R2) with keys
composed of many attributes. In such cases one could decide to introduce
simple keys (codes) either at this stage or earlier in the restructuring step as
discussed in Section 7.2.4.

7.3.6 Summary tables
The translations we have seen are summarized in Figure 7.25 and Figure 7.26.
For each type of configuration of e-r schema, a description of the case and
the possible translations are supplied.

In these tables, the symbols X and Y indicate any one of the allowed
cardinalities. The asterisks indicate the possibility of having null values on
the related attributes and the broken underline indicates an alternative key
to the one indicated by a solid underline.

7.3.7 Documentation of logical schemas
As with conceptual design, the result of logical design does not consist
merely of a simple database schema but also of the documentation associated
with it. First, much of the documentation of the conceptual schema produced
in the logical design phase can be inherited by the logical schema. In
particular, if the names of the concepts of the e-r schema are reused to
construct the relational schema, the business rules defined previously can
also be used for the documentation of this last. This documentation must be
completed with the referential constraints introduced by the translation.

In this context, we can adopt a simple graphical notation for the
representation of both the relations and the referential constraints existing
between the various relations. An example of this notation is given in

242 Chapter 7
Logical design

Figure 7.27, with reference to the translation of the schema in Figure 7.17. In
this representation keys of relations appear in bold face, arrows describe
referential constraints and the presence of asterisks on the attributes denotes
the possibility of having null values on them.

In this way, we can keep track of the relationships of the original e-r
schema. This is useful to identify easily, the join paths, that is, the join

Type Initial schema Possible translation

Binary
many-to-many
relationship

E1(, AE12)

E2(, AE22)

R(, , AR)

Ternary
many-to-many
relationship

E1(, AE12)

E2(, AE22)

E3(, AE32)

R(, , , AR)

One-to-many
relationship with

mandatory
participation

E1(, AE12, AE21, AR)

E2(, AE22)

One-to-many
relationship with

optional
participation

E1(, AE12)

E2(, AE22)

R(, , AR)

Alternatively:
E1(, AE21, ,)

E2(, AE22)

Relationship with
external identifiers

E1(, , AE11,AR)

E2(, AE22)

Figure 7.25 Translations from the e-r model to the relational.

E1

R

AE11
AE12

AR

(X,N)

(X,N)
AE21

E22A
E2

AE11

AE21

AE11 AE21

(X,N)

E 1

R

AE11
AE12

AR

AE21

(X,N)

(X,N)

E 3

AE31 AE32 AE22
E 2

AE11

AE21

AE31

AE11 AE21 AE31

E1

R

AE11
AE12

AR

AE21

(1,1)

(X,N)

E2
E22A

AE11

AE21

E1

R

AE11
AE12

AR

AE21

(0,1)

(X,N)

E2
E22A

AE11

AE21

AE11 AE21

AE11 AE21
* AR

*

AE21

E1

R

AE11
AE12

AR

AE21

(1,1)

(X,N)

E2
E22A

AE12 AE21

AE21

Section 7.3 243
Translation into the relational model

Type Initial schema Possible translation

One-to-one
relationship with

mandatory
participation

for both entities

E1(, AE12, , AR)

E2(, AE22)

Alternatively:
E2(, AE22, , AR)

E1(, AE12)

One-to-one
relationship with

optional
participation
for one entity

E1(, AE12, , AR)

E2(, AE22)

One-to-one
relationship with

optional
participation

for both entities

E1(, AE21)

E2(, AE22, ,)

Alternatively:

E1(, AE12, ,)

E2(, AE22)

Alternatively:

E1(, AE12)

E2(, AE22)

R(, , AR)

Figure 7.26 Translations from the e-r model to the relational.

Figure 7.27 Graphical representation of a translation of the schema in
Figure 7.17.

E1

R

AE11
AE12

AR

(1,1)

(1,1)
AE21

E22A
E2

AE11 AE21

AE21

AE21 AE11

AE11

E1

R

AE11
AE12

AR

(1,1)

(0,1)
AE21

E22A
E2

AE11 AE21

AE21

E1

R

AE11
AE12

AR

(0,1)

(0,1)
AE21

E22A
E2

AE11

AE21 AE11
* AR

*

AE11 AE21
* AR

*

AE21

AE11

AE21

AE11 AE21

PARTICIPATION

Employee StartDateProject

EMPLOYEE

Number Surname Salary Code Name Budget

PROJECT

244 Chapter 7
Logical design

operations necessary to reconstruct the information represented by the
original relationship. Thus, in the case in the example, the projects in which
the employees participate can be retrieved by means of the PARTICIPATION

relation.
Another example of the use of this notation is given in Figure 7.28, with

reference to the translation of the schema in Figure 7.20.

Note that this method also allows us to represent explicitly the
relationships of the original e-r schema, to which, in the equivalent
relational schema, no relation corresponds (the CONTRACT relationship in the
example in question).

As a final example, Figure 7.29 shows the representation of the relational
schema obtained in Section 7.3.5. Now, the logical links between the various
relations can be easily identified.

Figure 7.28 Graphical representation of a translation of the schema in
Figure 7.20.

Figure 7.29 Graphical representation of the relational schema obtained in
Section 7.3.5.

PLAYER

TEAM

CONTRACT

Surname DateOfBirth Team Salary Position

Name Town TeamColours

E6

A61 A62 A12

E2

A21 A11 A51 A22

R2

A21 A11 A51 A31 A41 AR21 AR22

A31 A32

E3

A41 A42

E4

A51 A52 A61R3 A62R3 AR3 A61R4* A62R4* A61R5* A62R5* AR5

E5

R1

E1

A11 A12A51

R3

R6

R4

R5

Section 7.4 245
An example of logical design

In Appendix A, we will see that a variant of the graphical formalism
shown is actually adopted by the Access database management system, both
to represent relational schemas and to express join operations.

7.4 An example of logical design
Let us return to the example in the preceding chapter regarding the training
company. The conceptual schema is shown again, for convenience, in
Figure 7.30.

The following operations were planned on the data described by this
schema:

• operation : insert a new trainee indicating all his or her data;

• operation : assign a trainee to an edition of a course;

• operation : insert a new instructor indicating all his or her data and the
courses he or she is qualified to teach;

• operation : assign a qualified instructor to an edition of a course;

• operation : display all the information on the past editions of a course
with title, class timetables and number of trainees;

• operation : display all the courses offered, with information on the
instructors who are qualified to teach them;

• operation : for each instructor, find the trainees for all the courses he or
she is teaching or has taught;

Figure 7.30 The e-r schema of a training company.

Marks

EMPLOYER

Address Name Phone

PAST
EMPLOYMENT

CURRENT
ATTENDANCE

PAST
ATTENDANCE

EndDate StartDateStartDate

CURRENT
EMPLOYMENT

TRAINEE

EMPLOYEE

SSN
Surname

Sex

Code

Age
TownOfBirth

Position Level ProfessionalTitle Expertise

(0,1)

CLASS

COURSE
EDITION

COMPOSITION

(1,1)

(0,1) (0,N)
PAST

TEACHING

CURRENT
TEACHING

QUALIFICATIONTYPE

Time Room Date

(1,N)

(0,1) (0,1)(0,1) (0,N)

(0,N)(0,N)

COURSE

Name Code

INSTRUCTOR

FREELANCE PERMANENT

(1,N)(1,N)

(0,N)

(1,1)
NoOfPart

SSN Surname
Phone

Age

TownOfBirth
StartDate

EndDate

(1,N)

(1,1)

(0,N)

(0,N)

(0,N)

PROFESSIONAL

246 Chapter 7
Logical design

• operation : carry out a statistical analysis of all the trainees with all the
information on them, on the edition of courses they have attended and on
the marks obtained.

7.4.1 Restructuring phase
The database load is shown in Figure 7.31. We will now carry out the various
restructuring tasks. The various transformations are shown together in the
final schema in Section 7.33.

Analysis of redundancies There is only one redundant piece of data in
the schema: the attribute NumberOfParticipants in COURSEEDITION, which can
be derived from the relationships CURRENTATTENDANCE and PASTATTENDANCE.
The storage requirement is 4 × 1000 = 4000 bytes, having assumed that four
bytes are necessary for every occurrence of COURSEEDITION to store the
number of participants. The operations involved with this information are 2,
5 and 8. The last of these can be left out because it deals with an infrequent
operation that is carried out in batch mode. We will therefore evaluate the
cost of operations 2 and 5 in the cases of the presence or absence of
redundant data. We can deduce from the table of volumes that each edition
of the course has, on average, eight classes and 10 participants. From this data
we can easily derive the access tables shown in Figure 7.32.

Figure 7.31 Tables of volumes and operations for the schema in Figure 7.30.

Table of volumes
Concept Type Volume

Class E 8000
CourseEdition E 1000
Course E 200
Instructor E 300
Freelance E 250
Permanent E 50
Trainee E 5000
Employee E 4000
Professional E 1000
Employer E 8000
PastAttendance R 10000
CurrentAttendance R 500
Composition R 8000
Type R 1000
PastTeaching R 900
CurrentTeaching R 100
Qualification R 500
CurrentEmployment R 4000
PastEmployment R 10000

Table of operations
Operation Type Frequency

Op 1 I 40 per day
Op 2 I 50 per day
Op 3 I 2 per day
Op 4 I 15 per day
Op 5 I 10 per day
Op 6 I 20 per day
Op 7 I 5 per day
Op 8 B 10 per month

Section 7.4 247
An example of logical design

From the access tables we obtain:

• with redundancy: for operation 2 we have 2 × 50 = 100 read accesses and
as many again in write accesses per day, while, for operation 5, we have 19
× 10 = 190 read accesses per day for a total of 490 accesses per day (having
given double weight to the write accesses);

• without redundancy: for operation 2 we have 50 read accesses per day
and as many again in write accesses per day, while, for operation 5, we
have 29 × 10 = 290 read accesses per day, for a total of 440 accesses per
day (having given double weight to write accesses).

Thus, when the redundancy is present, we have disadvantages both in
terms of storage and access time. We will therefore delete the attribute
NumberOfParticipants from the entity COURSEEDITION.

Removing generalizations There are two generalizations in the schema:
that relating to the instructors and that relating to the trainees. For the
instructors, it can be noted that the relevant operations, that is, 3, 4, 6 and
7, make no distinction between freelance instructors and those employed on
a permanent basis by the company. Furthermore, the corresponding entities
have no specific attributes for them. Therefore, we decide to delete the child
entities of the generalization and add an attribute Type to the INSTRUCTOR

entity. This attribute has a domain made up of the symbols F (for freelance)
and P (for permanent).

For the trainees, we observe that in this case too, the operations involving
this data (operations 1, 2 and 8) make no substantial difference between the
various types of occurrence. We can see, however, from the schema that
professionals and employees both have specific attributes. We should,

Figure 7.32 Access table for the schema in Figure 7.30.

Accesses with redundancy
Operation 2

Concept Cnstr Acc Type

Trainee E 1 R
CurrentAtt’nce R 1 W
CourseEdition E 1 R
CourseEdition E 1 W

Operation 5

Concept Cnstr Acc Type

CourseEdition E 1 R
Type R 1 R
Course E 1 R
Composition R 8 R
Class E 8 R

Accesses without redundancy
Operation 2

Concept Cnstr Acc Type

Trainee E 1 R
CurrentAtt’nce R 1 W

Operation 5

Concept Cnstr Acc Type

CourseEdition E 1 R
Type R 1 R
Course E 1 R
Composition R 8 R
Class E 8 R
PastAttendance R 10 R

248 Chapter 7
Logical design

therefore, leave the entities EMPLOYEE and PROFESSIONAL, adding two one-to-
one relationships between these entities and the TRAINEE entity. In this way,
we can avoid having attributes with possible null values on the parent entity
of the generalization and we can reduce the dimension of the relations. The
result of the restructuring can be seen in the schema in Figure 7.33.

Partitioning and merging of concepts From the analysis of data and
operations, many potential restructurings of this type can be identified. The
first relates to the COURSEEDITION entity. We can see that operation 5 relates
only to the past editions and that the relationships PASTTEACHING and
PASTATTENDANCE refer only to these editions of the course. Thus, in order to
make the above operation more efficient, we could decompose the entity
horizontally to distinguish the current editions from the past ones. The
disadvantage of this choice, however, is that the relationships COMPOSITION

and TYPE would be duplicated. Furthermore, operations 7 and 8 do not make
great distinctions between current editions and past ones and would be more
expensive, because they would require visits to two distinct entities.
Therefore, we will not partition this entity.

Two other possible restructurings that we could consider are the merging
of the relationships PASTTEACHING and PRESENTTEACHING and the similar
relationships PASTATTENDANCE and PRESENTATTENDANCE. In both cases, we are
dealing with two similar concepts between which some operations make no
difference (7 and 8). The merging of these relationships would produce
another advantage: it would no longer be necessary to transfer occurrences
from one relationship to another at the end of a course edition. A negative
factor is the presence of the attribute Mark, which does not apply to the
current editions and could thus produce null values. For the rest, the table
of volumes tells us that the estimated number of occurrences of the
CURRENTATTENDANCE relationship is 500. Therefore, supposing that we need
four bytes to store the marks, the waste of storage would be only two Kbytes.
We can decide therefore to merge the two pairs of relationships as described
in Figure 7.33. We must add a constraint that is not expressible by the
schema, which requires that an instructor cannot teach more than one
edition of a course in any one period. Similarly, a participant cannot attend
more than one edition of a course at a particular time.

Finally, we need to remove the multi-valued attribute Telephone from the
INSTRUCTOR entity. To do this we must introduce a new entity TELEPHONE

linked by a one-to-many relationship with the INSTRUCTOR entity, from which
the attribute will be removed.

It is interesting to note that some decisions made in this phase reverse, in
some way, decisions made during the conceptual design phase. This is not
surprising however: the aim of conceptual design is merely to represent the
requirements in the best way possible, without considering the efficiency of
the application. In logical design we must instead try to optimize the
performance and re-examining earlier decisions is inevitable.

Section 7.4 249
An example of logical design

Selection of primary identifiers Only the TRAINEE entity presents two
identifiers: the social security number and the internal code. It is far
preferable to chose the second. A social security number can require several
bytes while an internal code, which serves to distinguish 5000 occurrences
(see volume table) requires no more than two bytes.

There is another pragmatic consideration to be made regarding identifiers,
to do with the COURSEEDITION entity. This entity is identified by the StartDate
attribute and by the COURSE entity. This gives a composite identifier that, in
a relational representation, must be used to implement two relationships
(ATTENDANCE and TEACHING). We can see, however, that each course has a
code and that the average number of editions of a course is five. This means
that it is sufficient to add a small integer to the course code to have an
identifier for the course editions. This operation can be carried out efficiently
and accurately during the creation of a new edition. It follows that it is
convenient to define a new identifier for the editions of the courses that
replaces the preceding external identifier. This is an example of analysis and
restructuring that is not in any of the general categories we have seen, but in
practice can be encountered.

This is the end of the restructuring phase of the original e-r schema. The
resulting schema is shown in Figure 7.33.

7.4.2 Translation into the relational model
By following the translation techniques described in this chapter, the e-r
schema in Figure 7.33 can be translated into the following relational schema.

COURSEEDITION(Code, StartDate, EndDate, Course, Instructor)
CLASS(Time, Room, Date, Edition)

INSTRUCTOR(SSN, Surname, Age, TownOfBirth, Type)

Figure 7.33 The e-r schema of Figure 7.30 after the restructuring phase.

Marks

EMPLOYER

Address Name Phone

PAST
EMPLOYMENT

ATTENDANCE

EndDate StartDateStartDate

CURRENT
EMPLOYMENT

TRAINEE

SSN
Surname

Sex

Code

Age
TownOfBirth

CLASS

COURSE
EDITION

COMPOSITION

(1,1)

TEACHING

QUALIFICATIONTYPE

Time Room Date

(1,N)

(1,1) (0,N)(0,N) (1,N)

(0,1)

COURSE

Name Code

INSTRUCTOR

(1,N)(1,N)

(0,N)

(1,1)

SSN Surname

Age

TownOfBirth
StartDate

EndDate

(1,N)

(1,1)

(0,N)

(0,N)

(0,N)

EMPLOYEE

Position Level ProfessionalTitle Expertise

(0,1)

PROFESSIONAL

EMPLOYMENT
DATA

PROFESSIONAL
DATA

(0,1) (0,1)

(1,1) (1,1)

Code

TELEPHONE

HOLDER

Number

(1,N)

(1,1)

Type

250 Chapter 7
Logical design

TELEPHONE(Number, Instructor)
COURSE(Code, Name)

QUALIFICATION (Course, Instructor)
TRAINEE (Code, SSN, Surname, Age, TownOfBirth, Sex)

ATTENDANCE(Trainee, Edition, Marks*)
EMPLOYER(Name, Address, Telephone)

PASTEMPLOYMENT(Trainee, Employer, StartDate, EndDate)
PROFESSIONAL(Trainee, Expertise, ProfessionalTitle*)

EMPLOYEE(Trainee, Level, Position, Employer, StartDate)

The logical schema will naturally be completed by a support document
that describes, among other things, all the referential constraints that exist
between the various relations. This can be done using the graphical notation
introduced in Section 7.3.7.

7.5 Logical design using CASE tools
The logical design phase is generally supported by all the case tools for
database development available on the market. In particular, since the
translation to the relational model is based on precise criteria, it is carried out
by these systems almost automatically. On the other hand, the restructuring
step, which precedes the actual translation, is difficult to automate and the
various products provide little or no support for it. For example, some
systems automatically translate all the generalizations according to just one
of the methods described in Section 7.2.2. We have seen, however, that the
restructuring of an e-r schema is a fundamental activity of the design for an
important reason. Namely, it can provide solutions to efficiency problems
that should be resolved before carrying out the translation and that are not
relevant to conceptual design. The designer should therefore take care to
handle this aspect without putting too much confidence into the tool
available.

An example of the output of the translation step using a database design
tool is shown in Figure 7.34. The example refers to the conceptual schema of
Figure 6.14. The resulting schema is shown in graphical form, which
represents the relational tables together with the relationships of the original
schema. Note how the many-to-many relationship between EMPLOYEE and
PROJECT has been translated into a relation. Also, note how new attributes
have been added to the relations originating from entities to represent the
one-to-many and one-to-one relationships. In the figure, the sql code also
appears, generated automatically by the system. It allows the designer to
define the database using a specific database management system. Some
systems allow direct connection with a dbms and can construct the
corresponding database automatically. Other systems provide tools to carry
out the reverse operation: reconstructing a conceptual schema based on an
existing relational schema. This operation is called reverse engineering and

Section 7.7 251
Exercises

is particularly useful for the analysis of a legacy system, possibly oriented
towards a migration to a new database management system.

7.6 Bibliography
Logical design is covered in detail in the books by Batini, Ceri and
Navathe [7], Teorey [84] and Teorey and Fry [85]. The problem of translating
an e-r schema into the relational model is discussed in the original paper by
Chen [23] and in a paper by Teorey, Yang and Fry [86], which considers a
detailed list of cases.

7.7 Exercises
Exercise 7.1 Consider the e-r schema in Exercise 6.4. Make hypotheses on
the volume of data and on the operations possible on this data and, based
on these hypotheses, carry out the necessary restructuring of the schema.
Then carry out the translation to the relational model.

Exercise 7.2 Translate the e-r schema on the personnel of a company
(shown again for convenience in Figure 7.35) into a schema of the relational
model.

Figure 7.34 Logical design with a case tool.

252 Chapter 7
Logical design

Exercise 7.3 Translate the e-r schema obtained in Exercise 6.6 into a
relational schema.

Exercise 7.4 Define a relational schema corresponding to the e-r schema
obtained in Exercise 6.10. For the restructuring phase, indicate the possible
options and choose one, making assumptions on the quantitative
parameters. Assume that the database relates to certain apartment blocks,
having on average five buildings each, and that each building has on
average twenty apartments. The main operations are the registration of a
tenant (50 per year per block) and recording the payment of rent.

Exercise 7.5 Translate the e-r schema of Figure 7.36 into a relational
database schema. For each relation indicate the key and, for each attribute,
specify if null values can occur (supposing that the attributes of the e-r
schema do not admit null values).

Figure 7.35 An e-r schema on the personnel of a company.

Figure 7.36 An e-r schema to translate.

Code
Surname

Salary

Age

Name

Budget

ReleaseDate

EMPLOYEE

BRANCH

City

Phone

Name

Number
Street

PostCode
Address

StartDate

MANAGEMENT

MEMBERSHIP DEPARTMENT

COMPOSITION

StartDate
PARTICIPATION

(0,N)

(0,1)

(0,1) (1,1)

(1,N)

(1,N)

(0,1)

(1,N)

(1,N)

(1,1)

PROJECT

AR4
A13A12A11

E2

E1 E3

R2

R1

R4

R5

A31

A21

A22

(1,1)

(0,N)

(0,N)
(0,N)(1,1)

(0,1)

E4

R3

A41 (1,1)

(0,N)

(1,1)(0,N)

Section 7.7 253
Exercises

Exercise 7.6 Take the e-r schema in Figure 7.37. Restructure the schema,
deleting the generalizations, supposing the most important operations are as
follows, each carried out 10 times per day:

• operation 1111:::: read access to attributes A21, A22, A11, A12, A13 for all the
occurrences of entity E2;

• operation : read access to attributes A41, A42, A31, A11, A12, A13 for all the
occurrences entity E4;

• operation : read access to attributes A51, A52, A31, A11, A13 for all the
occurrences entity E5.

Exercise 7.7 Consider the conceptual schema in Figure 7.38, which
describes bank account data. Observe that a client can have more than one
account and that a single account can belong to many clients.
Suppose that on this data, the following main operations are defined:

• operation : open an account for a client;

• operation : read the total balance for a client;

• operation : read the balance for an account;

• operation : withdraw money from an account by means of a transaction
at the bank counter;

• operation : deposit money into an account by means of a transaction at
a bank counter;

• operation : show the last 10 transactions for an account;

• operation : register an external transaction for an account;

• operation : prepare the monthly statement of an account;

Figure 7.37 An e-r schema with generalizations.

E2 E3

E4 E5

E1

A22

A21

A41

A42
A52

A51

A31

A11

A12

A13

254 Chapter 7
Logical design

• operation : find the number of accounts held by a client;

• operation : show the transactions for the last three months of accounts
of each client with a negative balance.

Finally, suppose that in the operation stage, the database load for this
application is that shown in Figure 7.39.

Carry out the logical design phase on the e-r schema, taking into account
the data provided. In the restructuring phase, keep in mind the fact that
there are two redundancies on the schema: the attribute TotalBalance and
NumberOfAccounts in the entity CLIENT. These can be derived from the
relationship ACCOUNTHOLDER and from the ACCOUNT entity.

Figure 7.38 An e-r schema to translate.

Figure 7.39 Volumes and operations tables for the schema in Figure 7.38.

ACCOUNT

Balance AccountNumber

(1,N) ACCOUNT
HOLDER

CLIENT

TotalBalance NumberOfAccounts

CreditLimit

PERSON COMPANY

Tax
Number

Capital

(1,N)

OPERATION

(1,N)

Amount
Date Type

TransactionNumber

TRANSACTION

(1,N)
Name

Address

ClientNumber

Volumes
Concept Type Volume

Client E 15000
Account E 20000
Transaction E 600000
Person E 14000
Company E 1000
AccountHolder R 30000
Operation R 800000

Operations
Operation Type Frequency

Op 1 I 100 per day
Op 2 I 500 per day
Op 3 I 1000 per day
Op 4 I 2000 per day
Op 5 I 1000 per day
Op 6 I 200 per day
Op 7 B 1500 per day
Op 8 B 1 per month
Op 9 I 75 per day
Op 10 I 20 per day

8
8Normalization

In this chapter, we will study some properties, known as normal forms,
which we can use to evaluate the quality of a relational database. We will see
that when a relation does not satisfy a normal form, then it presents
redundancies and produces undesirable behaviour during update
operations. This principle can be used to carry out quality analysis on
relational databases and so constitutes a useful tool for database design. For
the schemas that do not satisfy a normal form, we can apply a procedure
known as normalization. Normalization allows the non-normalized schemas
to be transformed into new schemas for which the satisfaction of a normal
form is guaranteed.

There are two important points to be clarified. First, the design techniques
seen in the preceding chapters usually allow us to obtain schemas that satisfy
a normal form. In this framework, normalization theory constitutes a useful
verification tool, which indicates amendments, but cannot substitute for the
wider range of analysis and design techniques described in Chapter 5.
Second, normalization theory has been developed in the context of the
relational model and for this reason, it provides means and techniques for the
analysis of the outcomes of logical design. We will see, however, that the
same techniques can be used, with minor variations, on Entity-Relationship
schemas. Normalization can also be used earlier, for example, during the
quality analysis step of the conceptual design.

We will deal with this subject in stages, first discussing the problems
(redundancies and anomalies) that can be verified in a relational schema, and
then deriving systematic techniques for analysis and normalization. We will
discuss later the same principles with reference to the Entity-Relationship
model.

256 Chapter 8
Normalization

8.1 Redundancies and anomalies
We will use an example to illustrate the basic principles. Consider the
relation in Figure 8.1. The key is made up of the attributes Employee and

Project. We can also easily verify that the relation satisfies the following
properties:

1. the salary of each employee is unique and depends only on the
employee; it is independent of the projects on which the employee is
working;

2. the budget of each project is unique and depends only on the project; it
is independent of the employees who are working on it.

These facts have certain consequences for the contents of the relation and
for the operations that can be carried out on it. We will limit our discussion
to the first property, leaving the analysis of the second as an exercise.

• The value of the salary of each employee is repeated in all the tuples
relating to it: therefore there is a redundancy; if, for example, an employee
participates in 20 projects, his or her salary will be repeated 20 times.

• If the salary of an employee changes, we have to modify the value in all
the corresponding tuples. This inconvenient process, which makes it
necessary to carry out many modifications simultaneously, is known as
update anomaly.

• If an employee stops working on all the projects but does not leave the
company, all the corresponding tuples are deleted and so, even the basic
information, name and salary, which is not related to projects, is lost. This
would require us to keep a tuple with a null value for the attribute

Figure 8.1 Example of a relation with anomalies.

Employee Salary Project Budget Function

Brown 20 Mars 2 technician
Green 35 Jupiter 15 designer
Green 35 Venus 15 designer
Hoskins 55 Venus 15 manager
Hoskins 55 Jupiter 15 consultant
Hoskins 55 Mars 2 consultant
Moore 48 Mars 2 manager
Moore 48 Venus 15 designer
Kemp 48 Venus 15 designer
Kemp 48 Jupiter 15 manager

Section 8.2 257
Functional dependencies

Project, but, since Project is part of the key, this is not allowed, as we saw
in Chapter 2. This problem is known as the deletion anomaly.

• Similarly, if we have information on a new employee, we cannot insert it
until the employee is assigned to a project. This is known as the insertion
anomaly.

An intuitive explanation for the presence of these undesirable phenomena
can be as follows. We have used a single relation to represent items of
information of different types. In particular, in this relation the following are
represented: employees with their salaries, projects with their budgets and
participation of the employees in the projects with their functions.

In general, we can arrive at the following conclusions, which highlight the
defects presented by a relation whose tuples each include various items of
information, representing independent real-world concepts.

• Items of information often need to be repeated, that is, to appear in
different tuples.

• If some information is repeated redundantly, the updating must be
repeated for each occurrence of the repeated data. Now, the relational
languages, such as sql, all allow the specification of multiple updates
using a single command. However, this resolves the problem only from
the point of view of the programmer and not from that of the system. The
reason is that all the tuples involved in the update must be modified and
thus it is necessary to access each one of them physically.

• Problems can occur with the deletion of a tuple in the case where just one
item of information it expresses is no longer valid. The cancellation can
cause the deletion of all the information in question, even the portion that
is still valid.

• The insertion of a single item of information in a relation is not possible
without values for the entire set of items making up a complete tuple (or
at least its primary key).

8.2 Functional dependencies
To systematically study the principles introduced informally above, it is
necessary to use a specific notion, functional dependency. This is a particular
integrity constraint for the relational model, which, as the name suggests,
describes functional relationships among the attributes of a relation.

Let us look again at the relation in Figure 8.1. We have seen that the salary
of each employee is unique and thus each time a certain employee appears in
a tuple, the value of his or her salary always remains the same. We can thus
say that the value of the attribute Salary functionally depends on the value of
the Employee attribute. That is, a function exists that associates with each
Employee value in the relation, a single value for the Salary attribute. A similar

258 Chapter 8
Normalization

argument can be made for the relationship between the attributes Project and
Budget because the value of the budget functionally depends on the value of
the project.

We can formalize this principle as follows. Given a relation r on a schema
R(X) and two non-empty subsets Y and Z of the attributes X, we say that
there is a functional dependency on r between Y and Z, if, for each pair of
tuples t1 and t2 of r having the same values on the attributes Y, t1 and t2 also
have the same values of the Z attributes.

A functional dependency between the attributes Y and Z is generally
indicated by the notation Y → Z and, as with other integrity constraints, is
associated with a schema: a valid relation on that schema has to satisfy this
functional dependency. Given a functional dependency Y → Z, we will call
Y the left hand side and that Z the right hand side of the dependency.
Returning to our example, we can thus say that on the relation in Figure 8.1
there are the functional dependencies:

Employee → Salary
Project → Budget

There are some observations to be made on functional dependencies. The
first is as follows: based on the given definition, we can state that, in our
relation, this functional dependency is also satisfied:

Employee Project → Project

That is, two tuples with the same values on each of the attributes Employee
and Project have the same value on the attribute Project, which is one of them.
This is a ‘trivial’ functional dependency because it asserts an obvious
property of the relation. Functional dependencies should instead be used to
describe significant properties of the application that we are representing.
We then say that a functional dependency Y → Z is non-trivial if no attribute
in Z appears among the attributes of Y.

Note that a ‘hybrid’ functional dependency of the type

Project → Project Budget

which contains a trivial property (a project depends on itself), can be made
non-trivial by deleting from the right hand side of the dependency, all the
attributes that also appear in the left hand side. It is easy, in fact, to
demonstrate that if the functional dependency Y → Z is valid, then the
functional dependency Y → W is also valid, where W is a subset of Z. From
here on, we will refer only to functional dependencies that are non-trivial,
often omitting the adjective for brevity.

A second observation on functional dependencies concerns their link with
the key constraint. If we take a key K of a relation r, we can easily verify that
there is a functional dependency between K and any other attribute of r. This
is because, by the definition of key constraint, there cannot exist two tuples

Section 8.3 259
Boyce–Codd normal form

with the same values on K. Referring to our example, we have said that the
attributes Employee and Project form a key. We can then affirm that, for
example, the functional dependency Employee Project → Function is valid. In
particular, there will be a functional dependency between the key of a
relation and all the other attributes of the schema of the relation. In our case
we have:

Employee Project → Salary Budget Function

We can therefore conclude by saying that the functional dependency
constraint generalizes the key constraint. More precisely, we can say that a
functional dependency Y → Z on a schema R(X) degenerates into the key
constraint if the union of Y and Z is equal to X. In this case, Y is a (super)key
for the R(X) schema.

8.3 Boyce–Codd normal form

8.3.1 Definition of Boyce–Codd normal form
In this section, we will formalize the ideas illustrated in Section 8.1, in the
light of what we have said on functional dependencies. Let us start by
observing that, in our example, the two properties causing anomalies
correspond exactly to attributes involved in functional dependencies:

• the property ‘the salary of each employee is unique and depends only on
the employee, independently of the project on which he or she is
working’ can be formalized by means of the functional dependency
Employee → Salary;

• the property ‘the budget of each project is unique and depends only on
the project, independently of the employees who are working on it’
corresponds to the functional dependency Project → Budget.

Furthermore, it is appropriate to note that the Function attribute indicates,
for each tuple, the role played by the employee in the project. This role is
unique, for each employee-project pair. We can model this property too
using a functional dependency:

• The property ‘in each project, each of the employees involved can carry
out only one function’ corresponds to the functional dependency
Employee Project → Function. As we have mentioned in the previous
section, this is also a consequence of the fact that the attributes Employee
and Project form the key of the relation.

We saw in Section 8.1, how the first two properties (and thus the
corresponding functional dependencies) generate undesirable redundancies
and anomalies. The third dependency is different. It never generates
redundancies because, having Employee and Project as a key, the relation

260 Chapter 8
Normalization

cannot contain two tuples with the same values of these attributes (and thus
of the Function attribute). Also, from a conceptual point of view, we can say
that it cannot generate anomalies, because each employee has a salary (and
one only) and each project has a budget (and one only), and thus for each
employee-project pair we can have unique values for all the other attributes
of the relation. In some cases, such values might not be available. In these
cases, since they are not part of the key, we would simply replace them with
null values without any problem. We can thus conclude that the
dependencies:

Employee → Salary
Project → Budget

cause anomalies, whereas the dependency

Employee Project → Function

does not. The difference, as we have mentioned, is that Employee Project is a
superkey of the relation. All the reasoning that we have developed with
reference to this specific example, is more general. Indeed: redundancies and
anomalies are caused by the functional dependencies X → Y that allow the
presence of many equal tuples on the attributes in X. That is, from the
functional dependencies X → Y such that X does not contain a key.

We will formalize this idea by introducing the notion of Boyce–Codd
normal form (bcnf), which takes the name from its inventors. A relation r is
in Boyce–Codd normal form if for every (non-trivial) functional dependency
X → Y defined on it, X contains a key K of r. That is, X is a superkey for r.

Anomalies and redundancies, as discussed above, do not appear in
databases with relations in Boyce–Codd normal form, because the
independent pieces of information are separate, one per relation.

8.3.2 Decomposition into Boyce–Codd normal form
Given a relation that does not satisfy Boyce–Codd normal form, we can often
replace it with one or more normalized relations using a process called
normalization. This process is based on a simple criterion: if a relation
represents many real-world concepts, then it is decomposed into smaller
relations, one for each concept.

Let us show the normalization process by means of an example. We can
eliminate redundancies and anomalies for the relation in Figure 8.1 if we
replace it with the three relations in Figure 8.2, obtained by projections on
the sets of attributes corresponding respectively to the three items of
information mentioned above. The three relations are in Boyce–Codd normal
form. Note that we have constructed three relations so that each dependency
corresponds to a different relation, the key of which is actually the left hand
side of the same dependency. In this way, the satisfaction of the Boyce–Codd
normal form is guaranteed, by the definition of this normal form itself.

Section 8.3 261
Boyce–Codd normal form

In the example, the separation of the dependencies (and thus of the
properties represented by them) is facilitated by the structure of the
dependency itself, ‘naturally’ separated and independent of the others. In
many cases, the decomposition can be carried out by producing as many
relations as there are functional dependencies (or rather, the functional
dependencies with different left hand sides). Unfortunately, some
dependencies are found to be complex: it might be unnecessary (or
impossible) to base the decomposition on all the dependencies and it can be
difficult to identify the ones on which we must base the decomposition. We
will clarify this point by looking at a simple example.

It is easy to verify that the relation in Figure 8.3 satisfies the dependencies
Employee → Category and Category → Salary. By proceeding in the way
described above, we could easily obtain a database with two relations, both
in Boyce–Codd normal form. On the other hand, for the same relation, we
could have identified both the functional dependencies Category → Salary
and Employee → Category Salary (rather than Employee → Category). Note that
this dependency describes the situation with more or less the same accuracy.
In this case however, we would have had no hints on how to generate a
decomposition into Boyce–Codd normal form, because obviously the
dependency Employee → Category Salary covers all the attributes and thus
does not suggest any decomposed relation. This simple example shows that
the identification of dependencies can cause difficulties with decomposition.

Figure 8.2 Decomposition of the relation in Figure 8.1.

Employee Salary

Brown 20
Green 35
Hoskins 55
Moore 48
Kemp 48

Project Budget

Mars 2
Jupiter 15
Venus 15

Employee Project Function

Brown Mars technician
Green Jupiter designer
Green Venus designer
Hoskins Venus manager
Hoskins Jupiter consultant
Hoskins Mars consultant
Moore Mars manager
Moore Venus designer
Kemp Venus designer
Kemp Jupiter manager

262 Chapter 8
Normalization

We can imagine what could happen when the relation has many attributes
and several functional dependencies are defined on it.

A complete study of normalization would require, as a prerequisite, a
detailed examination of the properties of functional dependency. The
complete development of these concepts goes beyond the scope of this book.
Given the importance of the subject, however, we intend to give an informal
description of some of the most important aspects.

It should be noted, moreover, that we study normal forms mainly as
auxiliary quality control tools for relations and not as a design technique.
The design techniques discussed in preceding chapters are intended for the
generation of relations (in the logical design phase) based on entities and
relationships that appear in the conceptual schema (produced during the
conceptual design phase). The conceptual design phase serves to identify the
fundamental concepts of the application to model, separating them into
distinct entities or relationships. Since the translation is then carried out
considering each entity and each relationship separately, it is evident that if
the conceptual design is carried out correctly, the relational schema
produced during the logical design phase will be already normalized.

In this context, normalization theory is in any case useful as a verification
tool for the products of both conceptual and logical design. We will re-
examine this subject in more detail in Section 8.6.

8.4 Decomposition properties
In this section, we examine the concept of decomposition in more detail. We
explain how not all decompositions are desirable and identify some essential
properties that must be satisfied by a ‘good’ decomposition.

8.4.1 Lossless decomposition
In order to discuss the first property, let us examine the relation in

Figure 8.4. This relation satisfies the functional dependencies:

Employee → Branch
Project → Branch

Figure 8.3 A relation with various functional dependencies.

Employee Category Salary

Hoskins 3 30
Green 3 30
Brown 4 50
Moore 4 50
Kemp 5 72

Section 8.4 263
Decomposition properties

that specify the fact that each employee works at a single branch and that
each project is developed at a single branch. Observe that each employee can
work on more than one project even if, based on functional dependencies,
they must all be projects allocated to the branch to which he or she belongs.

Proceeding in the same way as before, that is, separating on the basis of
dependencies, we will find it suitable to decompose the relation into two
parts:

• a relation on the attributes Employee and Branch, corresponding to the
dependency Employee → Branch;

• a second relation on the attributes Project and Branch, corresponding to
the functional dependency Project → Branch.

The instance in Figure 8.4 would be decomposed into the two relations in
Figure 8.5 by projecting on the involved attributes.

Let us examine the two relations in detail. In particular, consider how it
would be possible to reconstruct information on the participation of the
employees in the projects. The only possibility is to use the attribute Branch,
which is the only attribute common to the two relations: we can thus link an
employee to a project if the project is developed at the branch where the
employee works. Unfortunately, however, in this case we are not able to
reconstruct exactly the information in the original relation: for example the
employee called Green works in Birmingham and the Saturn project is being
developed in Birmingham, but in fact Green does not actually work on that
project.

Figure 8.4 A relation to illustrate the lossless decomposition.

Figure 8.5 Relations obtained by projection of the relation in Figure 8.4.

Employee Project Branch

Brown Mars Chicago
Green Jupiter Birmingham
Green Venus Birmingham
Hoskins Saturn Birmingham
Hoskins Venus Birmingham

Employee Branch

Brown Chicago
Green Birmingham
Hoskins Birmingham

Project Branch

Mars Chicago
Jupiter Birmingham
Saturn Birmingham
Venus Birmingham

264 Chapter 8
Normalization

We can generalize the observation by noting that the reconstruction of the
original relation must be carried out through a natural join of the two
projections. Unfortunately, the natural join of the two relations in Figure 8.5
produces the relation in Figure 8.6, which is different from the relation in
Figure 8.4. The relation in Figure 8.6 contains all the tuples of the original

relation (Figure 8.4) as well as other tuples (the last two in the table). The
situation in the example corresponds to the general situation: given a
relation r on a set of attributes X, if X1 and X2 are two subsets of X the union
of which is equal to X itself, then the join of the two relations obtained by
projecting r on X1 and X2, respectively, is a relation that contains all the
tuples of r, plus possible others, which we can call ‘spurious’. Let us say that
the decomposition of r on X1 and X2 is lossless if the join of the projections
of r on X1 and X2 is equal to r itself (that is, not containing spurious tuples).
It is clearly desirable, or rather an indispensable requirement, that a
decomposition carried out for the purpose of normalization is lossless.

We can identify a condition that guarantees the lossless decomposition of
a relation, as follows. Let r be a relation on X and let X1 and X2 be subsets of
X such that X1 ∪ X2 = X. Furthermore, let X0 = X1 ∩ X2. If r satisfies the
functional dependency X0 → X1 or the functional dependency X0 → X2, then
the decomposition of r on X1 and X2 is lossless.

In other words, we can say that r has a lossless decomposition on two
relations if the set of attributes common to the two relations is a key for at
least one of the decomposed relations. In the example, we can see that the
intersection of the sets of attributes on which we have carried out the two
projections is made up of the Branch attribute, which is not the left hand side
of any functional dependency.

We can justify the condition in the following manner, with reference to a
relation r on the attributes ABC and to its projections on AB and AC. Let us
suppose that r satisfies A → C. Then, A is key for the projection of r on AC
and thus in this there are not two different tuples with the same values of A.
The join constructs tuples based on the tuples in the two projections. Let us
consider a generic tuple t = (a, b, c) in the result of the join. We show that t

Figure 8.6 The result of the join of the relations in Figure 8.5.

Employee Project Branch

Brown Mars Chicago
Green Jupiter Birmingham
Green Venus Birmingham
Hoskins Saturn Birmingham
Hoskins Venus Birmingham
Green Saturn Birmingham
Hoskins Jupiter Birmingham

Section 8.4 265
Decomposition properties

belongs to r, so proving the equality of the two relations: t is obtained from
t1 = (a, b) in the projection of r on AB, and t2 = (a, c) in the projection of r on
AC. Thus, by definition of the projection operator, there must be two tuples
in r, t1′ with values a and b on AB, and t2′ with values a and c on AC. Since r
satisfies A → C, there is a single value of C in r associated with the value a
on A: given that (a, c) appears in the projection, this value is exactly c. Thus
the value of t1′ on C is c and thus t1′ (which belongs to r) has values a, b and
c, and thus coincides with t, which therefore belongs to r, as we intended to
show.

It is appropriate to note briefly how the condition stated is sufficient but
not strictly necessary to ensure a lossless decomposition: there are relations
that satisfy neither of the two dependencies, but at the same time they have
a lossless decomposition. For example, the relation in Figure 8.6 (obtained as
the join of the projections) has a lossless decomposition on the two sets
Employee Branch and Project Branch. On the other hand, the condition given
ensures that all the relations that satisfy a given set of dependencies have a
lossless decomposition, and this is a useful result: each time we decompose a
relation into two parts, if the set of common attributes is a key for one of the
two relations, then all the valid instances of the relation have a lossless
decomposition.

8.4.2 Preservation of dependencies
To introduce the second property, we can re-examine the relation in

Figure 8.4. We still wish to remove the anomalies, so we could think about
exploiting only the dependency Employee → Branch, in order to obtain a
lossless decomposition. We then have two relations, one on the attributes
Employee and Branch and the other on the attributes Employee and Project. The
instance in Figure 8.4 would be thus decomposed into the relations in
Figure 8.7.

The join of the two relations in Figure 8.7 produces the relation in
Figure 8.4, for which we can say that the original relation has a lossless
decomposition on Employee Branch and Employee Project. This is confirmed by
the fact that Employee is the key for the first relation. Unfortunately, the
decomposition in Figure 8.7 produces another problem, as follows. Suppose

Figure 8.7 Another decomposition of the relation in Figure 8.4.

Employee Branch

Brown Chicago
Green Birmingham
Hoskins Birmingham

Employee Project

Brown Mars
Green Jupiter
Green Venus
Hoskins Saturn
Hoskins Venus

266 Chapter 8
Normalization

we wish to insert a new tuple that specifies the participation of the employee
named Armstrong, who works in Birmingham, on the Mars project. In the
original relation, that is, the one in Figure 8.4, an update of this kind would
be immediately identified as illegal, because it would cause a violation of the
Project → Branch dependency. On the decomposed relations however, it is not
possible to reveal any violation of dependency. On the relation over Employee
and Project, it is actually not possible to define any functional dependency
and thus there can be no violations to show, while the tuple with the values
Armstrong and Birmingham satisfies the dependency Employee → Branch. We
can therefore note how it is not possible to carry out any verification on the
dependency Project → Branch, because the two attributes Project and Branch
have been separated: one into one relation and one into the other.

We can conclude that, in each decomposition, each of the functional
dependencies of the original schema should involve attributes that appear all
together in one of the decomposed schemas. In this way, it is possible to
ensure, on the decomposed schema, the satisfaction of the same constraints
as the original schema. We can say that a decomposition that satisfies this
property preserves the dependencies of the original schema.

8.4.3 Qualities of decompositions
To summarize the points discussed above, we can state that decompositions
should always satisfy the properties of lossless decomposition and dependency
preservation.

• Lossless decomposition ensures that the information in the original
relation can be accurately reconstructed, that is, reconstructed without
spurious information, based on the information represented in the
decomposed relations. In this case, by querying the decomposed
relations, we obtain the same results that we would obtain by querying
the original relation.

• Dependency preservation ensures that the decomposed relations have the
same capacity to represent the integrity constraints as the original
relations and thus to reveal illegal updates: each allowed update
(respectively, illegal) on the original relation corresponds to an allowed
update (respectively, illegal) on the decomposed relations. Obviously, we
can have further updates on the single decomposed relations, which have
no counterpart in the original relation. Such updates are impossible on
non-normalized relations where they are sources of anomalies.

As a result, from here on we will consider only decompositions that satisfy
these two properties. Given a schema that violates a normal form, the
normalization activity is thus aimed at obtaining a decomposition that is
lossless, preserves the dependencies and contains relations in normal form.
Note how the decomposition discussed in Section 8.1 shows all three
qualities.

Section 8.5 267
Third normal form

8.5 Third normal form

8.5.1 Definition of third normal form
In most cases, the aim of obtaining a good decomposition into Boyce–Codd
normal form can be achieved. Sometimes, however, this is not possible, as we
can see from an example. Look at the relation in Figure 8.8.

We can assume that the following dependencies are defined:

• Manager → Branch: each manager works at a particular branch;

• Project Branch → Manager: each project has more managers who are
responsible for it, but in different branches, and each manager can be
responsible for more than one project; however, for each branch, a project
has only one manager responsible for it.

The relation is not in Boyce–Codd normal form because the left hand side
of the Manager → Branch dependency is not a superkey. At the same time, we
can note how no good decomposition of this relation is possible; the
dependency Project Branch → Manager involves all the attributes and thus no
decomposition is able to preserve it. The example shows us that schemas
exist that violate Boyce–Codd normal form and for which there is no
decomposition that preserves the dependencies. We can therefore state that
sometimes, ‘Boyce–Codd normal form cannot be achieved’. In such cases, we
can however establish a less restrictive condition, which allows situations
such as the one described above, but does not allow further sources of
redundancy and anomaly.

This condition defines a new normal form: we will say that a relation r is
in third normal form if, for each (non-trivial) functional dependency X → Y
defined on it, at least one of the following is verified:

• X contains a key K of r;

• each attribute in Y is contained in at least one key of r.

Returning to our example, we can easily verify that, even if the schema
does not satisfy the Boyce–Codd normal form, it satisfies the third normal
form. The Project Branch → Manager dependency has as its left hand side a key

Figure 8.8 A relation to show a decomposition with problems.

Manager Project Branch

Brown Mars Chicago
Green Jupiter Birmingham
Green Mars Birmingham
Hoskins Saturn Birmingham
Hoskins Venus Birmingham

268 Chapter 8
Normalization

for the relation, while Manager → Branch has a unique attribute for the right
hand side, which is part of the Project Branch key. Note that the relations
show a form of redundancy: each time a manager appears in a tuple, the
branch for which he or she works is repeated. This redundancy is ‘tolerated’
however, by the third normal form, because intuitively, a decomposition that
eliminated such redundancy and at the same time preserved all the
dependencies would not be possible.

The third normal form is less restrictive than the Boyce–Codd normal form
and for this reason does not offer the same guarantees of quality for a
relation; it has the advantage however, of always being achievable.

The name of this normal form suggests the existence of other normal
forms, which we will deal with briefly. The first normal form simply
establishes a condition that is at the basis of the relational model itself: the
attributes of a relation are defined on atomic values and not on complex
values, whether sets or relations. We will see in Chapter 11 how this
constraint is relaxed in other database models. The second normal form is a
weak variation of the third, which allows functional dependencies such as
that between Category and Salary of the relation in Figure 8.3. Note that this
dependency satisfies neither of the conditions of the third normal form.
There are indeed other normal forms that refer to other integrity constraints.
None of these normal forms is used significantly in current applications since
the third normal form and the Boyce–Codd normal form already provide the
right compromise between simplicity and the quality of results.

8.5.2 Decomposition into third normal form
Decomposition into third normal form can proceed as suggested for the
Boyce–Codd normal form. A relation that does not satisfy the third normal
form is decomposed into relations obtained by projections on the attributes
corresponding to the functional dependencies. The only condition to
guarantee in this process is of always maintaining a relation that contains a
key to the original relation. We can see this by referring to the relation in
Figure 8.9, for which we have a single functional dependency, Employee →
Salary.

Figure 8.9 A relation for the discussion of decomposition into third
normal form.

Employee Project Salary

Brown Mars 50
Green Jupiter 30
Green Venus 30
Hoskins Saturn 40
Hoskins Venus 40

Section 8.5 269
Third normal form

A decomposition in the relation on the attributes Employee Salary and in
another on the sole attribute Project would violate the property of lossless
decomposition, essentially because neither of the two relations contains a
key for the original relation. To guarantee this property, we must define the
second relation on the attributes Employee Project, which actually forms a key
for the original relation. We insist however on the fact that the success of a
decomposition depends for the most part on the dependencies we have
identified.

To conclude, we return to the example in Figure 8.1 and note that the
relation does not satisfy even the third normal form. Proceeding as
suggested, we can still obtain the decomposition shown in Figure 8.2, which,
we saw, is also in Boyce–Codd normal form. This is a result that is valid in a
wide range of cases: a decomposition with the intent of obtaining the third
normal form often produces schemas in Boyce–Codd normal form. In
particular, we can show that if a relation has only one key (as in this case)
then the two normal forms coincide. That is, a relation with only one key is
in third normal form if and only if it is in Boyce–Codd normal form.

8.5.3 Other normalization techniques
Referring to Figure 8.8, we will look at further ideas about normal forms. By
examining the specifications more closely, we see that we could have
described this part of the application in a more suitable manner by
introducing a further attribute Division, which separates the single branches
according to their managers. The relation is shown in Figure 8.10.

The dependencies can be defined as follows:

• Manager → Branch Division: each manager works at one branch and
manages one division;

• Branch Division → Manager: for each branch and division there is a single
manager;

• Project Branch → Division: for each branch, a project is allocated to a single
division and has a sole manager responsible; the functional dependency
Project Branch → Manager can indeed be reconstructed.

Figure 8.10 A restructuring of the relation in Figure 8.8.

Manager Project Branch Division

Brown Mars Chicago 1
Green Jupiter Birmingham 1
Green Mars Birmingham 1
Hoskins Saturn Birmingham 2
Hoskins Venus Birmingham 2

270 Chapter 8
Normalization

For this schema, there is a good decomposition, as shown in Figure 8.11:

• the decomposition is lossless, because the common attributes Branch and
Division form a key for the first relation;

• the dependencies are preserved, because for each dependency there is a
decomposed relation that contains all the attributes involved;

• both the relations are in Boyce–Codd normal form, because for all the
dependencies the left hand side is made up of a key.

We can therefore conclude by stating that, often, the difficulty of
achieving Boyce–Codd normal form could be due to an insufficiently
accurate analysis of the application.

8.6 Database design and normalization
The theory of normalization, even if studied in simplified form, can be used
as a basis for quality control operations on schemas, in both the conceptual
and logical design phases. We will briefly comment on its use in logical
design, and then illustrate the adaptation of the principles to the Entity-
Relationship model and thus to conceptual design.

A design is sometimes incomplete, and so a revision of the relations
obtained during the logical design phase can identify places where the
conceptual schema can be refined. The verification of the design is often
relatively easy. This is because the identification of the functional
dependencies and the keys must be carried out within the context of a single
relation, which is derived from an entity or a relationship already analyzed
in the conceptual design phase. In this context, the structure of
dependencies is generally rather simple and it is thus possible to identify
directly the decomposition necessary to obtain a normal form. For example,
the relation in Figure 8.3 would be produced only if, during the conceptual
design phase, we do not realize that category and employee are independent
concepts. By identifying the existence of functional dependencies, it is
therefore possible to remedy errors.

Figure 8.11 A good decomposition of the relation in Figure 8.10.

Project Branch Division

Mars Chicago 1
Jupiter Birmingham 1
Mars Birmingham 1
Saturn Birmingham 2
Venus Birmingham 2

Manager Branch Division

Brown Chicago 1
Green Birmingham 1
Hoskins Birmingham 2

Section 8.6 271
Database design and normalization

8.6.1 Verification of normalization on entities
The ideas on which normalization is based can also be used during the
conceptual design phase for the quality control of each element of the
conceptual schema. It is possible to consider each entity or relationship as if
it were a relation. In particular, the relation that corresponds to an entity has
attributes that correspond exactly to the attributes of the entity. For an
entity with an external identifier, further attributes are necessary to include
the entities that participate in the identification. In practice, it is sufficient to
consider the functional dependencies that exist among the attributes of the
entity and to verify that each of them has the identifier as left hand side (or
contains it). For example, let us consider (see Figure 8.12) an entity PRODUCT,
with attributes Code, ProductName, Supplier, Address, SupplierCode. Supplier is
the name of the supplier of a product, for which the Address and the
SupplierCode are important.

In identifying the dependencies for this entity, we can note that various
suppliers can exist with the same surname or the same address, while all the
properties of each supplier are identified by its SupplierCode. Therefore, the
dependency SupplierCode → Supplier Address exists. Furthermore, all the
attributes are functionally dependent on the Code attribute, which correctly
constitutes the identifier of the entity. Once a code has been fixed, the
product and the supplier are unambiguously determined, with their
properties. Since the only identifier of the entity is made up of the sole
attribute Code, we can conclude that the entity violates the third normal
form. This is because the dependency SupplierCode → Supplier Address has a
left hand side that does not contain the identifier and a right hand side made
up of attributes that are not part of the key. In these cases, the test of
normalization indicates that the conceptual schema is not accurate and
suggests the decomposition of the entity itself.

The decomposition can take place, as we saw earlier, with direct reference
to the dependencies, or more simply, by reasoning on the concepts
represented by the entities and the functional dependencies. In the example,
we understood that the concept of supplier is independent of that of product
and has associated properties (code, surname and address). Thus, based on
the arguments developed about conceptual design, we can say that it is
appropriate to model the concept of supplier by means of a separate entity.

Figure 8.12 An entity to undergo a verification of normalization.

PRODUCT

Code

ProductName
Address
SupplierCode

Supplier

272 Chapter 8
Normalization

This entity has SupplierCode as the identifier and Name and Address as further
attributes.

Since the concepts of product and supplier appear together in the same
entity in the original schema, it is evident that if we separate them into two
entities it is appropriate that these entities be connected. That is, there is a
relationship that links them. We can reason about the cardinalities of this
relationship as follows. Since there is a functional dependency from Code to
SupplierCode, we are sure that each product has at most one supplier. Thus,
the participation of the entity PRODUCT in the relationship must have a
maximum cardinality of one. Since there is no dependency from SupplierCode
to Code, we have an unlimited maximum cardinality (N) for the participation
of the entity SUPPLIER in the relationship. For the minimum cardinalities, we
can reason intuitively. For example, assume that for each product the
supplier must always be known, while we can also have suppliers that (at the
moment) do not supply any product. The cardinalities are those in
Figure 8.13.

We can verify that the decomposition obtained satisfies the two
fundamental properties. It is a lossless decomposition, because on the basis
of the one-to-many relationship it is possible to reconstruct the values of the
attributes of the original entity. It preserves the dependencies, because each
of the dependencies is embedded in one of the entities or it can be
reconstructed from them. For example, the dependency between the product
codes and the supplier names can be reconstructed based on the SUPPLY

relationship and the dependency SupplierCode → Name.

8.6.2 Verification of normalization on relationships
Concerning relationships, the reasoning is even simpler. The set of
occurrences of each relationship is a relation, and thus it is possible to apply
the normalization techniques directly. However, the domains on which the
relation is defined are the sets of occurrences of the entities involved.
Consequently, to verify that a normal form is satisfied, we must identify the
existing functional dependencies among the entities involved. Since it is
easy to show that each binary relation is in third normal form (and also in
Boyce–Codd normal form), the verification of normalization is carried out
only on the n-ary relationships, that is, on those which involve at least three
entities.

Figure 8.13 The result of the decomposition of an entity.

(0,N)(1,1)
PRODUCT

Code

ProductName

SUPPLY SUPPLIER

SupplierCode

Address
Name

Section 8.6 273
Database design and normalization

Consider for example, the relationship THESIS, in Figure 8.14, which
involves the entities STUDENT, PROFESSOR, DEGREEPROGRAMME and DEPARTMENT.
It describes the fact that students, enrolled on degree programmes, write
theses in departments under the supervision of professors.

We can arrive at the following conclusions:

• each student is enrolled on a degree programme;

• each student writes a thesis under the supervision of a single professor
(who is not necessarily related to the degree programme);

• each professor belongs to a single department and the students under his
or her supervision write their theses under the care of that department.

Let us suppose that for the purposes of the thesis, the professor’s
department is not relevant to the degree programme on which the student is
enrolled. We can then say that the properties of the application are
completely described by the following three functional dependencies:

STUDENT → DEGREEPROGRAMME

STUDENT → PROFESSOR

PROFESSOR → DEPARTMENT

The (unique) key of the relation is STUDENT: given a student, the degree
programme, the professor and the department are unambiguously identified.
Consequently, the third functional dependency causes a violation of the
third normal form. The affiliation of a professor to a department is a concept
independent of the existence of students who write theses with the
professor. Reasoning as before, we can conclude that the relationship
presents undesirable aspects and that it should be decomposed, separating
the functional dependencies with different left hand sides. In this way, we
can obtain the schema in Figure 8.15, which contains two relationships, both
in third normal form (and in Boyce–Codd normal form). Here also, we have
a lossless decomposition with preservation of dependencies.

Figure 8.14 A relationship for which normalization is to be verified.

PROFESSOR STUDENT

DEPARTMENT

DEGREE
PROGRAMME

THESIS

(0,N)

(0,1)(0,N)

(0,N)

274 Chapter 8
Normalization

8.6.3 Further decomposition of relationships
On the schema in Figure 8.15, we can make some further observations. These
observations go beyond the theory of normalization in its strictest sense, but
remain within the field of analysis and verification of conceptual schemas by
means of formal tools, in the specific case of functional dependencies. The
relationship THESIS is in third normal form, because its key is made up of the
STUDENT entity, and the only dependencies that exist on it are those that have
this entity as left hand side, namely, STUDENT → PROFESSOR and STUDENT →
DEGREEPROGRAMME. On the other hand, the properties described by the two
dependencies are independent of each other. Not all students are writing
theses and so not all of them have supervisors. From the normalization point
of view, this situation does not present problems, because we assume that the
relations can contain null values, provided that they are not in the key. Thus,
it is reasonable to accept dependencies with the same left hand sides.
However, at the conceptual modelling level, we must distinguish among the
various concepts. Moreover, there is no concept of ‘null values in a
relationship’, nor would there be any sense in introducing one. Using the
dependencies, we can therefore conclude that it would be appropriate to
decompose the relationship further, obtaining two relationships, one for
each of the two concepts. Figure 8.16 shows the decomposed schema. The
decomposition is acceptable in this case also, because it preserves the
dependencies and is lossless.

If we generalize the argument developed above, we conclude that it is
appropriate to decompose the n-ary relationships on which there is a
dependency whose right hand side contains more than one entity. Since it is
rare to encounter relationships that involve more than three entities, we can
say that it is usually convenient to decompose any ternary relationship if it
has a functional dependency whose left hand side consists of one entity and
the right hand side consists of the other two.

In some cases however, the decomposition can be inconvenient. For
example, if the two entities in the right hand side of the dependency are
closely linked to each other or if there exist other dependencies that would

Figure 8.15 The result of the decomposition of a relationship.

DEGREE
PROGRAMME

PROFESSOR

DEPARTMENT

AFFILIATION

THESIS STUDENT
(0,N) (0,1)

(0,N)
(1,1)

(0,N)

Section 8.6 275
Database design and normalization

not be preserved in the decomposition, such as, if we are interested only in
students who are already writing their theses. Thus, for each of them, we
have a degree programme and a professor who is supervising his or her
thesis.

8.6.4 Further restructurings of conceptual schemas
The case discussed in Section 8.4, of a relation for which there can be no
good decomposition into Boyce–Codd normal form, can also be examined in
the context of conceptual design. For example, consider the schema in
Section 8.17 and assume that this schema satisfies the functional
dependencies discussed in Section 8.4.

We can see that the relationship is not in Boyce–Codd normal form and
cannot be usefully decomposed. At this stage we can identify the possibility
of introducing the concept of division by means of a new entity, as shown in
the schema in Section 8.18, which replaces the ternary relationship.

This entity separates the individual branches, as indicated by its external
identifier. Moreover, the cardinality constraints tell us that each division of
a branch has a manager and several projects associated with it. From this
conceptual schema it is possible to obtain the relational schema in
Figure 8.11.

Figure 8.16 The result of a further decomposition of a relationship.

Figure 8.17 A relationship that is difficult to decompose.

DEPARTMENT

REGISTRATION

(1,1)

(0,N)

DEGREE
PROGRAME

PROFESSOR

AFFILIATION

THESIS STUDENT
(0,N) (0,1)

(1,1)

(0,N)

BRANCH MANAGER
(0,N) (0,N)

(0,N)

PROJECT

ASSIGNMENT

276 Chapter 8
Normalization

8.7 Bibliography
The basic notions on normalization, with the definition of third normal form,
were proposed by Codd [27]. The theory of normalization can be studied in
depth in the texts on database theory, such as those by Maier [58],
Ullman [88], and Atzeni and De Antonellis [3]. They also give an in-depth
and formal study of various aspects related to functional dependencies.

8.8 Exercises
Exercise 8.1 Consider the relation in Figure 8.19 and identify the functional
dependencies of the corresponding application. Identify possible
redundancies and anomalies in the relation.

Exercise 8.2 Identify the key(s) and functional dependencies of the relation
shown in Exercise 8.1 and then identify a decomposition into Boyce–Codd
normal form.

Exercise 8.3 Consider the relation shown in Figure 8.20, which represents
information on the products of a carpentry firm and their components. The
following are given: the type of component of a product (attribute Type), the
quantity of the component necessary for a certain product (attribute
Quantity), the unit price of the component of a certain product (attribute
PriceOfC), the supplier of the component (attribute Supplier) and the total

Figure 8.18 A restructuring of the schema in Section 8.17.

Figure 8.19 Relation for Exercise 8.1.

MANAGER

Code

DIVISION

PROJECT

BRANCH
(0,N)

(0,N)

(1,N)

(1,1)

(1,1)

(1,1)

MANAGEMENT

COMPOSITION

ASSIGNMENT

Tutor Department Faculty HeadOfDept Course

Thomson Maths Engineering Jackson Statistics
Thomson Maths Engineering Jackson Number theory
Robinson Physics Engineering Jackson Statistics
Robinson Physics Science Johnson Statistics
MacKay Physics Science Johnson Relativity

Section 8.8 277
Exercises

price of the single product (attribute PriceOfP). Identify the functional
dependencies and the key(s) for this relation.

Exercise 8.4 With reference to the relation in Figure 8.20 consider the
following update operations:

• insertion of a new product;

• deletion of a product;

• addition of a component in a product;

• modification of the price of a product.

Discuss the types of anomaly that can be caused by these operations.

Exercise 8.5 Consider again the relation in Figure 8.20. Describe the
redundancies present and identify a decomposition of the relation that
removes these redundancies. Show the schema thus obtained. Then verify
that it is possible to reconstruct the original table from this schema.

Exercise 8.6 Consider the schema of the relation in Figure 8.21. Its key is
made up of the attributes Title and CopyNo, and on this relation we have the
dependency Title → Author Genre. Verify whether the schema is in third
normal form, and if not, decompose it appropriately. Verify whether the
decomposition also satisfies the Boyce–Codd normal form.

Exercise 8.7 Consider the Entity-Relation schema in Figure 8.22. The
following properties are valid:

• a player can play for only one team (or none);

• a trainer can train only one team (or none);

• a team belongs to one and only one city.

Figure 8.20 A relation containing data for a carpentry firm.

Product Component Type Quantity PriceOfC Supplier PriceOfP

Bookcase Wood Walnut 5 10.00 Smith 400
Bookcase Screw B212 200 0.10 Brown 400
Bookcase Glass Crystal 3 5.00 Jones 400
Seat Wood Oak 5 15.00 Smith 300
Seat Screw B212 250 0.10 Brown 300
Seat Screw B412 150 0.30 Brown 300
Desk Wood Walnut 10 8.00 Quasimodo 250
Desk Handle H621 10 20.00 Brown 250
Table Wood Walnut 4 10.00 Smith 200

278 Chapter 8
Normalization

Verify whether the schema satisfies the Boyce–Codd normal form and if
not, restructure it into a new schema so that it satisfies this normal form.

Exercise 8.8 Consider the relation in Figure 8.23 and the following possible
decompositions:

• Department, Surname in one relation and Surname, FirstName, Address in
the other;

• Department, Surname, FirstName in one relation and FirstName, Address in
the other;

• Department, Surname, FirstName in one relation and Surname, FirstName,
Address in the other.

Figure 8.21 Relation for Exercise 8.6.

Figure 8.22 A relationship whose normalization is to be verified.

Figure 8.23 Relation for Exercise 8.8.

Title Author Genre CopyNo Shelf

Decameron Boccaccio Stories 1 A75
Rubàiyàt Omar Khayyàm Poem 1 A90
Rubàiyàt Omar Khayyàm Poem 2 A90
Le Bourgeois Gentilhomme Molière Play 1 A90
Le Bourgeois Gentilhomme Molière Play 2 A22
Washington Square James Novel 1 B20
Richard III Shakespeare Play 1 B10

(1,N)

TEAM

COACH PLAYER

CITY

COMPOSITION
(0,1)(0,1)

(1,N)

Department Surname FirstName Address

Sales Eastland Fred 6 High Street
Purchasing Eastland Fred 6 High Street
Accounts Watson Ethel 27 Acacia Avenue
Personnel Eastland Sydney 27 Acacia Avenue

Section 8.8 279
Exercises

With reference both to the specific instance and to the possible instances
on the same schema, identify which of these decompositions are lossless.

Exercise 8.9 Reconsider the relation in Figure 8.23. Verify whether the
following decompositions preserve the dependencies:

• a relation on Department, Surname and FirstName and the other on Surname
and Address;

• a relation on Department, Surname and FirstName and the other on
Surname, FirstName and Address;

• a relation on Department and Address and the other on Department,
Surname and FirstName.

280 Chapter 8
Normalization

Part III

IIIDatabase
technology

9
9Technology of a

database server

This chapter concentrates on the technological aspects of database servers,
that is, of systems dedicated to data management. While up to now we have
concentrated on the external functionality of database management systems,
we will now look at the internal mechanisms that make such functionality
possible. There are various important reasons for looking ‘inside’ a dbms.

• Firstly, database administrators are often required to make decisions about
configurations or execution parameters that influence the behaviour of
the system, and such decisions require an understanding of the
underlying technology.

• Secondly, although the mechanisms described below are often
encapsulated within database products, many of these mechanisms can be
extracted from the dbms and made available in the form of ‘services’.
Knowledge of these services is essential in order to decide on the best
configuration of an application.

The following components are present in a data management server:

• The optimizer decides the best strategies for data access, that is, the ones
that guarantee the fastest query response. This component receives a
query, from which it performs a lexical, syntactic and semantic analysis,
to identify possible errors. It then transforms the correct queries into an
internal form, similar to the relational algebra seen in Chapter 3, and
selects the best strategy for access to the data.

• The access methods manager, known as the relational storage system (rss)
in a relational dbms, has the task of carrying out the physical accesses to
data, according to the strategy defined by the optimizer.

284 Chapter 9
Technology of a database server

• The buffer manager is responsible for the management of actual transfers
of the pages of the database from the secondary storage devices to the
main memory. This component manages large areas of the main memory
allocated to the dbms and is often shared among the various applications.

• The reliability control system deals with the preservation of the contents
of the database in case of failures.

• The concurrency control system regulates the simultaneous accesses to the
database and ensures that the interference among applications does not
cause a loss of consistency.

This division of a server into five modules does not always correspond to
the actual configuration of a system, but is ideal as a model for the study of
the mechanisms. We will deal with the five components, proceeding from the
lowest to the highest levels of functionality, and in doing so will construct
an abstract machine for data management.

We will first introduce the concept of transaction, which is fundamental to
the understanding of the requirements that the dbms technology must meet.
We will then discuss concurrency control, buffer management, and
reliability control. Finally, we will deal with physical access structures and
query optimization. At the end of this construction, it will be possible to
understand how the five sub-systems are integrated into the architecture of
a centralized server.

We will postpone the description of the techniques for the interaction of
multiple servers in a distributed or parallel architecture to the next chapter.
For the sake of consistency, we will refer to relational technology, although a
large part of the discussion is applicable both to pre-relational systems and
to object-oriented systems.

9.1 Definition of transactions
A transaction identifies an elementary unit of work carried out by an
application, to which we wish to allocate particular characteristics of
reliability and isolation. A system that makes available mechanisms for the
definition and execution of transactions is called a transaction processing
system.

A transaction can be defined syntactically: each transaction, irrespective
of the language in which it is written, is enclosed within two commands:
begin transaction (abbreviated to bot) and end transaction (abbreviated to
eot). Within the transaction code, two particular instructions can appear,
commit work and rollback work, to which we will make frequent reference
using the two terms commit and abort, which indicate the action associated
with the respective instructions.

The effect of these two commands is crucial for the outcome of the
transaction. The transaction will be completed successfully only following a

Section 9.1 285
Definition of transactions

commit command, while no tangible effect will be shown on the database as
the result of an abort command. From the expressive power aspect, note that
the rollback work instruction is very powerful, in that through this the
database user can cancel the effects of the work carried out during the
transaction, irrespective of its complexity.

An example of transaction is given in the following code:

begin transaction
x := x − 10;
y := y + 10;
commit work;
end transaction

We can interpret the above transaction as a bank operation to transfer a
sum from account x to account y. The transaction code shown in the example
provides an abstract description of the transaction, which in reality
corresponds to a much more complex section of code, and which could be
written, for example, in sql.

A transaction is described as well-formed if it fulfils the following
conditions: it begins its execution with begin transaction, ends with end
transaction, and includes in every possible execution only one of the two
commands, commit work or rollback work. Further, no update or modification
operations are carried out following the execution of the commit work or
rollback work command. In some transactional interfaces, a pair of
commands end transaction and begin transaction are immediately and
implicitly carried out after each commit or abort, to render well-formed all
the transactional computations. From now on, we will assume that all the
programs for the modification of the contents of a database are well-formed.

9.1.1 ACID properties of transactions
Transactions must possess particular properties: atomicity, consistency,
isolation and durability. Since the initials of these terms give rise to the
acronym acid, these are often referred to as the acid properties of
transactions.

Atomicity Atomicity represents the fact that a transaction is an indivisible
unit of execution. Either all the effects of a transaction are made visible, or
the transaction must have no effect on the database, with an ‘all or nothing’
approach. In practice, it is not possible to leave the database in an
intermediate state arrived at during the processing of the transaction.

Atomicity has significant consequences on the operational level. If during
the execution of the operations, an error appears and one of the operations
of the transaction cannot be completed, then the system must be able to
recreate the situation at the start of the transaction. This means undoing the
work carried out by those instructions up to that time. Conversely, after the
execution of the commit command, the system must ensure that the
transaction leaves the database in its final state. As we shall see, this can mean

286 Chapter 9
Technology of a database server

that the system must redo the work carried out. The correct execution of the
commit fixes the atomic (and thus indivisible) event in which the transaction
is successfully completed. Before executing the commit, any failure will
cause the elimination of all the effects of the transaction, whose original state
is recreated.

When the rollback work command is carried out, the situation is similar
to a suicide decided independently within the transaction. Conversely, the
system can decide that the transaction cannot be successfully completed and
kills the transaction. Finally, various transactions can be killed following a
failure in the system. In both situations (suicide or homicide), the
mechanisms that create the abort of a transaction use the same data
structures and sometimes the same algorithms. In general, we expect the
applications to be well written and for this reason most transactions are
successfully completed and end with a commit command. In only a few
sporadic cases due to failures or unforeseen situations do the transactions
terminate with an abort command.

Consistency Consistency demands that the carrying out of the transaction
does not violate any of the integrity constraints defined on the database.
When a transaction violates a constraint, the system intervenes to cancel the
transaction or to correct the violation of the constraint.

The verification of constraints of immediate type can be made during the
transaction execution: a constraint violation removes the effects of the
specific instruction that causes the violation of the constraint, without
necessarily causing the transactions to be aborted. By contrast, the
verification of integrity constraints of the deferred type must be carried out
at the end of the transaction, after the user has requested a commit. Note that
in this second case, if the constraint is violated, a commit instruction cannot
be successfully completed, and the effects of the transaction are cancelled in
extremis. That is, just before producing and showing the final state of the
database, given that this state would be inconsistent.

Isolation Isolation demands that the execution of a transaction is
independent of the simultaneous execution of other transactions. In
particular, it requires that the parallel execution of a set of transactions gives
the result that the same transactions would obtain by carrying them out
singly. The goal of isolation is also to make the result of each transaction
independent of all the others. It must thus prevent the execution of a
rollback of a transaction from causing the rollback of other transactions,
possibly generating a chain reaction.

Durability Durability, on the other hand, demands that the effect of a
transaction that has correctly executed a commit is not lost. In practice, a
database must guarantee that no piece of data is lost for any reason. To
understand the importance of durability, consider the use of databases that
support financial applications, such as banks and systems for stock trading.

Section 9.2 287
Concurrency control

9.1.2 Transactions and system modules
Atomicity and durability are guaranteed by the reliability control system.
Isolation is guaranteed by the concurrency control system. Finally,
consistency is guaranteed by ddl compilers, which introduce appropriate
consistency controls in the data and appropriate procedures for their
verification, which are then carried out by the transactions.

 In conclusion, note that the definition of transaction given in this section
is different from the concept of transaction that a user could have. For the
system, a transaction is a unit of execution characterized by acid properties.
For the user, a transaction is any interaction with the system, characterized
by the production of an initial input of data, which is followed by a response
from the system. Often the two notions coincide, but at other times, a system
transaction contains various user transactions, or a user transaction contains
various system transactions.

9.2 Concurrency control
A dbms must often serve many applications, and respond to requests from
many users. The application load of a dbms can be measured using the
number of transactions per second (abbreviated to tps) managed by the dbms
to satisfy the needs of applications. Typical systems, for example banks or
financial information systems, must respond to loads of tens to hundreds of
tps. The booking systems of large airlines or credit card management must
reach thousands of tps. For this reason, it is essential that the transactions of
a dbms be carried out simultaneously. It is unthinkable that the transactions
could be carried out in sequence. Only the concurrency of transactions
allows for the efficient operation of a dbms, maximizing the number of
transactions carried out per second and minimizing their response times.

9.2.1 Architecture of concurrency control
The concurrency control system refers to the lowest level in the architecture
of a dbms, relative to the input/output operations, which carry out the
transfer of blocks from the secondary memory to the main memory and vice-
versa. Consider read and write actions. Each read operation consists of the
transfer of a block from the secondary memory to the main memory, and each
write operation consists of the opposite transfer. Traditionally, blocks are
called pages once they are loaded into the memory. The read and write
operations are managed by a module of the system generally known as the
scheduler, which determines whether the requests can be satisfied. This
situation is illustrated in Figure 9.1.

In this section we will give an abstract description of the database in terms
of objects x, y, z. Using these symbolic names, we refer to numeric data (to
which we will apply simple arithmetic operations), but in reality reading and
writing them requires the reading and writing of the whole page on which
the data is to be found.

288 Chapter 9
Technology of a database server

9.2.2 Anomalies of concurrent transactions
The simultaneous execution of various transactions can cause problems,
termed anomalies; their presence causes the need of a concurrency control
system. Let us look at three typical cases.

Update loss Let us suppose that we have two identical transactions that
operate on the same object of the database.

t1: r(x), x = x + 1, w(x)
t2: r(x), x = x + 1, w(x)

Here, r(x) represents the reading of the generic object x and w(x) represents
the writing of the same object. A change in value of the object x is done by
an application program. Let us suppose that the initial value of x is 2. If we
carry out the two transactions t1 and t2 in sequence, at the end x will have
the value 4. Let us now analyze a possible concurrent execution of the two
transactions, which highlights the sequence of the actions. We will assume
that each action happens instantly.

In this case, the final value of x is 3, because both the transactions read 2
as the initial value of x. This anomaly is called a lost update, because the
effects of the transaction t2 (the first to write the new value for x) are lost.

Figure 9.1 Architecture of the concurrency control system.

Transaction t1 Transaction t2
bot
r1(x)
x = x + 1

bot
r2(x)
x = x + 1
w2(x)
commit

w1(x)
commit

Scheduler

read(X) write(Y) read(Z)

Database

X
Y

Z

Y
Z

X Z,X

Y Main memory
buffer

Section 9.2 289
Concurrency control

Dirty read Consider now the case in which the first transaction is aborted:

The final value of x at the end of the execution is 4, but it should be 3. The
critical aspect of this execution is the reading of the transaction t2, which
sees an intermediate state generated by the transaction t1. The transaction t2,
however, should not have seen this state, because it is produced by the
transaction t1, which subsequently carries out an abort. This anomaly is
known as dirty read, as a piece of data is read that represents an intermediate
state in the processing of a transaction. Note that the only way to restore
consistency following the abort of t1 would be to impose the abort of t2 and,
therefore, of all the transactions that would have read data modified by t2.
This situation, known as the ‘domino effect’, is extremely hard to manage.

Inconsistent read Let us suppose now that the t1 transaction carries out
only read operations, but that it repeats the read of the x data in successive
instants, as described in the following execution:

In this case, x assumes the value 2 after the first read operation and the
value 3 after the second read operation. Instead, it is convenient that a
transaction that accesses the database twice finds exactly the same value for
each piece of data read, and is not affected by the other transaction.

Ghost update Consider a database with three objects, x, y and z, which
satisfy an integrity constraint, such that x + y + z = 1000; assume that we
carry out the following transactions:

Transaction t1 Transaction t2
bot
r1(x)
x = x + 1
w1(x)

bot
r2(x)
x = x + 1
w2(x)
commit

abort

Transaction t1 Transaction t2
bot
r1(x)

bot
r2(x)
x = x + 1
w2(x)
commit

r1(x)
commit

290 Chapter 9
Technology of a database server

The transaction t2 does not alter the sum of the values and thus does not
violate the integrity constraint. However, at the end of the evaluation of t1
the variable s, which contains the sum of x, y and z, takes the value 1100. In
other words, the transaction t1 observes only some of the effects of the
transaction t2, and thus observes a state that does not satisfy the integrity
constraints. This anomaly is called a ghost update.

9.2.3 Concurrency control theory
We will now give a careful analysis of the problems posed by the concurrent
execution of transactions. For this, we must define a formal model of a
transaction. We define a transaction as a sequence of read or write actions.
We assume that each transaction has a unique, system-assigned transaction
identifier. In comparison with the four examples of anomaly illustrated
above, this model omits any reference to the manipulation operations
performed on the data by the transaction. As far as the theory of
concurrency control is concerned, each transaction is a syntactical object, of
which only the input/output actions are known.

Let us assume that all the transactions are initiated by the begin
transaction command and terminated by end transaction, which, however,
will also be omitted. Furthermore, the concurrency control system accepts or
refuses concurrent executions during the evolution of the transactions,
without knowing their final outcome (commit or abort). For example, a
transaction t1 is represented by the sequence:

t1: r1(x) r1(y) w1(x) w1(y)

We assume that normally no transaction reads or writes the same object
more than once.

Given that the transactions happen concurrently, the input and output
operations are requested by various transactions at successive times. A

Transaction t1 Transaction t2
bot
r1(x)

bot
r2(y)

r1(y)

y = y − 100
r2(z)
z = z + 100
w2(y)
w2(z)
commit

r1(z)
s = x + y + z
commit

Section 9.2 291
Concurrency control

schedule represents the sequence of input/output operations presented by
concurrent transactions. A schedule S1 is thus a sequence of the type:

S1 : r1(x) r2(z) w1(x) w2(z) …

where r1(x) represents the reading of the object x carried out by the
transaction t1, and w2(z) the writing of the object z carried out by the
transaction t2. The operations appear in the schedule following the
chronological order in which they were carried out in the database.

The task of concurrency control is to accept some schedules and refuse
others. For example, the system must avoid the anomalies shown in the
section above. This is carried out by a scheduler, the task of which is to keep
track of all the operations performed on the database by the transactions, and
to accept or reject the operations that are requested by the transactions.

We will begin by assuming that the transactions that appear in schedules
have a result (commit or abort) known in advance. In this way, we can ignore
the transactions that produce an abort, removing all their actions from the
schedule, and concentrating only on the transactions that produce a commit.
Such a schedule is known as a commit-projection of the actual execution of
the input/output operations, since it contains only the actions of transactions
that produce a commit. This assumption simplifies the theory of concurrency
control, but is unacceptable in practice, because the scheduler must decide
whether or not to accept the actions of a transaction independently of their
final result, which cannot be known beforehand. For example, this
assumption makes it impossible to deal with ‘dirty reads’ described above,
which are generated when the transaction results in an abort. Thus, we must
abandon this assumption when we move from the theory of concurrency
control to practical concurrency control methods.

We now need to determine the conditions of the schedules that guarantee
the correct execution of the corresponding transactions. For this purpose, we
define as serial a schedule in which the actions of all the transactions appear
in sequence, without being mixed up with instructions from other
transactions. The schedule S2 is a serial schedule in which the transactions
t0, t1 and t2 are executed in sequence.

S2 : r0(x) r0(y) w0(x) r1(y) r1(x) w1(y) r2(x) r2(y) r2(z) w2(z)

The execution of the commit-projection of a given schedule Si is correct
when it produces the same result as some serial schedule Sj of the same
transactions. In this case, we say that Si is serializable. We must still clarify,
however, what we mean by ‘producing the same result’. To this end, various
successive notions of equivalence between schedules are introduced. Each
notion allows the identification of a more or less wide-ranging class of
acceptable schedules, at the cost, however, of a rather complex test for
equivalence. First, we will introduce view-equivalence, then the conflict-
equivalence, then two-phase locking, and finally timestamp-based
concurrency control.

292 Chapter 9
Technology of a database server

View-Equivalence The notion of view-equivalence requires, as
preliminary definitions, the notions of the reads-from relation and of the final
writes. A read operation ri(x) reads-from a write wj(x) in a schedule S when
wj(x) precedes ri(x) in S and there is no other write operation wk(x) included
between the two operations ri(x) and wj(x) in S. A write operation wi(x) in a
schedule S is called a final write if it is the last write of the object x to appear
in S.

Two schedules are called view-equivalent (Si ≈V Sj) if they possess the same
reads-from relation and the same final writes. A schedule is called view-
serializable if it is view-equivalent to some serial schedule. The set of view-
serializable schedules is called vsr.

Consider the schedules S3, S4, S5, S6. S3 is view-equivalent to the serial
schedule S4 (thus, it is view-serializable). S5 is not view-equivalent to S4, but
it is view-equivalent to the serial schedule S6, and thus this also is view-
serializable.

S3 : w0(x) r2(x) r1(x) w2(x) w2(z)
S4 : w0(x) r1(x) r2(x) w2(x) w2(z)
S5 : w0(x) r1(x) w1(x) r2(x) w1(z)
S6 : w0(x) r1(x) w1(x) w1(z) r2(x)

Note that the following schedules, corresponding to anomalies of update
loss, inconsistent reads and ghost updates, are not view-serializable:

S7 : r1(x) r2(x) w2(x) w1(x)
S8 : r1(x) r2(x) w2(x) r1(x)
S9 : r1(x) r1(y) r2(z) r2(y) w2(y) w2(z) r1(z)

The view-equivalence of two given schedules can be decided by an
algorithm that has polynomial complexity. Such an algorithm simply scans
the two schedules and checks that the reads-from relations and the final
writes are identical. Therefore, the concept of view-equivalence can be used
to compare two different schedules. However, to determine whether a
schedule is view-serializable requires us to test whether it is view-equivalent
to any serial schedule; this is an np-complete problem1. This complexity is
due to the need to compare the given schedule with all the serial schedules
that can be obtained by permuting, in every way possible, the order of the
transactions that are present in the schedule. Therefore, this notion of

1. The e

ffi

ciency of algorithms is characterized by their

computational complexity

;
it expresses the total amount of elementary computation required by the
algorithm as a function of the size of the data set to which the algorithm is
applied. Many algorithms have polynomial complexity, that is, a complexity
that can be expressed as a polynomial function of the data set size; these
problems are known as tractable. Linear complexity is a special case of
polynomial complexity.

np

-c

omplete problems are a class of problems for which
there is no known solution algorithm with a polynomial complexity, and as such
they are regarded as intractable.

Section 9.2

293

Concurrency control

equivalence cannot be used to decide on serializability with enough
e

ffi

ciency. It is thus preferable to define a more restricted condition of
equivalence, which does not cover all the cases of view-equivalence between
schedules, but which is usable in practice, being less complex.

Conflict-equivalence

A more practical notion of equivalence requires the
definition of conflict. We say that the action

a

i

 is in

conflict

 with

a

j

 (

i

 ≠

j

), if
both operate on the same object and at least one of them is a write. There can
exist

read-write

 conflicts (

rw

 or

wr

) and

write-write

 conflicts (

ww

).
We say that the schedule

S

i

 is

conflict-equivalent

 to the schedule

S

j

 (

S

i

 ≈

C

S

j

)
if the two schedules present the same operations and each pair of operations
in conflict is in the same order in both the schedules. A schedule is therefore

conflict-serializable

 if there is a serial schedule that is conflict-equivalent to
it. The set of conflict-serializable schedules is called

csr

.
It is possible to prove that the class of

csr

 schedules is properly included
in that of the

vsr

 schedules. There are thus schedules that belong to

vsr

 but
not to

csr

, while all the

csr

 schedules belong to

vsr

. Thus conflict
serializability is a su

ffi

cient but not necessary condition for view-
serializability.

Figure

9.2

 illustrates the conflict-serializable schedule

S

10

 with its conflicts
in evidence; next, it shows the serial schedule

S

11

, which is conflict-
equivalent to

S

10

.

It is possible to determine whether a schedule is conflict-serializable by
means of the

conflict graph

. The graph is constructed with a node for each
transaction and an arc from

t

i

 to

t

j

 if there is at least one conflict between an
action

a

i

 and an action

a

j

 such that

a

i

 precedes

a

j

 (see Figure

9.2

). It can be
proved that the schedule is in

csr

 if and only if the graph is acyclic. The
analysis of cyclicity of a graph has a linear complexity with respect to the
size of the graph itself.

In spite of the linear complexity, conflict serializability is still too laborious
in practice. For example, consider a system with

100

 tps and transactions
with access to

10

 pages and lasting on average

5

 seconds. In each instant, it
will be necessary to organize graphs with

500

 nodes and record the

5000

accesses of the

500

 active transactions. Further, this graph continues to
modify itself dynamically, making decisions very laborious for the scheduler.

Figure 9.2

A schedule

S

10

 conflict-equivalent to a serial schedule

S

11

.

S10 w0(x) r1(x) r1(z)w0(z) r2(x) r3(z) w3(z) w1(x)

S11 w0(x) w0(z) r1(x)r2(x) r1(z) w1(x) r3(z) w3(z)

t0

t2t1

t3

294

Chapter 9

Technology of a database server

The technique is unacceptable in a distributed database context, given that,
as we shall see, the graph must be reconstructed based on arcs that are
recognized by the di

ff

erent servers of the distributed system. Thus, conflict
equivalence, too, cannot be used in practice.

Two-phase locking

The concurrency control mechanisms used by almost
all commercial

dbms

s is called

locking

; it overcomes the limitations discussed
above. Locking is based on a very simple principle: all the read and write
operations must be protected by means of the execution of three di

ff

erent
primitives:

r_lock

,

w_lock

 and

unlock

. The scheduler (also known as the

lock
manager

) receives a sequence of execution requests for these primitives by
the transactions, and their outcome is determined by a simple inspection of
an adequate data structure, at a negligible computational cost.

During the execution of read and write operations the following
constraints must be satisfied:

1.

Each read operation should be preceded by an

r_lock

 and followed by an

unlock

. The lock in this case is called

shared

, because more than one lock
of this type can be active on one piece of data at one time.

2.

Each write operation must be preceded by a

w_lock

 and followed by an

unlock

. The lock in this case is known as

exclusive

, because no other
locks (exclusive or shared) can exist on the same piece of data.

When a transaction follows these rules it is called

well formed with regard
to locking

. Note that the lock operation of a resource can happen much earlier
than a read or write action on that resource. In some systems, a single lock
primitive is available, which does not distinguish between read and write,
and thus behaves like an exclusive lock. If a transaction must read and then
write a resource, the transaction can request only an exclusive lock, or it can
start with a shared lock and can then move from a shared lock to an exclusive
lock, ‘increasing’ the level of lock; this process requires a specialized lock
primitive, and is called

lock escalation

.
In general, transactions are automatically well-formed with regard to

locking, because the appropriate lock and unlock requests are automatically
issued by transactions when they need to read or write pages. The lock
manager receives the lock requests from the transactions and can either grant
or deny the lock, based on the locks previously granted to the other
transactions. When a lock request is granted, we say that the corresponding
resource is acquired by the requesting transaction. At the time of unlock, the
resource is released. When a lock request is not granted, the requesting
transaction is put in a waiting state. The waiting ends when the resource is
unlocked and becomes available. The locks already granted are stored in a

lock table

, managed by the lock manager.
Each lock request received by the lock manager is characterized only by

the identifiers of the transaction making the request, and by the resource for
which the request is carried out. The policy followed by the lock manager to

Section 9.2

295

Concurrency control

grant locks is represented in the conflict table in Figure

9.3

, in which the
rows identify the requests and the columns the current state of the resource
requested. The first value of the cell shows the result of the request and the
second value in the cell shows the state that will be assumed by the resource
after the execution of the primitive.

The three

No

 entries present in the table represent the conflicts that can
appear when a read or write is requested on an object already locked for
writing, or a write on an object already locked for reading. In practice, only
when an object is locked for reading is it possible to give a positive response
to another request for a read lock, as shown by the

OK

 entry. In the case of

unlock

 of a resource locked by a shared lock, the resource becomes

free

 when
there are no other read transactions operating on it, otherwise, the resource
remains locked. For this reason, the corresponding cell of the matrix of
conflicts has the

depends

 value. To keep track of the number of readers we
introduce a counter, which increases at each request for

r_lock

 granted, and
decreases at each

unlock

.

The locking mechanism seen so far ensures that the writing actions are
exclusive, while reading actions can occur concurrently. This is the
traditional control of readers and writers, normally presented in the context
of operating systems. In order to guarantee, however, that the transactions
form a serializable schedule, we must impose the following restriction on the
ordering of the lock requests. The restriction is known as

two-phase locking

(2pl).

Two-phase locking (2PL): A transaction, after having released a lock, cannot
acquire other locks.

As a consequence of this principle, two different phases can be
distinguished during the execution of the transaction. During the first
phase, locks on resources are acquired (growing phase); during the second
phase, the acquired locks are released (shrinking phase). The transfer of an
r_lock to a w_lock constitutes an increase in the level of lock on the resource,
which can thus appear only in the growing phase of the transaction.
Figure 9.4 shows a graphic representation of the requested behaviour of the
two-phase locking protocol. The x-axis represents time and the y-axis
represents the number of resources obtained by a transaction during its
execution.

Figure 9.3 Conflict table for the locking method.

Request Resource state

free r_locked w_locked

r_lock OK / r_locked OK / r_locked No / w_locked
w_lock OK / w_locked No / r_locked No / w_locked
unlock error OK / depends OK / free

296 Chapter 9
Technology of a database server

Consider a system in which the transactions are well-formed with regard
to locking, with a lock manager that respects the policy described in the
conflict table of Figure 9.3, and in which the transactions follow the two-
phase locking principles. Such a system is characterized by the serializability
of its transactions. The 2pl class contains the schedules that satisfy these
conditions.

We will now give an informal proof of the fact that if a schedule satisfies
2pl then it is conflict serializable. In other words, 2pl is contained in csr.
Assume, by way of contradiction, that a schedule S satisfies 2pl and is not in
csr. If the schedule does not belong to csr, this means that the conflict graph
among the transactions contains a cycle t1, t2, …, tn, t1. If there is a conflict
between t1 and t2, it means that there is a resource on which both the
transactions operate in conflict. For the transaction t2 to proceed, it is
necessary that transaction t1 releases its lock on the resource. On the other
hand, if we observe the conflict between tn and t1, it means that there is a
resource on which both the transactions operate in conflict. For the
transaction t1 to proceed, it is necessary for the transaction t1 to acquire the
lock on the resource, released by tn. Thus, the transaction t1 cannot be two-
phased. It releases a resource before acquiring another.

It is easier to prove that the 2pl and csr classes are not equivalent, and
thus that 2pl is strictly included in csr. To do this, it is sufficient to show an
example of a schedule that is not in 2pl but is in csr, such as:

S12 : r1(x) w1(x) r2(x) w2(x) r3(y) w1(y)

In this schedule, the t1 transaction must release an exclusive lock on the
resource x and then request an exclusive lock on the resource y; therefore, it
cannot be produced by a two-phase locking scheduler. Conversely, the
schedule is conflict-serializable relative to the sequence t3, t1, t2.

Finally, let us look at how two-phase locking resolves the problem of the
ghost updates. Consider the example introduced in Section 9.2.2. We will

Figure 9.4 Representation of the resources allocated to a transaction with
a two-phase locking protocol.

t

Resource
requested growing phase

shrinking phase

Section 9.2 297
Concurrency control

represent the same sequence of accesses that introduced a ghost update, and
show that 2pl resolves the problem. Figure 9.5 describes for each resource its

free state, read-locked from the i-th transaction (i : read) or write-locked
from the i-th transaction (i : write). We will also illustrate the negative result
of a lock request from the i-th transaction, left in a waiting state (i : wait).
Note that, as a result of 2pl, the lock request of t1 relative to the resources z
and x are put in waiting, and the transaction t1 can proceed only when these
resources are unlocked by t2. At the end of the transaction, the variable s
contains the correct value of the sum x + y + z.

Remember at this point the hypothesis of using a commit-projection. To
remove it, it is necessary to introduce a further constraint on the 2pl
protocol, thereby introducing the so-called strict 2pl:

Figure 9.5 Prevention of the occurrence of a ghost update by means of
two-phase locking.

t1 t2 x y z
bot

r_lock1(x)
r1(x)

r_lock1(y)

r1(y)
r_lock1(z)

r1(z)

s = x + y + z
commit

unlock1(x)
unlock1(y)
unlock1(z)
eot

bot

w_lock2(y)
r2(y)

y = y − 100
w_lock2(z)
r2(z)
z = z + 100
w2(y)
w2(z)
commit

unlock2(y)

unlock2(z)

eot

free
1:read

free

free

2:write

1:wait

1:read

free

free

2:write

1:wait
1:read

free

298 Chapter 9
Technology of a database server

Strict two-phase locking: the locks on a transaction can be released only after
having carried out the commit/abort operations.

With this constraint, the locks are released only at the end of the
transaction, after which each item of data has arrived at its final state. This
version of 2pl is the one used by commercial dbmss. By using strict 2pl the
anomaly of dirty reads, shown in Section 9.2.2, does not occur. The example
in Figure 9.5 uses strict 2pl, in that the release actions of the lock follow the
commit action, explicitly required by the schedule.

Concurrency control based on timestamps We will conclude the over-
view of concurrency control theory by introducing a method that is easy to
manage, but is less efficient than two-phase locking. This method makes use
of a timestamp, that is, of an identifier that defines a total ordering of
temporal events within a system. In centralized systems, the timestamp is
generated by reading the value of the system clock at the time at which the
event happened. The concurrency control with timestamps (TS method) is
carried out as follows:

• every transaction is assigned a timestamp that represents the time at
which the transaction begins.

• a schedule is accepted only if it reflects the serial ordering of the
transactions based on the value of the timestamp of each transaction.

This method of concurrency control, perhaps the simplest of all from the
point of view of its construction, serializes transactions on the basis of the
order in which they acquire their timestamps. Each object x has two
indicators, rtm(x) and wtm(x), which are the highest timestamps of the
transactions that carried out respectively read and write operations on x. The
scheduler receives requests for access to objects of the type read(x, ts) or
write(x, ts), where ts represents the timestamp of the requesting transaction.
The scheduler accepts or rejects the requests according to the following
policies:

• read(x, ts): if ts < wtm(x) then the request is rejected and the transaction
is killed, otherwise the request is accepted and rtm(x) is set equal to the
greater of rtm(x) and ts.

• write(x, ts): if ts < wtm(x) or ts < rtm(x) then the request is rejected and
the transaction is killed, otherwise the request is accepted and wtm(x) is
set equal to ts.

In practice, no transaction can read or write an item of data written by a
transaction with a greater timestamp, and cannot write on an item of data
that has already been read by a transaction with a greater timestamp.

Let us look at an example. Suppose that rtm(x) is equal to 7 and wtm(x)
equals 5 (that is, the object x was read by the transaction with highest
timestamp 7 and written by the transaction with highest timestamp 5).

Section 9.2 299
Concurrency control

Below, we will describe the scheduler’s reply to the read and write requests
received:

The ts method causes the forced abort of a large number of transactions.
Furthermore, this version of the method is correct only under the hypothesis
of use of a commit-projection. To remove this hypothesis we must ‘buffer’ the
writes, that is, store them in memory and transcribe them to the secondary
memory only after the commit. This means that other transactions wanting
to read the data stored in the buffer and waiting for commit are also made to
wait until the commit of the writing transaction. This has the effect of
introducing wait mechanisms similar to those of locking.

Multiversion concurrency control An interesting modification of this
method on the theoretical level is the use of multiversions. This consists of
keeping many copies of the objects of the database, one for each transaction
that modifies it. Each time that a transaction writes an object, the old value
is not discarded, but a new copy is created, with a corresponding wtmN(x).
We have, however, a sole global rtm(x). Thus at any time, N ≥ 1 copies of
each object x are active. By this method, the read requests are never refused,
but are directed to the correct version of the data according to the timestamp
of the requesting transaction. The copies are discarded when they are no
longer useful, in that there are no read transactions interested in their values.
The rules of behaviour become;

• read(x, ts): a read is always accepted. The copy xk is selected for reading
such that: if ts > wtmN(x), then k = N, otherwise k is taken such that
wtmk(x) < ts < wtmk+1(x).

• write(x, ts): if ts < rtm(x) the request is refused, otherwise a new version
of the item of data is added (N increased by one) with wtmN(x) = ts.

The idea of adopting many versions, introduced theoretically within the
context of timestamp-based methods, has also been extended to other
methods, including two-phase locking. An interesting use of the versions is
obtained by limiting the maximum number of copies to two, that is, keeping
an earlier and a later copy of each update during write operations. The read
transactions which are synchronized before the write transaction can access
the earlier copy.

Request Response New values
read(x, 6) ok
read(x, 8) ok rtm(x) = 8

read(x, 9) ok rtm(x) = 9

write(x, 8) no t8 killed

write(x, 11) ok wtm(x) = 11

read(x, 10) no t10 killed

300 Chapter 9
Technology of a database server

Comparison of VSR, CSR, 2PL and TS Figure 9.6 illustrates the taxonomy
of the methods vsr, csr, 2pl and ts. Observe that the vsr class is the most
general: it strictly includes csr, which in its turn includes both the 2pl class
and the ts class. 2pl and ts in their turn present a non-empty intersection,
but neither of them includes the other. This last characteristic can be easily
verified, by constructing a schedule that is in ts but not in 2pl, or in 2pl but
not in ts, or finally in 2pl and in ts.

First, we will show that there can exist schedules that are in ts but not in
2pl. Consider the schedule S13, in which the indices of transactions are
interpreted as timestamps:

S13 : r1(x) w2(x) r3(x) r1(y) w2(y) r1(v) w3(v) r4(v) w4(y) w5(y)

The corresponding graph of conflicts, illustrated in Figure 9.7, shows the
absence of cycles; thus, the schedule belongs to csr. The serial ordering of
the transactions that is conflict-equivalent to S13 is t1 t2 t3 t4 t5. The schedule
is not 2pl because t2 first releases x (so that it is read by t3) and then acquires
y (released by t1); but is actually in ts since, on each object, the transactions
operate in the order defined by their timestamps.

A schedule that is both in ts and in 2pl is the simple schedule r1(x) w1(x)
r2(x) w2(x). On the other hand, the schedule r2(x) w2(x) r1(x) w1(z), in which

Figure 9.6 Taxonomy of the classes of schedule accepted by the methods
vsr, csr, 2pl and ts.

Figure 9.7 Conflict graph for the schedule S13.

CSR

2PL
TS

VSR

t1 t2

t5

t3 t4

Section 9.2 301
Concurrency control

transaction t2 acquires the timestamp after transaction t1 but presents itself
first to the object x, does not belong to ts but to 2pl.

Let us compare 2pl and ts, the two techniques that can be used in practice.
Some significant differences emerge.

• In 2pl, the transactions are put in waiting. In ts they are killed and then
restarted.

• The serialization order in 2pl is imposed by conflicts, while in ts it is
imposed by the timestamps.

• The necessity of waiting for the commit of the transaction before showing
its final state causes a lengthening of the locking time in 2pl (the transfer
from 2pl to strict 2pl) and the creation of waiting conditions in ts.

• The 2pl method can give rise to deadlocks, which we will see in the next
section.

• The restart used by ts costs more that the waiting time imposed by 2pl.

If we analyze the choices made by commercial systems, we can observe
that almost all commercial dbmss use strict 2pl. Therefore we devote the next
section to the discussion of a few more aspects and problems arising in the
use of locks.

9.2.4 Lock management
The lock manager is a component of the dbms, used by all the processes that
access the database. The lock manager provides for these processes an
interface that is based on the three procedures r_lock, w_lock and unlock,
generally characterized by the following parameters:

r_lock(T, x, errcode, timeout)
w_lock(T, x, errcode, timeout)
unlock(T, x)

T represents the identifier for the transaction; x the element for which the
lock is requested or released; errcode represents a value returned by the lock
manager, and is equal to zero whenever the request is satisfied, while it
assumes a non-zero value whenever the request is not satisfied; timeout
represents the maximum interval that the calling procedure is prepared to
wait to obtain the lock on the resource.

When a process requests a resource and the request can be satisfied, the
lock manager records the change of status of the resource in its internal table
and immediately returns the control to the process. In this case, the delay
introduced by the lock manager on the execution time of the transaction is
very small.

However, when the request cannot be satisfied immediately, the system
inserts the requesting process into a queue associated with that resource.
This causes an arbitrarily long waiting time, and thus the process associated

302 Chapter 9
Technology of a database server

with the transaction is suspended. As soon as a resource is released, the lock
manager checks whether there are processes waiting for the resource; if so, it
grants the resource to the first process in the queue. The efficiency of the lock
manager thus depends on the probability that the request for a transaction
will conflict with other transactions.

When a timeout is released and the request is not satisfied, the requesting
transaction can carry out a rollback, which will generally be followed by a
restart of the same transaction. Alternatively, it can decide to continue,
repeating the request for a lock, and keeping all the locks that were
previously acquired.

The lock tables are accessed frequently. For this reason, the lock manager
keeps the information in the main memory, so as to minimize the access
times. The tables have the following structure: two status bits, which are
allocated to each object to represent the three possible states, and a counter
that represents the number of processes reading that object.

Hierarchical locking Up to now we have discussed the locking of generic
resources and objects of the database, in that the theoretical principles on
which 2pl is based are independent of the type of objects to which the
method is applied. In many real systems, however, it is possible to specify the
lock on different levels. This is known as lock granularity. For example, it is
possible to lock entire tables, or parts of them (called fragments, see
Section 10.2.3), or tuples, or even fields of single tuples. Figure 9.8 illustrates
the hierarchy of resources that make up a database.

To introduce different levels of lock granularity, an extension of the
protocol of traditional lock is introduced, called hierarchical locking. This
technique allows the transactions to lock items at given levels of the
hierarchy. Thus it is possible for a transaction to obtain a lock for the entire
database (as can be needed when we wish to make a copy of the entire
database), or for a specific tuple or field.

Figure 9.8 The hierarchy of resources.

DB

Tab 1 Tab 2 Tab n

Fragment 1 Fragment 2 Fragment n

Tuple 1 Tuple 2 Tuple n

Field 1 Field 2 Field n

Section 9.2 303
Concurrency control

The technique provides a richer set of primitives for lock requests; we
rename read and write locks as follows:

• xl: exclusive lock, corresponds to the write-lock of the 2pl protocol;

• sl: shared lock, corresponds to the read-lock of the 2pl protocol.

The following three locks are specific to this technique:

• isl: intention shared lock. This expresses the intention of locking in a
shared manner one of the nodes that descend from the current node;

• ixl: intention exclusive lock. This expresses the intention of exclusively
locking one of the nodes descending from the current node;

• sixl: shared intention-exclusive lock. This locks the current node in a
shared mode and expresses the intention of exclusively locking one of the
nodes descending from the current node.

If, for example, we wish to place a write lock on a tuple of the table, and
the hierarchy is that shown in Figure 9.8, then we must first request an ixl
on the database level. When the request is satisfied, we can request an ixl for
the relation and the fragment in which the desired tuple lies. When these
locks are granted, we can request an xl for the particular tuple. Then when
the transaction is ended, it will have to release the locks in reverse order to
that in which they were granted, ascending the hierarchy one step at a time.

Here is a more formal description of the rules that must be followed by the
protocol.

1. Locks are requested beginning at the root and moving down the tree.

2. Locks are released starting at the node locked by the smallest granularity
and moving up the tree.

3. In order to request an sl or isl on a node, a transaction must already
hold an isl or ixl lock on the parent node.

4. In order to request an ixl, xl, or sixl on a node, a transaction must
already hold an sixl or ixl lock on the parent node.

5. The rules of compatibility used by the lock manager to decide whether
to accept the lock request, based on the status of the node and on the
type of request, are shown in Figure 9.9.

The choice of level of lock is left to the designer of the applications or to
the database administrator, based on the characteristics of the transactions.
Transactions that carry out ‘localized’ modifications, having access to a
limited set of objects, use a fine granularity. Transactions that carry out
accesses to large quantities of data use a coarser granularity. The choice must
be careful, as the use of too coarse a granularity can cause limitations to the
parallelism (it increases the probability of the occurrence of a conflict), while

304 Chapter 9
Technology of a database server

the use of too fine a granularity means that a large number of locks must be
requested one at a time, causing a great deal of work for the lock manager
and exposing it to the risk of failure after the acquisition of many resources.

Lock functions offered by sql-2 In sql-2 it is possible to define each
transaction as read only or read write. The default case is read write. Read
only transactions cannot modify the contents of the database (with the
primitives insert, delete and update) or modify the contents of the schema
(with the primitives create, drop and alter). Thus, they request only shared
locks.

Furthermore, it is possible to indicate the level of isolation for each
transaction, choosing among four possibilities: serializable, repeatable
read, read committed, and read uncommitted. The default case is
serializable; this level guarantees the maximum requirements of isolation.
The three successive levels correspond to reduced requirements on the
isolation of read operations. This simplifies the concurrency control for the
transaction and ensures an increase in performance, but exposes it to
possible inconsistencies. Note that in each case, the write requests the use of
exclusive locks and of the protocol of strict 2pl.

To understand the difference between serializable and repeatable read,
we must discuss a further problem caused by concurrency. Let us consider a
transaction that evaluates an aggregate value from the set of all the elements
that satisfy a selection predicate. For example, the average grade of first-year
students. Consider the case in which the aggregate value is evaluated twice,
and between the first and second evaluations a new first-year student is
inserted. In this case, the two average values read by the transaction could
be different. This anomaly is not recognized by the concurrency control as
defined in Section 9.2.3. The first read operation is not in conflict with the
insertion operation, thus the two transactions are recognized as serializable,
with the insertion transaction that precedes the read transaction.

In reality, the transactions are in conflict. To prevent the anomaly, it is
necessary for the first transaction to impose a lock, which prevents any other
transaction from modifying the data that satisfies the selection predicate.
This new lock is called a predicate lock and can be created in the relational

Figure 9.9 Compatibility among the lock functions in the presence of
hierarchies.

Request Resource state

ISL IXL SL SIXL XL

ISL OK OK OK OK No
IXL OK OK No No No
SL OK No OK No No
SIXL OK No No No No
XL No No No No No

Section 9.2 305
Concurrency control

systems using mechanisms that lock particular data structures, which are
known as indexes, and which will be introduced in Section 9.7. The
serializable level allows for the use of predicate locks and thus also avoids
this anomaly, while the repeatable read level does not introduce them and
thus guarantees the level of isolation that is obtained by strict 2pl. Note that
the term repeatable read is misleading, in that really the two readings of
aggregate data discussed above can, when repeated, give different values.

Finally, let us look at the cases of read committed and read uncommitted. In
both cases, the 2pl protocol is not used, and thus the serializability is not
guaranteed. In the first case, the readings of data corresponding to an
intermediate (uncommitted) state of a transaction are excluded, thus
avoiding the anomaly of dirty read described in Section 9.2.2. This effect is
obtained by a read lock request, which will, however, be immediately
released after having been obtained. In the second case, no locks at all are
used for read operations, thus even dirty reads are accepted.

The most developed systems make all four levels of isolation available to
the programmer. It is up to the application programmer to choose which level
to use. For the applications for which the accuracy of the data read is
essential (for example, financial applications), the highest level will be
chosen. Where the accuracy is not important (for example, statistical
evaluations in which approximate values are acceptable), lower levels will be
chosen.

9.2.5 Deadlock management
Locking can generate a serious problem, deadlock, when we have concurrent
transactions, each of which holds and waits for resources held by others.
Suppose that we have a transaction t1, which performs the sequence of
operations r(x), w(y), and a second transaction t2, which performs the
sequence of operations r(y), w(x). If the two-phase lock protocol is used, the
following schedule can occur:

r_lock1(x), r_lock2(y), read1(x), read2(y) w_lock1(y), w_lock2(x)

At this point, neither of the two transactions can proceed and the system
is locked. The deadlock occurs because t1 is waiting for the object y, which
is blocked by t2, and in its turn, t2 is waiting for the object x, which is locked
by t1. This situation is characteristic of all the systems in which mechanisms
of locks on resources are used.

Let us evaluate the probability of such an event happening. Consider a
table that consists of n different tuples, with identical access probability. The
probability of a conflict between two transactions that make a single access
is 1/n; the probability of a deadlock of length 2, is equal to the probability of
a second conflict of the same two transactions, and thus is equal to 1/n2. We
will ignore the case of deadlocks generated by longer chains, because in this
case the deadlock probability decreases exponentially with the increase of

306 Chapter 9
Technology of a database server

the length of the chain. Limiting ourselves to the case of deadlocks caused
by pairs of transactions, the probability of conflict increases in a linear
manner with the global number k of transactions present in the system.
Further, it increases quadratically with the average number m of resources to
which each transaction has access. The actual probability of the occurrence
of deadlock is slightly higher than the simple statistical analysis above would
lead us to believe, due to the dependencies that exist among data. (When a
transaction has access to a given data item, it is more likely that it accesses
other items that are semantically related.) In conclusion, we can assume that
the probability of a deadlock in transactional systems is low, but not
negligible. This consideration is confirmed by experiment.

Three techniques are commonly used to resolve the problem of deadlock:

1. timeout;

2. deadlock detection;

3. deadlock prevention.

Use of timeout Avoiding deadlocks by means of timeouts is very simple.
The transaction remains in waiting for a resource for a pre-set time. If this
time expires and the resource has not yet been granted, then the lock request
is given a negative response. In this way, a transaction in deadlock is in any
case removed from the waiting condition, and presumably aborted. Because
of its simplicity, this technique is preferred by commercial dbmss.

The choice of timeout values depends on the following trade-off. On one
hand, a timeout that is too high tends to resolve deadlocks late, after the
transactions involved in the lock have spent a long time in waiting. On the
other hand, a timeout that is too low runs the risk of defining as deadlock
situations in which a transaction is waiting for a resource without causing an
actual deadlock. This might needlessly kill a transaction and waste the work
already carried out by the transaction.

Deadlock prevention Different techniques can be used to prevent the
occurrence of a deadlock. One simple but impractical technique is based on
requesting locks on all the resources necessary to the transaction at once.
Unfortunately, this technique cannot be used because transactions do not
normally know beforehand the resources to which they require access.

Another technique for the prevention of deadlock is to cause the
transactions to acquire a timestamp. The technique consists of allowing the
transaction ti to wait for a resource acquired by tj only if there is a
determined relation of precedence between the timestamps of ti and tj (for
example, i < j). In this way, about 50% of the requests that generate a conflict
can wait in a queue, while in the remaining 50% of cases a transaction must
be killed.

There are various options for choosing the transaction to kill. Let us first
separate them into pre-emptive policies, and non-pre-emptive policies. A

Section 9.3 307
Buffer management

policy is pre-emptive if it resolves the conflict by killing the transaction that
possesses the resource (to release the resource, which can thus be granted to
another transaction). In the opposite case, the policy is non-pre-emptive, and
a transaction can be killed only in the act of making a new request.

One policy can be that of killing the transaction that is making a request
when it has done less work than the transaction holding the lock. A problem
with this policy is that a transaction accessing many objects that are often
used by other transactions would be often in conflict, and being the one that
has done least work, it would repeatedly be killed. In this situation there are
no deadlocks, but there is a potential for starvation. To resolve the problem
we must guarantee that each transaction cannot be killed an unlimited
number of times. A solution that is often adopted is to maintain the same
timestamp when a transaction is aborted and restarted, at the same time
giving increasing priority to ‘older’ transactions. In this way, the problem of
starvation is solved.

This technique is never used in commercial dbmss, as the probability of
killing a transaction is about half of the probability of a conflict, while the
probability of a deadlock is much lower that the probability of a conflict.

Deadlock detection This technique requires controlling the contents of
the lock tables, as often as necessary in order to reveal possible block
situations. The control can be carried out at predefined intervals, or when
the timeout of a transaction occurs. The discovery of a deadlock requires the
analysis of the waiting conditions among the various transactions, and in
determining whether there is a cycle. The search for cycles in a graph,
especially if carried out periodically, is practically feasible. For this reason,
some commercial dbmss use this technique, which will be described in more
detail in Section 10.3.2, in the context of distributed systems.

9.3 Buffer management
The efficient management of main memory buffers is an essential aspect of
database systems. The buffer is a large area of the main memory pre-allocated
to the dbms and shared among the various transactions. Recent years have
seen memory costs fall, with the consequent allocation of larger and larger
memory buffers to the dbmss; in certain cases the entire dbms can be copied
and managed in the main memory.

9.3.1 Architecture of the buffer manager
The buffer manager deals with the loading and unloading of pages of the
main memory to the secondary memory. It provides primitives for access to
the pages present in the buffer, called fix, use, unfix, flush and force. It then
simultaneously creates input/output operations in response to these
primitives, so long as the shared access to the data is allowed by the

308 Chapter 9
Technology of a database server

scheduler (generally a lock manager). The architecture of the subsystem is
illustrated in Figure 9.10.

The buffer is organized in pages, which are either equal to or a multiple of
the size of the input/output blocks used by the operating system for reading
from and writing to secondary memory. The size of pages ranges from a few
Kbytes to about a hundred Kbytes. When a page of the secondary memory is
present in the buffer, the dbms can carry out its reading and writing
operations directly on it. Given that the access times to main memory are in
the order of six orders of magnitude faster than access times to secondary
memory, it is clear that having access to the pages of the buffer represents an
important increase of performance.

The policies of buffer management are similar to those of main memory
management from the point of view of the operating systems, and they obey
the same principle, called data locality, based on which the currently
referenced data has a greater probability of being referenced in the future. In
addition, a well-known empirical law says that only 20% of data is typically
accessed by 80% of applications. This law means that generally the buffers
contain the pages on which most of the accesses are made.

The buffer manager supports a directory, which describes the current
contents of the buffer. For each page loaded, it indicates the physical file and
the corresponding block number. Note that, as the size of the buffer
increases, the importance of managing this directory efficiently also
increases.

9.3.2 Primitives for buffer management
The operations supported by the buffer manager to organize the loading and
unloading of pages are the following.

• The fix primitive is used to request the access to a page and to load it into
the buffer. At the end of the operation, the page is loaded and valid, that

Figure 9.10 Architecture of the buffer manager.

flush

Scheduler

Buffer
Manager

File System

create, delete
extend

open, close

read,
read_seq

Database Management System

write,
write_seq

Database

Y
Z

X

Main
memory
buffer

Y
X Z

fix use unfix force

Section 9.3 309
Buffer management

is, allocated to an active transaction; a pointer to the page is returned to
the transaction. The execution of the primitive requires read operations
from the secondary memory only when the chosen page is not already
resident in the buffer.

• The use primitive is used by the transaction to gain access to the page
previously loaded in the memory, confirming its allocation in the buffer
and its status as a valid page.

• The unfix primitive indicates to the buffer manager that the transaction
has terminated the use of the page, which is no longer valid.

• The force primitive synchronously transfers a page from the buffer
manager to the secondary memory. The requesting transaction remains
suspended until the end of the execution of the primitive, which consists
of physical write operations to the secondary memory.

In practice, the primitives fix and use allow the loading into the buffer and
the reading of data, and the primitive force is used by the transactions to
write data in the secondary memory. Furthermore, the flush primitive is used
by the buffer manager itself to transfer to the secondary memory the pages
that are no longer valid and remain inactive for a long time, either during the
fix operation relating to other pages, or asynchronously and independently
of the active transactions. Asynchronous transfers happen when the buffer
manager is not occupied by other operations such as fix or force. They make
pages of the buffer available, which become free and can be immediately used
by successive fix operations. In summary, the writing of pages of the buffer
into the secondary memory can be synchronous, commanded by the
transactions, or asynchronous, commanded by the buffer manager and
independent from the transactions.

The fix primitive operates as follows.

1. First it searches for the required page among those already present in the
memory, after the unfix of other transactions. If the search has a positive
result, the operation is concluded and the address of the page is granted
to the requesting transaction. Due to the principle of locality, this
happens quite often.

2. Otherwise, a page in the buffer is chosen for loading the secondary
memory page into it. If a free page exists, it is selected. Otherwise, the
page is selected from among those that are not free; that page is called
victim. As we further discuss next, the selection can consider only non-
valid pages (and fail if no page is available), or else consider also valid
pages allocated to other transactions (and in such case it never fails). If a
page that is not free is chosen, it must in any case be rewritten in the
secondary memory, invoking the flush operation.

310 Chapter 9
Technology of a database server

9.3.3 Buffer management policies
We will now describe two pairs of alternative policies for buffer
management.

• The steal policy, used during the execution of the fix operation, allows
the buffer manager to select an active page allocated to another
transaction as a victim, while a no-steal policy excludes this possibility.
Note that with the steal policy, the pages of active transactions can be
written in the secondary memory by the buffer manager before the end of
the transaction. In particular, we might have to rewrite the initial value of
the page when the transaction carries out an abort.

• The force policy requires that all the active pages of a transaction are
transcribed in the secondary memory when the transaction performs a
commit. The no-force policy entrusts the writing of the pages of a
transaction to the asynchronous mechanisms of the buffer manager. This
latter makes it possible for the write to come well after the end of the
transaction, because of flush operations or when a page is a chosen victim.

The no-steal/no-force pair of policies is preferred by the dbmss, as the no-
steal policy is the easiest to carry out and the no-force policy guarantees the
higher efficiency. We will return to this subject in the next section, which
deals with reliability.

There is also the possibility of ‘anticipating’ the loading and unloading
times of the pages, by means of pre-fetching and pre-flushing policies. The
former means loading the pages before the actual request by the transaction,
when the pattern of access to the pages of the database is known in advance.
The latter means unloading the pages before the time when a page is chosen
as a victim.

9.3.4 Relationship between buffer manager and file system

The file system is a module made available by the operating system. The
dbms uses its functionality. However, contrary to appearances, the
relationship between the functions delegated to the file system and those
handled directly by the dbms is not simple. There was a long period in which
the functionality offered by the operating systems could not guarantee
availability, reliability or efficiency, for which reason the dbmss had to
implement their own input/output functions. Today, dbmss use the file
system but create their own abstraction of the files, in order to ensure the
efficiency (by means of the buffers) and robustness (by means of the
reliability system). It is quite possible that in the future this functionality
will migrate towards the operating system, ‘exporting’ the functionality of
the database beyond the dbms. There follows a brief description of the
functionality of the file system, which serves to create links between this

Section 9.4 311
Reliability control system

subject and operating systems. Listed below are the functions traditionally
offered by the file system and exploited by the dbms.

• The creation (create) and removal (delete) of a file. In general, at the time
of creation an initial number (minimum) of blocks is allocated to a file,
which can be dynamically extended (extend).

• The opening (open) and closing (close) of a file, necessary to load the
information that describes the file in appropriate main memory
structures. The opening of a file normally allocates a numerical identifier
(fileid) to the name of the file (filename).

• The primitive read(fileid, block, buffer) for the direct access to a
block of a file, identified by the first two parameters, which is transcribed
in the page of the buffer indicated using the third parameter.

• The primitive read_seq(fileid, f-block, count, f-buffer) for sequential
access to a fixed number (count) of blocks of a file, identifying the first
block of the file by means of the second parameter and the first page of
the buffer by means of the last parameter.

• The dual primitives write and write_seq, characterized by exactly the
same parameters as the corresponding read primitives.

Furthermore, other primitives allow for the structuring of the secondary
memory by introducing directories, to which the files are allocated. The file
system is responsible for knowing the structure of the secondary memory in
directories and the current situation of secondary memory use. It must
identify which blocks are free and which are allocated to files, to be able to
respond to the primitives.

9.4 Reliability control system
The architecture described up to now allows for the concurrent and efficient
reading and writing of blocks of the secondary memory. At this point, we
must concern ourselves with reliability, one of the main goals in database
management. The reliability control system ensures two fundamental
properties of transactions, defined in Section 9.1.1: atomicity and durability.
The system is responsible for the writing of the log; a permanent archive,
which registers the various actions, carried out by the dbms. As we shall see,
each write action on the database is protected by means of an action on the
log, so that it is possible to ‘undo’ the actions following malfunctions or
failures preceding the commit, or ‘redo’ these actions whenever their success
is uncertain and the transactions have performed a commit.

To give an indication of the role of the log, we can make use of two
metaphors, one mythological and the other based on a popular fable. The log
can be likened to ‘Arianna’s thread’, used by Theseus to find his way out of
the Minotaur’s palace. In this case, by rewinding the log, Theseus can ‘undo’

312 Chapter 9
Technology of a database server

the path he has taken. A similar role is given by Hansel and Gretel to the
crumbs of bread left along the way through the forest, but in the Grimm’s
fairy tale the crumbs were eaten by the birds, and Hansel and Gretel were
lost in the forest. This analogy shows that, in order to be able to carry out its
role effectively, the log must be sufficiently durable.

9.4.1 Architecture of the reliability control system
The reliability control system (see Figure 9.11) is responsible for executing
the transactional commands: begin transaction, commit work, rollback work,
abbreviated where necessary to B:begin, C:commit, A:abort, and for
executing the primitives for recovery after malfunctions. These primitives
are known respectively as warm restart and cold restart. Further, the
reliability control system receives requests for reading and writing pages,
which are transferred to the buffer manager, and generates other requests for
reading and writing of pages necessary to ensure durability and resistance to
failure. Finally, the system prepares the data required for doing recoveries
after failures, in particular, by creating checkpoints and dumps.

Stable memory To be able to operate, the reliability control system must
make use of a stable memory, that is, a memory that is failure-resistant. Stable
memory is an abstraction, in that no memory can have zero probability of
failure. However, mechanisms of replication and robust writing protocols
can bring such a probability close to zero. The mechanisms of reliability

Figure 9.11 Architecture of the reliability control system.

unfix

 fix use unfix begin commit abort

Buffer
Manager

flush

Database Management System

write,
write_seq

read,
read_seqY

Z

X

Database

Log

X Z
Y

fix use force (for db and log)

Main
memory
buffer

Reliability
control system

Restart
procedure

Warm
restart

Cold
restart

Section 9.4 313
Reliability control system

control are defined as if the stable memory were immune to failure. A failure
of the stable memory would be considered catastrophic and we assume it to
be impossible, at least in this section.

The stable memory is organized in different ways, depending upon the
specific requirements of an application. In some applications, it is assumed
that a tape unit is stable. In other cases, it is assumed that a pair of devices
are stable, for example, a tape unit and a disk storing the same information.
A typical organization of a stable memory uses, in place of a single disk unit,
two disk units referred to as ‘mirrored’. The two disks contain exactly the
same information and are written with a ‘careful writing’ operation, which
is held to be successful only if the information is recorded on both the disks.
In this way, the stable information is also ‘in line’ (available on a direct access
device).

9.4.2 Log organization
The log is a sequential file managed by the reliability control system, written
in the stable memory. The actions carried out by the various transactions are
recorded in the log, in chronological order. For this reason, the log has a top
block, the last one to be allocated to the log. The records in the log are
written sequentially to the top block; when it is full, another block is
allocated to the log, and becomes the top block.

There are two types of log record.

• Transaction records describe the activities carried out by each transaction,
in chronological order. For this reason, each transaction inserts a begin
record in the log, followed by various records related to actions carried
out (insert, delete, update), followed by a record of either commit or
abort. Figure 9.12 shows the sequence of records present in a log. The
records for the transaction t1 are highlighted, in a log that is also written
by other transactions. The t1 transaction carries out two updates before
successfully completing with a commit.

• System records indicate the carrying out of the operations dump (rare) and
checkpoint (more frequent), which we will illustrate in more detail later.
Figure 9.12 highlights the presence of a dump record and of various
checkpoint records in the log.

Figure 9.12 Description of a log.

Dump
CheckpointCheckpoint

t

Transaction record t1

Top of
the log

B U U C

314 Chapter 9
Technology of a database server

Structure of log records Listed below are the log records that are written
to describe the action of a transaction t1.

• The begin, commit and abort records contain the type of record and the
identifier t of the transaction.

• The update records contain the identifier t of the transaction, the
identifier O of the object on which the update takes place, and then two
values BS and AS, which describe respectively the value of the object O
before the modification (the before state) and after the modification (the
after state). In this section we will assume for the sake of simplicity that
AS and BS contain complete copies of the modified pages, but in practice,
this information is much more compact.

• The insert and delete records are similar to those of update; in the insert
record there is no before state, while in the delete records there is no after
state.

From here on we will use the symbols B(T), A(T) and C(T) to denote begin,
abort and commit records and U(T, O, BS, AS), I(T, O, AS) and D(T, O, BS) to
denote update, insert and delete records.

Undo and redo The log records make it possible to undo and redo the
respective actions on the database.

• The undo primitive: to undo an action on an object O it is sufficient to
copy the value BS into the object O. The insert is undone by deleting the
object O.

• The redo primitive: to redo an action on an object O it is sufficient to copy
the value AS into the object O. The delete will be redone by deleting the
object O.
Given that the primitives undo and redo are defined by means of a copy

action, this counts as an essential property, known as the idempotence of undo
and redo, for which the carrying out of an arbitrary number of undos and
redos of the same action is equivalent to the carrying out of such actions only
once. In fact:

undo(undo(A)) = undo(A) redo(redo(A)) = redo(A)

The property is very important because, as we shall see, there could be
errors during the recovery operations, which cause the repetition of undo
and redo.

Checkpoint and dump A checkpoint is an operation that is carried out
periodically, with the objective of recording which transactions are active
and of updating secondary memory relative to all completed transactions.
During the execution of the checkpoint, all the pages written by transactions
that have already carried out the commit or abort are transferred from the
buffer into secondary memory. These operations are carried out by the buffer

Section 9.4 315
Reliability control system

manager, which executes suitable flush operations. After having initiated a
checkpoint, no commit operations are accepted by the active transactions.
The checkpoint ends by synchronously writing (forcing) a checkpoint record,
which contains the identifiers of the active transactions. In this way, we are
sure that the effects of the transactions that have carried out a commit are
permanently recorded in the database. At the same time, the transactions
listed in the checkpoint have not yet performed a commit or an abort. This
schema can be optimized by dbmss for improving performance without
violating the basic checkpointing principles described above.

A dump is a complete copy of the database, which is normally created
when the system is not operative. The copy is stored in the stable memory,
typically on tape, and is called backup. At the conclusion of the dump
operation, a dump record is written in the log, which signals the presence of a
copy made at a given time and identifies the file or device where the dump
took place. After this, the system can return to its normal function.

Hereafter, we will use the symbols DUMP to denote the dump record and
CK(T1, T2, …, Tn) to denote a checkpoint record, where T1, T2, …, Tn denote
the identifiers of the active transactions at the time of the checkpoint.

9.4.3 Transaction management
During the normal functioning of the transactions, the reliability control
system must follow two rules, which define the minimum requirements that
allow the accurate recovery of the database in case of failures.

• The WAL rule (write-ahead log) imposes the constraint that the before-
state parts of the log records are written in the log (that is, in the stable
memory) before carrying out the corresponding operation on the
database. This rule makes it possible to undo the writing already done in
the secondary memory by a transaction that has not yet carried out a
commit. That is, for each update, the preceding value written is made
available in a reliable manner.

• The Commit-Precedence rule imposes the constraint that the after-state
parts of the log records are written in the log (that is, in the stable
memory) before carrying out the commit. This rule makes it possible to
redo the writing already decided by a transaction that has carried out the
commit, whose modified pages have not yet been transferred from the
buffer manager to the secondary memory.

In practice, even if the rules refer separately to the before–state and after-
state of the log records, in many cases both of the components of the log
record are written together. For this reason, a simplified version of wal
imposes the constraint that the log records are written before the corresponding
records in the database, while a simplified version of the commit-precedence
rule imposes the constraint that the log records are written before the execution
of the commit operation.

316 Chapter 9
Technology of a database server

The atomic outcome of a transaction is established at the time when it
writes the commit record in the log synchronously, using the force primitive.
Before this event, a failure is followed by the undo of the actions, so
reconstructing the original state of the database. After this event, a failure is
followed by the redo of the actions carried out to reconstruct the final state
of the transaction. The writing of an abort record in the log atomically
defines the decision to abort the transaction, either produced by the ‘suicide’
of the transaction or imposed by the system. Given, however, that it does not
modify the decisions of the reliability control system, the abort record can be
simply written asynchronously into the top block of the log, which is
contained in the buffer. This block can be rewritten to the log with a flush
operation, or with a force operation caused by another transaction.

Joint writing of log and database The wal and Commit-Precedence
rules impose the following protocols for the writing of the log and of the
database, described in Figure 9.13. Let us suppose that the actions carried
out by the transactions are updates (they could also be inserts or deletes). We
distinguish three schemas:

• In the first schema, illustrated in Figure 9.13.a, the transaction first writes
the record B(T), then carries out its update actions by writing first the log
records and then the pages of the database, which thus changes from the
value BS to the value AS. These pages are written (either with flush
primitives or with explicit requests for force) from the buffer manager to
secondary memory before the commit, which is always implemented with

Figure 9.13 Description of protocol for the joint writing of log and
database.

W(X) W(Y)

W(Y)W(Y)

W(Y)

W(X)

t

t

t

(c)

(a)

(b)

Write in log

Write in database

W(X)

B(T) U(T,X,BS,AS) U(T,Y,BS,AS) C

B(T) U(T,X,BS,AS) U(T,Y,BS,AS) C

B(T) U(T,X,BS,AS) U(T,Y,BS,AS) C

Section 9.4 317
Reliability control system

a synchronous writing (force) in the log. In this way, at the commit, all the
pages of the database modified by the transaction are already written in
the secondary memory. This schema does not require redo operations.

• In the second schema, illustrated in Figure 9.13b, the writing of log
records precedes that of the actions on the database, which, however,
happen only after the decision to commit and the consequent
synchronous writing of the commit record in the log. This schema does not
require undo operations.

• The third schema, more general and commonly used, is illustrated in
Figure 9.13.c. According to this schema, the writing in the database, once
protected by the appropriate writing on the log, can happen at any time
with regard to the writing of the commit record in the log. This schema
allows the buffer manager to optimize the flush operations; however, it
requires both undo and redo.

Note that all three protocols respect the two rules (wal and Commit-
Precedence) and write the commit record synchronously. They differ only
regarding the time in which the pages of the database are written.

We have seen which actions must be carried out in the log in order to
support failure recovery. These actions have a cost, comparable to the cost of
updating the database. The use of the above protocols represents a sensitive
overloading of the system, but cannot be avoided because of the need for
‘acid’ properties of the transactions. Log operations can be optimized, for
example by writing several log records in the same page, or by writing them
on the page in which the commit record of the transaction will be written,
and then using only one force operation. Other optimization techniques
allow a group-commit of transactions: various commit records are placed on
the same page of the log and written with a single force, expected by all the
requesting transactions. Finally, a transaction system with a high number of
transactions per second (tps) can also resort to parallel schemas for the
writing of the log.

9.4.4 Failure management
Before studying the mechanisms for failure management, it is appropriate to
classify the types of failures that can occur in a dbms. Failures are divided
into two categories.

• System failures These are failures caused by software bugs, for
example of the operating system, or by interruptions of the functioning
of the devices, due, for example, to loss of power. This can cause a loss of
the contents of the main memory (and thus all the buffers), although
maintaining the contents of the secondary memory (and thus of the
database and the log).

318 Chapter 9
Technology of a database server

• Device failures These are failures of secondary memory devices (for
example, disk head crashes), which cause the loss of secondary memory
contents. Given our assumption that the log is written in the stable
memory, these failures should affect only the database content; device
failures causing the loss of the contents of the log are therefore classified
as catastrophic events, for which there is no remedy.

The ideal failure model is called fail-stop. When the system identifies a
failure, whether of the system or of a device, it imposes a complete halt of
transactions, followed by a restart of the system (boot). This is known as a
warm restart in case of system failure and cold restart in case of device
failure. At the end of the restart procedure, the system can again be used by
the transactions. The buffer is empty and can begin to reload pages from the
database or from the log. The model of behaviour is illustrated in Figure 9.14.

With this model, the failure is an instantaneous event that happens at a
certain time in the operation of the database. Let us look at the objectives of
the restart process. There are potentially active transactions at the time of
failure. That is, we do not know whether they have completed their actions
on the database (as the buffer manager has lost all useful information). These
are classified into two categories, based on information present in the log.
Some of them have committed, and for these it is necessary to redo the
actions in order to guarantee durability. Others have not committed, and for
these it is necessary to undo the actions, as the database must be left in its
state before the execution of the transaction. Note that it would be possible,
in order to simplify the restart protocols, to add another record to the log,
known as the end record, written when the transcription operation (flush) of
all the pages of a transaction is terminated. This allows the identification of
a third class of transaction, for which it is not necessary either to undo or to
redo the actions. However, in general, the end record is not used by dbmss,
so as not to complicate the management of transactions. From here on we will
assume a fail-stop failure model and the absence of an end record.

Figure 9.14 Fail-stop model of the functioning of a dbms.

Fail

Stop

Fail

Boot

Recovery

Normal
functionality

End of
recovery

Section 9.4 319
Reliability control system

Warm restart The warm restart is divided into four successive phases.

1. The last block of the log is accessed, that is, the one that was at the top at
the time of failure, and the log is traced back until the most recent
checkpoint record.

2. Decisions are made about which transactions must be redone or undone.
Two sets are constructed, called UNDO and REDO, containing transac-
tion identifiers. The UNDO set is initially equal to the active transactions
at the checkpoint; the REDO set is initially empty. The log is then traced
forward, adding to the UNDO set all the transactions for which there is a
begin record, and moving from the UNDO set to the REDO set all the
identifiers of the transactions for which a commit is present. At the end
of this phase, the UNDO and REDO sets contain respectively all the
identifiers of the transactions to undo or redo.

3. The log is traced back undoing all the transactions in the UNDO set, until
the first action of the ‘oldest’ transaction in the two sets, UNDO and
REDO, is found. Note that this action could precede the checkpoint
record in the log.

4. Finally, in the fourth phase, the redo actions are applied, in the order in
which they are recorded in the log. In this way, the behaviour of the
original transactions is replicated exactly.

This mechanism ensures atomicity and durability of the transactions. As
far as atomicity is concerned, it guarantees that the transactions in progress
at the time of failure leave the database either in the initial state or in the final
one. Concerning durability, we know that the pages in the buffer relating to
transactions completed but not yet transcribed to the secondary memory are
actually completed by a write to the secondary memory. Note that each
‘uncertain’ transaction that is present in the last checkpoint record or started
after the last checkpoint, is either undone or redone. It is undone if its last
record written in the log is a transaction or an abort record, and redone if its
last record written in the log is a commit record.

Let us look at an example of the application of the protocol. Suppose that
in the log the following actions are recorded: B(T1), B(T2), U(T2, O1, B1, A1),
I(T1, O2, A2), B(T3), C(T1), B(T4), U(T3, O2, B3, A3), U(T4, O3, B4, A4), CK(T2,
T3, T4), C(T4), B(T5), U(T3, O3, B5, A5), U(T5, O4, B6, A6), D(T3, O5, B7),
A(T3), C(T5), I(T2, O6, A8). Following this, a failure occurs.

The protocol operates as follows.

1. The checkpoint record is accessed; UNDO = {T2, T3, T4} , REDO = {} .

2. Then the log record is traced forward, and the UNDO and REDO sets are
updated:

(a) C(T4): UNDO = {T2, T3}, REDO = {T4}

320 Chapter 9
Technology of a database server

(b) B(T5): UNDO = {T2, T3, T5}, REDO = {T4}

(c) C(T5): UNDO = {T2, T3}, REDO = {T4, T5}

3. Following this, the log is traced back to the action U(T2, O1, B1, A1)
executing the following sequence of undo operations:

(a) Delete (O6)

(b) Re-insert (O5 = B7)

(c) O3 = B5

(d) O2 = B3

(e) O1 = B1

4. Finally, the redo operations are carried out:

(a) O3 = A4 (note: A4 = B5!)

(b) O4 = A6

Cold restart The cold restart responds to a failure that causes damage to a
part of the database. It is divided into three successive phases.

1. During the first phase, the dump is accessed and the damaged parts are
selectively copied from the database. The most recent dump record in the
log is then accessed.

2. The log is traced forward. The actions on the database and the commit or
abort actions are applied as appropriate to the damaged parts of the
database. The situation preceding the failure is thus restored.

3. Finally, a warm restart is carried out.

This schema reconstructs all the work relating to the damaged part of the
database, and therefore guarantees the durability and atomicity that existed
at the time of the failure. The second phase of the algorithm can be
optimized, for example by carrying out only the actions of successfully
committed transactions.

9.5 Physical access structures
Physical access structures are used for the efficient storage and manipulation
of data within the dbms. In general, each dbms has a limited number of
types of access structure available. For example, in relational systems,
indexes are defined by the designer using ddl instructions. Access
structures can also be found outside dbmss, for example, they may be coded
within applications that do not use a dbms. In this section, we will consider
sequential, hash-based, and tree-based data structures.

Section 9.5 321
Physical access structures

9.5.1 Architecture of the access manager
The access manager is responsible for transforming an access plan, produced
by the optimizer, into an appropriate sequence of accesses to the pages of the
database. The access manager supports access methods, that is, software
modules providing data access and manipulation primitives for each physical
access structure; access methods can select the block of a specific file that
must be loaded into the memory, passing this information to the buffer
manager. For example, sequentially organized data can be scanned by
reading the first block and then the successive blocks, until the last.

The access methods also know the organization of the tuples on the pages,
and thus they support primitives for the reading and manipulation
(insertion, update, deletion) of tuples within pages; for instance, they can
return the value of an attribute from all the tuples that are stored in a given
page.

An architecture that includes these access methods is shown in
Figure 9.15. The diagram shows a reference architecture without entering
into details of the primitives offered by each access method. Below, we will
first look at how the tuples are organized on the page, and we can then
examine in detail the most important access methods.

9.5.2 Organization of tuples within pages
Although each access method can have its own page organization, some

access methods (sequential and hash-based) have characteristics in common,
which we highlight in the following discussion. On each page, there is both

Figure 9.15 Architecture of the access manager.

fix

Buffer Manager

Recovery Manager

...........

DBMS

Query plans

Scan
mgr

B+
tree
mgr

Sort
mgr

Hash
mgr

use unfix

Access methods manager

322 Chapter 9
Technology of a database server

useful information and control information. The useful information is the
actual application-specific data; the control information allows access to the
useful information. We will look at them in detail with reference to
Figure 9.16.

• Each page, as it coincides with a block of secondary memory, has an
initial part (block header) and a final part (block trailer) containing control
information used by the file system.

• Each page, as it belongs to an access structure, has an initial part (page
header) and a final part (page trailer) containing control information about
the access method. This information will typically contain the identifier
of the object (table, index, data dictionary, etc.) contained on the page,
pointers to successive or preceding pages in the data structure, number of
items of useful elementary data (tuples) contained on the page, and
quantity of available memory (adjacent or non-adjacent) available on the
page.

• Each page has its page dictionary, which contains pointers to each item of
useful elementary data contained in the page and a useful part, which
contains the data. In general, the page dictionary and the useful data
grow as opposing stacks, leaving free memory in the space between the
two stacks.

• Finally, each page contains a checksum, to verify that the information in it
is valid.

Some page managers do not allow the separation of a tuple on more than
one page, and in this case, the maximum size of a tuple is limited to the
maximum space available on a page. Most page managers, on the other hand,
allow the distribution of tuples over several pages.

Figure 9.16 Organization of tuples within pages.

stack stack

tuple tuple tuple

page dictionary useful part of the page
checksum

access method control information

file system control information

t3 t2 t1
*t3*t2*t1

Section 9.5 323
Physical access structures

Furthermore, in some cases all the tuples have the same size. In this way,
the page structure is simplified, but there is a risk of wasting space on the
page. As we shall see, some access methods are characterized by tuples of
fixed size. If the tuples can be of different lengths, the page dictionary
contains an indication of the offset of each tuple relative to the beginning of
the useful part and of each value of the various fields present in the tuple
relative to the beginning of the tuple itself. Finally, in some cases it is possible
to have tuples belonging to different relations on the same page.

The primitives offered by the page manager are the following.

• Insertion and update of a tuple, which does not require a reorganization of
the page if there is sufficient space to manage the extra bytes introduced.
Otherwise, the operations must be preceded by a reorganization of the
page, which has limited cost when it takes place in the main memory, but
could sometimes need access to other blocks or the allocation of new
blocks.

• Deletion of a tuple, which is always possible and is often carried out
without reorganizing the information on the page (that is, without
reducing the stack relative to the useful part, but simply marking the
tuple as ‘invalid’).

• Access to a particular tuple, identified by means of the value of the key or
based on its offset, present in the dictionary.

• Access to a field of a particular tuple, identified according to the offset
and to the length of the field itself, after identifying the tuple by means of
its key or its offset (as described above).

Note that tree structures have a different page organization, which will be
illustrated in Section 9.5.5.

9.5.3 Sequential structures
We will now move on to analyze the way in which the pages are linked to
each other in data structures, starting with sequential organization. The
sequential structures are characterized by a sequential arrangement of tuples
in the secondary memory. The file is made up of various blocks of memory,
and the tuples are inserted into the blocks according to a sequence.
Depending on the application, the sequence can belong to one of a variety of
types:

• in an entry-sequenced organization, the sequence of the tuples is dictated
by their order of entry;

• in an array organization, the tuples are arranged as in an array, and their
positions depend on the values of an index (or indexes);

324 Chapter 9
Technology of a database server

• in a sequentially ordered organization, the sequence of the tuples depends
on the value assumed in each tuple by a field that controls the ordering,
known as a key field.

Let us look at some further characteristics of each of the above
organizations.

Entry-sequenced sequential structure An entry-sequenced sequential
structure is optimal for the carrying out of sequential reading and writing
operations. Given that the tuples are not in any pre-established order, the
most typical method for gaining access to their contents is by means of a
sequential scan. This organization uses all the blocks available for files and
all the spaces within the blocks, and thus the scan is particularly efficient.

The initial operations for the loading and insertion of data happen at the
end of the file and in sequence. This is also highly efficient, as it is enough to
use a pointer on the last tuple to be able to carry out the operation. More
problems are caused by the update or delete operations. Given that the tuples
are arranged one after another in sequence, each update that represents an
increase of the size of the tuple cannot be easily managed ‘in place’. In
addition, each deletion causes a potential waste of memory, because it is
typically implemented by leaving space unused.

Array sequential structure An array sequential structure is possible only
when the tuples are of fixed length. In this case, a number n of adjacent
blocks are allocated and each block is given a number m of available slots for
tuples, giving rise to an array of n × m slots overall. Each tuple is given a
numeric value i, which functions as an index (that is, the tuple is placed in
the i-th position of the array). For the initial loading of the file, the indices
are obtained simply by increasing a counter. However, insertions and
deletions are possible. The deletions create free slots; the insertions may be
carried out within the free slots or at the end of the file. Typical primitives
guaranteed by this organization are as follows. Firstly, there is read-ind
(reading of the tuple corresponding to a determined index value). Next,
there are, insert-at, insert-near and insert-at-end (insertion in a specific
free slot, or in the first successive free slot, or finally at the end of the file).
Finally, there are the intuitive update-ind and delete-ind.

Ordered sequential structure Sequential ordering allocates to each tuple
a position based on the value of the key field. This structure, although classic
and well understood, has recently fallen out of use, as its management costs
are high. It is based on the concept of giving a physical ordering to the tuples
that reflects the lexical ordering of the values present in the key field. Thus,
it favours those transactions that require access to the tuples of a table based
on the key.

Historically, ordered sequential structures were used on sequential devices
(tapes). They were constructed by batch processes, which were responsible
for putting the records in order based on the key, and loading them in

Section 9.5 325
Physical access structures

sequence into a file, called the main file. The modifications were collected in
differential files, also ordered according to the key value, and periodically
processed by batch processes, which were responsible for merging the main
file and the differential file, obtaining a new version of the main file.
Obviously, a periodic merge is unacceptable in the present dbms technology.

Having rejected this technique, let us look instead at which options are
still possible for the management of a sequentially ordered file. The main
problem with this structure is the necessity for inserting new tuples (or
changing them, when the change brings about an increase in the space
needed), as these modifications represent a reordering of the tuples already
present. The cancellations can be created in situ, making the corresponding
positions in the memory invalid (and unused). To avoid these reorderings,
the following techniques are available.

• We can leave a certain number of slots free at the time of first loading.
This will allow us to retain the sequential organization using ‘local
reordering’ operations.

• We can integrate the sequentially ordered files with an overflow file,
dedicated to the management of new tuples, which require extra space.
The blocks of the overflow file are linked among themselves in an
overflow chain. Each chain starts from a block of the sequentially ordered
file. Thus, the sequential searches must be intertwined with the analysis
of the overflow blocks. This technique is also used for hash-based
structures, described below.

9.5.4 Hash-based structures
Hash-based structures ensure an associative access to data, in which it is
possible to make efficient access to data, based on the value of a key field.
Keys of hash-based and tree structures have nothing to do with primary keys
of the relational model; they can be composed of an arbitrary number of
attributes of a given table. A hash-based structure is created by allocating a
number B of blocks to a file, often adjacent. Efficient functioning is obtained
by making the file larger than necessary, and thus not filling all the blocks.
This access method makes use of a hashing function, which, once applied to
the key, returns a value between zero and B−1. This value is interpreted as
the position of the block in the file.

The structure is ideal where the application needs to access the tuple that
contains a specific key value. The address produced by the hashing function
is passed to the buffer manager and gives direct access to the block thus
identified. Similarly, the writing of a tuple that contains a determined key
value is carried out in that block. Thus, in the absence of collisions (which
we will describe below), this access method allows the reading and writing
of tuples (provided that the value of the access key is known) using a single
operation of input/output to localize the block relevant to the operation.

326 Chapter 9
Technology of a database server

The primitive that allows the transformation of a key value into a block
number has the format: hash(fileid,Key):Blockid. It receives the name of
the file and the key value as parameters, and returns a block number. The
corresponding function offered by the system consists of two parts.

• A first operation, known as folding, transforms the key values so that they
become positive integer values, uniformly distributed over a large range.
An example of folding consists of separating the key into various
sections, each four bytes long, and then computing the exclusive or
(xor) of the bits of all the sections. This produces four bytes, to be
interpreted as a positive binary number between zero and 2³² − 1.

• The successive hashing operation transforms the positive binary number
into a number between zero and B − 1. For example, a simple hashing
function is obtained by the ‘modulo B’ division. A more complex
function requires raising 2 to the power of the number obtained after the
folding. Log2B bits of this number are then taken and interpreted as an
internal positive binary number, which is used as the block number.

This technique works better if the file is made larger than necessary. More
precisely, if T represents the number of tuples expected for the file and F the
average number of tuples stored in each page, then a good choice for B is
given by T/(0.8 × F), thereby using only 80% of the available space for
storing tuples. This choice is justified by statistical considerations, which are
beyond the scope of this text.

The main problem of structures managed by hashing is that of collisions,
that is, situations in which the same block number is returned by the
function, based on two different values of the key. Each page can contain a
maximum of F tuples. However, when the value of F is exceeded, it is then
necessary to resort to a different technique to allocate and retrieve the tuples
that find their blocks occupied. We will try, first, to quantify the probability
of such an event. If the tuples are uniformly distributed, the probability p(t)
that an arbitrary page receives t tuples is equal to the probability that the
hashing function produces exactly t identical values and T − t different
values; p(t) is given by the following formula:

The probability p of having more than F collisions is equal to:

When an excessive number of collisions appears and the page capacity is
exhausted, the solution is the construction of the overflow chain. These
chains originate in the blocks in which an excessive number of collisions

where denotes the
binomial coefficientp t() T

t
 1

B

 t
1 1

B
---–

 T t–()
××=

T
t

p 1 p i()
i 0=

F

∑–=

Section 9.5 327
Physical access structures

appear. The table in Figure 9.17 shows the average length of the overflow
chain as a function of the ratio T/(F × B) and of the average number F of
tuples per page. Obviously, the presence of overflow chains slows the search
time, as it is necessary to request an input/output operation for each block
in the chain. In particular, a search has a positive result when the requested
tuple is found, and a negative result at the end of the scan of the overflow
chain. An insertion will take place in the first slot available, sometimes at the
end of the chain.

In conclusion, note that hashing is the most efficient technique for gaining
access to data based on queries with equality predicates, but is extremely
inefficient for queries with interval predicates, that is, queries that require
access to intervals of values

9.5.5 Tree structures
Tree structures, called B-trees or B+ trees, are most frequently used in

relational dbmss. They allow associative access, that is, access based on a
value of a key, without necessarily placing constraints on the physical
location of the tuples in specific positions in the file. A key may correspond
to several attributes, but for simplicity we will consider keys corresponding
to one attribute. Note that the primary key of the relational model and the
key used by a tree structure are different concepts. The first refers to an
abstract property of the schema and the second to a property of the physical
implementation of the database.

When a user specifies in ddl an index relating to an attribute or a list of
attributes of a table, the system generates appropriate tree structures for
physical data management. Each tree structure is characterized by a root
node, a number of intermediate nodes, and a number of leaf nodes. Each
node coincides with a page or block at the file system and buffer manager
levels. The links between the nodes are established by pointers, which link
the blocks between themselves. In general, each node has a large number of
descendants, the exact number depending on the block size; each node may
have tens or even hundreds of descendants. This allows the construction of

Figure 9.17 The average length of the overflow chain following too many
collisions.

F

1 2 3 5 10
.5 0.500 0.177 0.087 0.031 0.005
.6 0.750 0.293 0.158 0.066 0.015
.7 1.167 0.494 0.286 0.136 0.042
.8 2.000 0.903 0.554 0.289 0.110
.9 4.495 2.146 1.377 0.777 0.345

T
F B×

328 Chapter 9
Technology of a database server

trees with a limited number of levels, in which the majority of pages are
occupied by leaf nodes. Another important requirement for the successful
functioning of these data structures is that the trees be balanced; when a tree
is perfectly balanced, the lengths of the paths from the root node to the leaf
nodes are all equal. In this case, the access times to the information contained
in the tree are almost constant.

Node contents and search techniques The typical structure of each
intermediate node of a tree (including the root) is shown in Figure 9.18. Each
node contains F keys (in lexicographic order) and F + 1 pointers. Each key
Kj, 1 ≤ j ≤ F, is followed by a pointer Pj; K1 is preceded by a pointer P0. Each
pointer addresses a sub-tree:

• the pointer P0 addresses the sub-tree that contains the information about
the keys with values less than K1;

• the pointer PF addresses the sub-tree that contains the information about
the keys with values greater than or equal to KF;

• each intermediate pointer Pj, 0 < j < F, addresses a sub-tree that contains
all the information about the keys K included in the interval Kj ≤ K < Kj+1.

The value F + 1 is called the fan-out of the tree. F depends on the size of
the page and on the amount of space occupied by the key values and pointer
values in the ‘useful part’ of a page.

The typical search primitive made available by the tree manager allows
associative access to the tuple or tuples that contain a certain key value V.
The search mechanism consists of following pointers starting from the root.
At each intermediate node:

• if V < K1 follow the pointer P0;

• if V ≥ KF follow the pointer PF;

• otherwise, follow the pointer Pj such that Kj ≤ V < Kj+1.

Figure 9.18 Information contained in a node (page) of a b+ tree.

Sub-tree that contains
keys K < K1

P0 K1 P1 PjKj KF PF
.

Sub-tree that contains
keys Kj ≤ K< Kj+1

Sub-tree that contains
keys K ≥ KF

Section 9.5 329
Physical access structures

The search continues in this way to the leaf nodes of the tree, which can
be organized in two ways.

• In the first case, the leaf node contains the entire tuple. The data structure
obtained in this case is called key-sequenced. In it, the position of a tuple is
determined by the value assumed by its key field. However, as we shall
see, it is quite simple to insert or cancel tuples in this structure. The
position is not produced by an algorithm (as in the case of the relative
sequential structure or hashing), but can vary dynamically.

• In the second case, each leaf node contains pointers to the blocks of the
database that contain tuples with specified key values. The data structure
that is obtained in this case is called indirect. The tuples can be anywhere
in the file, and thus this mechanism makes it possible to access tuples
allocated by means of any other ‘primary’ mechanism (for example,
entry-sequenced, hash-based, or key-sequenced).

In some cases, the index structure is not complete. That is, not all the key
values are included in the index. In this case, the index is called sparse. A
sparse index can be constructed only on a sequentially ordered structure,
using indexes to locate a key value close to the value being sought, and then
to carry out a sequential-type search.

A key-sequenced structure is generally preferred for the creation of the so-
called primary index of each table, that is, the one that is usually defined on
the primary key. The leaves generally contain a number of tuples less than F
because the size of a tuple is generally larger than the sum of the dimensions
of a key and a pointer. However, in this case, the leaf nodes do not contain
pointers to data pages.

Indirect structures are preferred in order to create the secondary indexes,
which can be either unique or multiple. In the first case, only one tuple is
associated with each index key. In the second case, various tuples can
correspond to each index key; each tuple is reached by means of a different
pointer placed in suitably organized leaf nodes.

The insertion and cancellation of tuples also produce updates to the tree
structure, which must reflect the situation generated by a variation in the
values of the key-field. An insertion does not cause problems when it is
possible to insert the new key value into a leaf of the tree, whose page has a
free slot. In this case, the index remains unchanged, and the new key value
is found by simply applying the search algorithm. When the page of the leaf
has no available space, however, a split operation is necessary. The split
divides the information already present in the leaf plus the new information
into two equal parts, allocating two leaf nodes in place of one. This operation
requires a modification of the arrangement of the pointers, shown in
Figure 9.19.a. Note that a split causes an increment in the number of pointers
on the next (higher) level in the tree. In this way, it can again exceed the
capacity of a page, causing a further split. In practice, the split can continue

330 Chapter 9
Technology of a database server

to happen in this way as far back as the tree root. In extreme cases, it can
cause the addition of one level to the tree. A deletion can always be carried
out in situ. The slot previously occupied by the deleted tuple is simply
shown as empty. There are two other problems, however.

• When the deletion involves one of the key values present in the internal
nodes of the tree, it is appropriate (even if not strictly necessary) to
recover the successive key value from the database and put it in place of
the deleted key value. In this way, all the key values present in the b+
tree also belong to the database.

• When the deletion leaves two adjacent pages at leaf level underused, this
allows all the information present in them to be concentrated into a single
page. Therefore a merge operation should be carried out. This is the
opposite of the split operation, and collects all the information of the two
pages into a single page. This operation requires a modification of the
arrangement of the pointers, shown in Figure 9.19.b. Note that a merge
causes a decrease in the number of pointers at a higher level of the tree,
and thus can cause a further merge. In practice, as in the case of a split,
the merge can continue upwards until it reaches the tree root, where it
may cause a reduction in the depth of the tree.

Figure 9.19 Split and merge operations on a b+ tree structure.

b. delete k2: merge

a. insert k3: split

initial situation

k1 k6

k1 k2 k4 k5

k1 k3 k6

k1 k2 k3 k4 k5

k1 k6

k3 k4 k5k1

Section 9.5 331
Physical access structures

The modification of the value of a key field is treated as the deletion of its
initial value followed by the insertion of a new value. Hence, it is dealt with
by a sequence of a deletion and an insert, as discussed above.

The careful use of the split and merge operations makes it possible to
maintain the average occupancy of each node higher than 50%. Furthermore,
even if the tree is initially balanced, differences in the pathway lengths can
appear, making it necessary to re-balance the tree. A perfectly balanced tree
gives the highest retrieval efficiency. The re-balancing of the tree is an
operation that is typically decided by the database administrator, when the
tree efficiency becomes too low.

Difference between b and b+ trees It now only remains to clarify the
distinction between b and b+ trees. In b+ trees, the leaf nodes are linked by
a chain, which connects them in the order imposed by the key, as illustrated
in Figure 9.20. This chain allows the efficient execution even of queries with
a selection predicate that is satisfied by an interval of values. In this case, it
is sufficient to access the first value of the interval (using a normal search),
then scan sequentially the leaf nodes of the tree up to a key value greater
than the second value of the interval. In the key-sequenced case, the
response will consist of all the tuples found by this type of search, while in
the indirect case it will be necessary to access all the tuples using the pointers
thus selected. In particular, this data structure also makes possible an
ordered scan, based on the key values, of the entire file, which is quite
efficient. This versatility makes the b+ structure widely used in dbmss.

In b trees, there is no provision for the sequential connection of leaf nodes.
In this case, intermediate nodes use two pointers for each key value Ki. One

Figure 9.20 Example of b+ tree.

Second level

Root node

First level

Pointers to data (arbitrarily organized)

Peter

Mavis Rick

Mavis Peter Rick TracyBabs David

332 Chapter 9
Technology of a database server

of the two pointers is used to point directly to the block that contains the
tuple corresponding to Ki, interrupting the search. The other pointer is used
to continue the search in the sub-tree that includes the key values greater
than Ki and less than Ki + 1, as shown in Figure 9.21. The first pointer P0
highlights the sub-tree corresponding to key values less than K1, while the
last pointer PF highlights the sub-tree corresponding to key values greater
than KF. This technique saves space in the pages of the index and at the same
time allows the termination of the search when a given key value is found on
intermediate nodes, without having to go through each level.

The efficiency of traversal of a b or b+ tree by a given transaction, from the
root to given leaves, is normally satisfactory, because the pages that store the
first levels of the tree often remain in the buffer due to other transactions.
Fortunately, the transactions are normally limited to reading these pages, and
by means of locking, it is possible to gain access to them in a shared manner.
Optimization of the occupied space occurs by means of the compression of
key values. This can be done, for example, by maintaining only their prefixes
in the high levels of the tree and only their suffixes in the low levels of the
tree, where the final part of the search is carried out.

9.6 Query optimization
The optimizer is an important and classic module in the architecture of a
database. It receives a query written in sql. The query is initially analyzed
to identify any possible lexical, syntactic or semantic errors, which are
indicated to the user for correction. During this phase, the system accesses

Figure 9.21 Example of a b tree.

k1 k6 k10

k2 k3 k4 k5 k7 k8 k9

t(k2) t(k3) t(k4) t(k5) t(k1) t(k6) t(k10) t(k7) t(k8) t(k9)

Section 9.6 333
Query optimization

the data dictionary to allow semantic checks. The data dictionary also
supplies statistical information concerning the size of the tables. Once
accepted, the query is translated into an internal, algebraic form. At this
point, the actual optimization begins. It consists of the following phases.

• First, an algebraic optimization is carried out. This consists of the
execution of all the algebraic transformations that are always convenient,
such as the ‘push’ of selections and projections, as described in
Section 3.1.7. This logical optimization happens independently of the
system’s cost model.

• Following this, there is an optimization that depends on both the type of
data access methods supported by the underlying level, and the cost
model used. For this phase, although general optimization principles are
well defined, each system presents its own particular characteristics.

• Finally, code is generated using the physical data access methods
provided by the dbms. Thus, an access program is obtained in ‘object’ or
‘internal’ format, which uses the data structures provided by the system.

The process of optimization of a query is illustrated in Figure 9.22. Note
that, unlike all the other system modules described in this chapter, the
optimizer is a module that acts at compilation time. Often, the query is
compiled once and carried out many times (‘compile and store’ approach). In
this case, the code is produced and stored in the database, together with an
indication of the dependencies of the code on the particular versions of
tables and indexes of the database, present in the data dictionary. In this way,
if the database changes significantly for the query (for example, because an
index has been added), the compilation of the query is invalidated and
repeated. Sometimes, however, a query is compiled and carried out
immediately (‘compile and go’ approach), without being stored.

Hereafter, we will concentrate on the central phase of this process, looking
at cost-based optimization. Given that this part of the optimization depends
specifically on the storage structures and on the cost model used by the
dbms, we can give only a qualitative and approximate description. We
assume at this point that the algebraic optimization has produced an
optimized description of the query, in which all the obvious algebraic
transformations have been carried out. The result of this work represents
each sql query in a tree structure, in which the leaf nodes represent tables
and the intermediate nodes represent operations of relational algebra.

9.6.1 Relation profiles
Each commercial dbms possesses quantitative information about the
characteristics of the tables, called relation profiles, which are stored in the
data dictionary. The profiles contain some of the following information:

• the cardinality card(T) (number of tuples) of each table T;

334 Chapter 9
Technology of a database server

• the dimension in bytes, size(T), of each tuple of T;

• the dimension in bytes, size(Aj,T), of each attribute Aj in T;

• the number of distinct values, val(Aj,T), of each attribute Aj in T;

• the minimum and maximum values, min(Aj,T) and max(Aj,T), of each
attribute Aj in T.

The profiles are calculated on the basis of the data actually stored in the
tables, by activating appropriate system primitives (for example, the update
statistics command). It is the task of the database administrator to activate
these commands periodically. Normally, the possibility of keeping the
profiles updated during the normal execution of transactions is excluded,
because this option is too expensive. In general, it is sufficient that the
profiles contain approximate values, given that the statistical models applied
to them are in any case approximate.

Cost-based optimization requires the formulation of hypothesis on the size
of the intermediate results produced by the evaluation of algebraic
operations with a statistical approach. For example, let us look at the profiles
of the main algebraic operations; selection, projection and join.

Figure 9.22 Compilation of a query.

Query

Dependencies

Catalogue
Lexical, syntactic and

semantic analysis

Algebraic
optimization

Cost-based
optimization Profiles

Query
plan

Section 9.6 335
Query optimization

Formulas of profiles of selections The profile of a table T′ produced by a
selection is obtained using the following formulas, the
justification for which is left as an exercise:

1. card(T′) = (1/val(Ai)) × card(T);

2. size(T′) = size(T);

3. val(Ai,T′) = 1;

4. val(Aj,T′) = col(card(T), val(Aj,T), card(T′)), for j ≠ i;2

5. max(Ai,T′) = min(Ai,T′) = v;

6. max(Aj,T′) and min(Aj,T′) maintain the same values as max(Aj,T) and
min(Aj,T), for j ≠ i.

Formulas of profiles of projections The profile of a table T′ produced by
a projection T′ = πL(T), where L is the set of attributes A1, A2, …, An, is
obtained using the following formulas:

1. card(T′) = min(card(T), (Ai,T));

2. size(T′) = (Ai(T));

3. val(Ai,T′), max(Ai,T′), min(Ai,T′) maintain the same values as
val(Ai,T), max(Ai,T) and min(Ai,T).

Formulas of profiles of joins The profile of a table TJ produced by an
equi-join TJ = T′ JA=BT″, assuming that A and B have identical domains and
in particular val(A,T′) = val(B,T″).

1. card(TJ) = (1/val(Ai,T′)) × card(T′) × card(T″);

2. size(TJ) = size(T′) + size(T″);

3. val(Ai,T
J), max(Ai,T

J), min(AiT
J) maintain the same values as in their

respective relations, before executing the join.

The above formulas show the limits of this type of statistical analysis. For
example, all the formulas assume a uniform distribution of data in the tables
and an absence of correlation among the various conditions present in a
query. Note that often the formulas assign to the result of an operation
parameters identical to those of their operands (for example, as regards the
minimum and maximum values of a certain attribute), because it is not

2. The formula col(n, m, k) relating to val(Aj), calculates the number of distinct
colours present in k objects extracted, starting from n objects of m distinct
colours, homogeneously distributed. Each colour represents one of the different
values present in attribute Aj. This formula allows the following approximation:
(a) col(n, m, k) = k if k ≤ m/2
(b) col(n, m, k) = (k + m)/3 if m/2 ≤ k ≤ 2m

(c) col(n, m, k) = m if k ≥ 2m.

T ′ σAi v= T()=

val
i 1=
n∏

sizei 1=
n∑

336 Chapter 9
Technology of a database server

possible to make a better prediction. However, this statistical analysis
enables us to establish, although approximately, the dimensions of the
intermediate results (for example, an estimate of the number of occupied
pages); this quantitative data is in any case sufficient to carry out the
optimization.

9.6.2 Internal representation of queries
The representation that the optimizer gives to a query takes into account the
physical structure used to implement the tables, as well as the indexes
available on them. For this reason, the internal representation of a query uses
trees whose leaves correspond to the physical data structures available for
table storage and whose intermediate nodes represent data access operations
that are supported on the physical structures. Typically, the operations
supported by the relational dbmss include sequential scans, orderings,
indexed accesses and various types of join.

Scan operation A scan operation performs a sequential access to all the
tuples of a table, at the same time executing various operations of an
algebraic or extra-algebraic nature:

• projection of a set of attributes;

• selection on a simple predicate (of type: Ai = v);

• sort (ordering) of the tuples of a table based on the values assumed by the
attributes present in an ordered set of attributes;

• insertions, deletions, and modifications of the tuples when they are
accessed during the scan.

During a scan, a pointer to the current tuple is always maintained; the scan
is carried out by means of the following primitives:

• The primitive open initializes the scan.

• The primitive next lets the scan proceed, advancing the pointer to the
current tuple.

• The primitive read reads the current tuple.

• The primitives modify and delete act on the current tuple, modifying the
contents or deleting them.

• The primitive insert inserts a new tuple into the current position.

• The primitive close concludes the scan.

Sort operation The problem of ordering data structures is a classic one of
algorithm theory. Various methods make it possible to obtain optimal
performances in ordering the data contained in the main memory, typically
represented by means of a record array. The techniques for ordering data

Section 9.6 337
Query optimization

used by dbmss exploit these algorithms, which we will not describe further.
However, a dbms must resolve a second problem, to do with the loading of
data in the buffer. At times, it is not possible to load all the data in the buffer,
because of the excessive quantity of data and therefore the impossibility of
allocating a large enough number of buffers to the operation. In that case,
portions of the data must be separately ordered and then merged, using the
available buffer space.

Indexed access Indexes, created using tree structures, are created by the
database administrator to favour the associative access of queries that
include simple predicates (of the type Ai = V) or interval predicates (of the
type V1 ≤ Ai ≤ V2). In this case, we say that a predicate of the query is
supported by the index.

In general, if the query presents only one supported predicate, it is
convenient to use the corresponding index. When a query presents a
conjunction of supported predicates, the dbms chooses the most selective
one (that is, the predicate that is satisfied by fewest tuples) for the primary
access via index. The other predicates are evaluated in main memory, once
the pages that satisfy the first predicate are loaded in the buffer. When, on
the other hand, the query presents a disjunction of predicates, it is sufficient
that one of them be not supported to impose the use of a complete scan. If
instead all the predicates of a disjunctive expression are supported, we can
use either the corresponding indexes or a scan. If indexes are used, however,
it is necessary to be careful to eliminate the duplicates of those tuples that are
found using more than one index.

Note that the use of indexes requires multiple accesses for each retrieved
tuple. When the query is not very selective, a simple scan can be more
efficient than using an index.

Join methods The join is considered the most costly operation for a dbms,
as there is a risk of an explosion of the number of tuples of the result.
Defining the method and order of the join operations has a central role in the
global optimization of queries. For this reason it is not surprising that dbms
technology has produced various methods for join evaluation. Only recently,
with the increase in interest in aggregate operations, similar algorithms and
quantitative approaches have been dedicated to aggregate operations and
grouping. Below, we will look at three techniques for join evaluation, called
nested-loop, merge-scan and hashed.

• Nested-loop In a nested-loop join, one table is defined as external and
one as internal (see Figure 9.23). A scan is opened on the external table.
For each tuple found by the scan, the value of the join attribute is
collected, and then the matching tuples of the internal tables are searched
for. The matching is most efficient if there is an index on the join attribute
of the internal table, which could be created ad-hoc. Otherwise, it is
necessary to open a scan on the internal table for every value of the join

338 Chapter 9
Technology of a database server

of the external table. The name ‘nested-loop’ is given to this technique
because it suggests an ‘embedded’ scan in the internal table. Note that
this technique has different costs depending on the tables selected as
internal and external.

• Merge-scan The technique requires that both the tables be ordered
according to the join attributes (see Figure 9.24). Then, two coordinated
scans are opened on them, which run through the tuples in parallel, as in
a merge over ordered lists. The scans are carefully carried out, to
guarantee that all the copies of tuples with identical values of the join
attributes give rise to a resulting tuple.

• Hash join This method requires that a hashing function h on the join
attributes be used to store both tables (see Figure 9.25). Supposing that
the function h makes the values of the domain of this attribute
correspond to B partitions on each table, the tuples with the same values
in the join attribute will be placed in partitions with identical partition
number. Thus, it will be possible to find all the tuples resulting from the

Figure 9.23 Join technique with nested-loop.

Figure 9.24 Join techniques with merge scan.

JA JA

a

a ---------------

---------------- a ---------------

a ---------------

Internal tableExternal table
external
scan

internal scan
or indexed
access

 A

a
b
b
c
c
e
f
h

A

a
a
b
c
e
e
g
h

---------------- ---------------

Left table Right table

left
scan

right
scan

Section 9.6 339
Query optimization

join by carrying out B simple joins between the partitions with equal
partition numbers, as shown in Figure 9.25. Various versions of this
method allow the optimization of performance using a careful
construction of the hash functions and careful management of the main
memory buffers.

The three techniques are based on the combined use of scanning, hashing,
and ordering. It is clear that each strategy has a cost that depends on the
‘initial conditions’ to which the join method is applied. For this reason, the
execution cost of any of these techniques cannot be evaluated on its own, but
must be evaluated as a function of the choices that precede or follow it.

9.6.3 Cost-based optimization
Finally, let us look at how global optimization works. The problem appears
difficult on a computational level, because various degrees of optimization
are possible.

• We need to select which data access operations to execute. In particular,
as far as the first data access is concerned, it is sometimes necessary to
choose between a scan and an indexed access.

• We need to select the order in which the operations are to be carried out
(for example, the order of the various joins present in a query).

• When a system offers various options for the execution of an operation,
we need to select which option to allocate to each operation (for example,
choosing the join method).

• When the query or the method of execution requires ordering, we need
to define the level of the plan on which to execute the ordering operation.

Figure 9.25 Join technique with hashing.

J

d
e
a
c

j
j

e
m
a
a

j
z

Left table Right table

J

J

hash(a) hash(a)

a

A A

340 Chapter 9
Technology of a database server

Further options appear in selecting a plan within a distributed context.
Confronted with a problem of such complexity, the optimizers generally
make use of approximate cost formulas. These construct a decision tree, in
which each node corresponds to the choice of a particular option from among
those listed above. Obviously, the size of such a tree increases exponentially
according to the number of options present. Each leaf node of the tree
corresponds to a specific execution plan of the query described by the choices
that are found on the path from the root to the leaf node. Thus, the problem
of optimization can be formulated as a search of the leaf node in the decision
tree characterized by the lowest cost.

Figure 9.26 shows the execution of a conjunctive query (that is, using only
selections, projections and joins) with three tables and two joins, in which
the optimizer must decide only the order and the join method to use. There
are three possible orderings of the joins and four possible ways to carry out
the join operations, giving rise to 48 options. This simple example is
indicative of the complexity of the problem in its most general terms.

The problem is typically resolved using cost formulas that allocate a cost
in terms of input/output operations and of cpu instructions necessary to
evaluate each operation that appears as a node of the tree. In this way, it is
possible to allocate a cost to a leaf node:

Ctotal = CI/O × nI/O + Ccpu × ncpu

Where CI/O, Ccpu are known parameters and nI/O, ncpu are global values
that indicate the number of input/output operations and of CPU instructions

Figure 9.26 Execution options in a conjunctive query.

(S T) R

R S T

(R S(R T

1 1 1 1

2 2 2 2

1 2
T)

21

21
S)

1 2

nested-loop
R internal

nested-loop
R external

merge-scan hash-join

nested-loop
T internal

nested-loop
T external

merge-scan hash-join

strategy 1 strategy 2 strategy 3 strategy 4

Section 9.7 341
Physical database design

necessary to evaluate the cost of the query. The cost is obtained from the sum
of all the accumulated costs due to all the operations that make up a plan. The
search for optimal solutions is typically done by discarding the solutions of
those sub-trees whose partial cost is higher than the cost of the global
strategy. This is done using a technique of operations research, called branch
and bound, for the exact or approximate elimination of sub-trees.

Intermediate results are often stored in the buffers and discarded
immediately after their production, exploiting the pipelining of the
operations. Pipelining is the process of running through the entire tree of
operations for each of the tuples extracted, rather than carrying out each
operation completely on all the tuples. Sometimes however, it is necessary to
rewrite the results of the intermediate operations in the secondary memory.
In this case, the cost of rewriting the intermediate results becomes part of the
cost of a strategy.

The optimizers are generally satisfied by obtaining ‘good’ solutions, that
is, solutions whose cost is near that of the optimal solution. In particular,
‘good solutions’ are suggested with a ‘compile and go’ approach. There is no
sense in finding the optimal solution by a method that takes a long time,
when it is possible to find a ‘good’ solution in a shorter time and carry out
the strategy in a total time (inclusive of optimization time) that is lower than
that of the optimal solution.

9.7 Physical database design
After discussing the physical access structures and query optimization
techniques, we can return to the problem of database design, which was
discussed in Part II. The final phase in the process of database design is the
physical design. This phase produces the physical schema of the database,
made up of the definitions of the relations and of the physical access
structures used, with the related parameters. Physical design takes as input
the logical schema of the database and the predictions for the application
load, and depends on the characteristics of the chosen dbms.

The activity of physical database design can be very complex, because
apart from the choices of the physical structures, we need to define many
parameters: firstly, the setting of the initial dimensions of the physical files
and the possibility of their dynamic expansion; then, the allocation of buffer
space to the dbms; finally, the choice of allocating within the same pages data
from multiple data sets (for example, related tuples from two different tables).
Some systems offer tens of parameters, the values of which can be important
for the performance of the applications. Usually these parameters have
default values, which are assumed by the system when they are not
explicitly specified.

Most of the choices to be made during physical design depend on the
specific dbms used, so the treatment here is necessarily incomplete. We will
give only a few suggestions, which can be considered sufficient for databases

342 Chapter 9
Technology of a database server

of average size, and with not particularly complex workloads. We will
assume that the dbms allows only for non-ordered files, with the possibility
of defining indexes. In this context, physical design can be reduced to the
activity of identifying indexes to be defined on each relation.

In order to get our bearings in the choice of indexes, we should remember
that, as we said in Section 9.6, the most delicate operations in a relational
database are those of selection and join. Each of the two operations can be
carried out efficiently if we define indexes that allow direct access to the
fields involved.

Consider, for example, a database on two relations: EMPLOYEE, with the
attributes RegistrationNumber (the key), Surname, FirstName and Department;
and DEPARTMENT, with the attributes Code (the key), Name and Director.

Assume that we wish to carry out a selection on the attribute
RegistrationNumber in the EMPLOYEE relation (a search for an employee given
the registration number). If the relation has an index for this attribute, we
can proceed with a direct access, which is very efficient, otherwise we must
carry out a scan, with a cost proportional to the size of the file. The same
applies to a search based on the employee’s surname. Note that if an index is
defined on an attribute, only the searches based on this attribute can benefit
from it. If the relation has an index on RegistrationNumber, and not on
Surname, the selections on RegistrationNumber can be carried out efficiently
while those on Surname will remain inefficient.

An equi-join between the two relations links each employee with the
corresponding department; with an index on the key Code of the
DEPARTMENT relation, the join can be carried out efficiently using the nested-
loop method. The EMPLOYEE relation is scanned sequentially and for each
employee, a direct access is carried out on the DEPARTMENT relation, based on
the index. If the index is not defined, the access to the DEPARTMENT relation
is inefficient, and the entire join becomes much more expensive.

It is important to remember that most of the joins that appear in our
applications are equi-joins and for at least one of the two relations, the fields
involved form a key, as in the example just shown. At the same time, note
that the key of a relation is usually involved in selection or join operations
(or both). For this reason, it is a good idea to define, on each relation, an index
corresponding to the primary key. Most dbmss construct this index
automatically. Additional indexes can be defined on other fields on which
selection operations are defined or on which an ordering is requested
(because an index orders the records logically, lowering the cost of ordering).

With the indexes thus defined, we can test the behaviour of our
application. If the performance is unsatisfactory, we can add other indexes,
proceeding very carefully, however, as the addition of an index can cause an
increase in the load facing the update operations. At times, moreover, the
behaviour of the system is unpredictable, and the addition of indexes does
not alter the strategy of optimization of main queries. It is good practice,
after the addition of an index, to check that the queries use it. There is often

Section 9.8 343
Bibliography

a command show plan, which describes the access strategy chosen by the
dbms. For this reason, the choice of indexes in physical relational database
design is often carried out empirically, with a trial-and-error approach. More
generally, the tuning activity of physical design often makes it possible to
improve the performance of the database

9.7.1 Definition of indexes in SQL
To conclude this brief view of physical design, we will look at the commands
available in relational systems for the creation and cancellation of indexes.
These commands are not part of standard sql, for two reasons. Firstly, no
agreement has been reached within the standardization committee, and
secondly, indexes are regarded as an aspect closely linked to the
implementation of the system, and are thus inappropriate to standardize.
However, the syntax that we will demonstrate is used in the best-known
commercial systems.

The syntax of the command for the creation of an index is

create [unique] index IndexName on TableName(AttributeList)

With this command, we create an index called IndexName in the table
TableName, operating on the attributes listed in AttributeList. The order in
which the attributes appear in the list is important, as the keys of the index
are ordered on the values of the attributes, starting from the first one. The
use of the word unique specifies that no two tuples in the table may have the
same value in the key attributes. To eliminate an index, the drop index
command is used, characterized by a simple syntax:

drop index IndexName

This command can be useful when the application context changes and a
certain index is no longer used. It is also useful when the advantage obtained
in terms of response times for certain queries does not compensate for the
extra work required by the index, in order to keep it consistent with updates
to the table.

To give an example of the use of commands seen above, we can specify an
index on the EMPLOYEE table, which allows efficient access to data of the
employee, given the surname and town:

create index TownNameIndex on Employee(Surname, Town)

 To eliminate the index, we use the command:

drop index TownNameIndex

9.8 Bibliography
The subjects presented in this chapter are discussed both in general texts on
databases and in more specific books. The main reference for most of the
topics of the chapter is the comprehensive book by Gray and Reuter [46]. For

344 Chapter 9
Technology of a database server

the presentation of concurrency control we have followed an organization
very close to that of Vossen [90]. Concurrency control and reliability are
handled by Bernstein, Hadzilacos and Goodman [8]. The organization of
reliability control and of the quantitative optimization of queries (in
particular concerning profiles) is discussed in detail by Ceri and Pelagatti
[18]. A good introduction to the design of physical structures and their
dimensioning is given by Shasha [75]. The concept of transaction introduced
in this chapter was recently extended by introducing more complex
transactional models, such as nested or long-lived transactions; a good
reference is the book edited by Elmagarmid [37].

9.9 Exercises
Exercise 9.1 Indicate whether the following schedules can produce
anomalies; the symbols ci and ai indicate the result (commit or abort) of the
transaction.

1. r1(x), w1(x), r2(x), w2(y), a1, c2

2. r1(x), w1(x), r2(y), w2(y), a1, c2

3. r1(x), r2(x), r2(y), w2(y), r1(z), a1, c2

4. r1(x), r2(x), w2(x), w1(x), c1, c2

5. r1(x), r2(x), w2(x), r1(y), c1, c2

6. r1(x), w1(x), r2(x), w2(x), c1, c2

Exercise 9.2 Indicate whether the following schedules are vsr:

1. r1(x), r2(y), w1(y), r2(x), w2(x)

2. r1(x), r2(y), w1(x), w1(y), r2(x), w2(x)

3. r1(x), r1(y), r2(y), w2(z), w1(z), w3(z), w3(x)

4. r1(y), r1(y), w2(z), w1(z), w3(z), w3(x), w1(x)

Exercise 9.3 Classify the following schedules (as: Non-vsr, vsr, csr). In the
case of a schedule that is both vsr and csr, indicate all the serial schedules
equivalent to them.

1. r1(x), w1(x), r2(z), r1(y), w1(y), r2(x), w2(x), w2(z)

2. r1(x), w1(x), w3(x), r2(y), r3(y), w3(y), w1(y), r2(x)

3. r1(x), r2(x), w2(x), r3(x), r4(z), w1(x), w3(y), w3(x), w1(y), w5(x), w1(z),
w5(y), r5(z)

4. r1(x), r3(y), w1(y), w4(x), w1(t), w5(x), r2(z), r3(z), w2(z), w5(z), r4(t), r5(t)

Section 9.9 345
Exercises

5. r1(x), r2(x), w2(x), r3(x), r4(z), w1(x), r3(y), r3(x), w1(y), w5(x), w1(z), r5(y),
r5(z)

6. r1(x), r1(t), r3(z), r4(z), w2(z), r4(x), r3(x), w4(x), w4(y), w3(y), w1(y), w2(t)

7. r1(x), r4(x), w4(x), r1(y), r4(z), w4(z), w3(y), w3(z), w1(t), w2(z), w2(t)

Exercise 9.4 If the above schedules are presented to a scheduler that uses
two-phase locking, which transactions would be placed in waiting? (Note
that once a transaction is placed in waiting, its successive actions are not
considered.)

Exercise 9.5 Define the data structure necessary for the management of
locking, for a non-hierarchical model with read repeatability. Implement in
a programming language of your choice the functions lock_r, lock_w and
unlock. Assume that an abstract data type ‘queue’ is available with the
appropriate functions for the insertion of an element into a queue and for
extracting the first element of the queue.

Exercise 9.6 With reference to the exercise above, add a timeout
mechanism. Assume that we have available functions for getting the current
system time and for extracting a specific element from a queue.

Exercise 9.7 If the schedules described in Exercise 9.3 were presented to a
timestamp-based scheduler, which transactions would be aborted?

Exercise 9.8 Consider both single-version and multi-version concurrency
control based on timestamp for an object X. Initially wtm(X) = 5, rtm(X) =
7. Indicate the actions of the scheduler in response to the following input:

r(x, 8), r(x, 17), w(x, 16), w(x, 18), w(x, 23), w(x, 29), r(x, 20), r(x, 30), r(x, 25)

Exercise 9.9 Define the data structures necessary for buffer management.
Implement in a programming language of your choice the functions fix, use
and unfix. Assume we have available the file system functions described in
Section 9.3.4.

Exercise 9.10 Describe the warm restart, indicating the progressive
building of the sets UNDO and REDO and the recovery actions, given the
following situation on the log:

dump, b(T1), b(T2), b(T3), i(T1, O1, A1), d(T2, O2, R2), b(T4), u(T4, O3, B3, A3),
u(T1, O4, B4, A4), c(T2), ck(T1, T3, T4), b(T5), b(T6), u(T5, O5, B5, A5), a(T3),
ck(T1, T4, T5, T6), b(T7), a(T4), u(T7, O6, B6, A6), u(T6, O3, B7, A7), b(T8),
a(T7), failure

346 Chapter 9
Technology of a database server

Exercise 9.11 Assume that in the above situation a device failure involves
the objects O1, O2 and O3. Describe the cold restart.

Exercise 9.12 Consider a hash structure for storing tuples whose key field
contains the following names:

Green, Lovano, Osby, Peterson, Pullen, Scofield, Allen, Haden, Harris,
McCann, Mann, Brown, Newmann, Ponty, Cobbham, Coleman, Mingus,
Lloyd, Tyner, Hutcherson, Green, Fortune, Coltrane, Shepp.

1. Suggest a hashing function with B = 8 and F = 4.

2. Supposing B = 40 and F = 1, what is the probability of conflict? And
with B = 20 and F = 2?

3. With F = 5 and B = 7, what is the approximate average length of the
overflow chain?

Exercise 9.13 Consider a b+ tree structure for storing tuples whose key
field contains the data listed in the above exercise.

1. Describe a balanced b+ tree structure with F = 2, which contains the
listed data.

2. Introduce a data item that causes the split of a node at leaf level, and
show what happens at leaf level and at the level above.

3. Introduce a data item that causes a merge of a node at leaf level, and
show what happens at leaf level and at the level above.

4. Show a sequence of insertions that causes the split of the root and the
lengthening of the tree.

5. Describe a b tree structure, with F = 3, that contains the given data.

Exercise 9.14 Consider the database made up of the following relations:

PRODUCTION(ProdNumber, PartType, Model, Quan, Machine)
ORDERDETAIL (OrderNumber, ProdNumber)

ORDER(OrderNumber, Client, Amount)
COMMISSION(OrderNumber, Seller, Amount)

Assume the following profiles

card(PRODUCTION) = 200,000
card(ORDERDETAIL) = 50,000
card(ORDER) = 10,000
card(COMMISSION) = 5,000

SIZE(PRODUCTION) = 41
SIZE(ORDERDETAIL) = 15
SIZE(ORDER) = 45
SIZE(COMMISSION) = 35

Section 9.9 347
Exercises

Describe the algebraic optimization and the computation of the profiles of
the intermediate results for the following queries, which need to be initially
expressed in sql and then translated into relational algebra:

1. Find the available quantity of the product 77y6878.

2. Find the machines used for the production of the parts sold to the client
Brown.

3. Find the clients who have bought from the seller White a box model
3478.

For the last two queries, which require the joining of three tables, indicate
the ordering between joins that seem most convenient based on the size of
the tables. Then describe the decision tree for the second query allowing for
a choice of only two join methods.

Exercise 9.15 List the conditions (dimensions of the tables, presence of
indexes or of sequential organizations or of hashing) that make the join
operation more or less convenient using the nested-loop, merge-scan and
hash methods. For some of these conditions, suggest cost formulas that take
into account the number of input/output operation as a function of the
average costs of the access operations involved (scans, ordering, index-
based accesses).

size(ProdNumber) = 10
size(PartType) = 1
size(Model) = 10
size(Quan) = 10
size(Machine) = 10
size(OrderNumber) = 5
size(Client) = 30
size(Amount) = 10
size(Seller) = 20

val(ProdNumber) = 200,000
val(PartType) = 4
val(Model) = 400
val(Quan) = 100
val(Machine) = 50
val(OrderNumber) = 10,000
val(Client) = 400
val(Amount) = 5,000
val(Seller) = 25

348 Chapter 9
Technology of a database server

10
10Distributed
architectures

Distribution is an ingredient of almost any modern application of database
systems. This chapter defines the various types of distributed architectures,
and then deals with each of them separately.

The simplest and most widespread distributed architecture uses the client-
server paradigm. This architecture is based on separating the role of server
from the role of client. The server contains the core functions of the dbms
engine and is executed on a computer with suitable main and secondary
memory. The client runs on a different computer, which is dedicated to the
user interface and hosts the user’s productivity software (for example, e-mail
and word processing). The network connects the server and client
computers.

Distributed databases present an entirely different set of problems. A
distributed database is characterized by the presence of at least two database
servers, which can carry out local transactions independently from each
other. However, in many cases the servers must interact, thus supporting
distributed transactions. This interaction takes place on increasingly
complex levels. We will see that the greatest problem is presented by the
difficulty of guaranteeing the acid properties of distributed transactions (as
defined in Section 9.1.1), especially when the transactions carry out write
operations on two or more servers. To manage these situations, a two-phase
commit protocol is introduced; this is one of the most interesting protocols
in the data distribution context, as it takes into account the interaction of
aspects of distribution, atomicity and durability. We will also look at another
typical protocol that describes deadlock detection in a distributed context.

Another type of database architecture uses parallelism to improve
performance. The parallel databases are characterized by the use of
multiprocessor machines and multiple data management devices, with

350 Chapter 10
Distributed architectures

various interconnection functions. There is a clear distinction between
distributed databases and parallel databases. In a distributed database, each
server has its own identity and stores data that is ‘functionally’ associated
with that server. In a parallel database the data is allocated to each device and
controlled by each processor in a way that responds only to efficiency
criteria. For this reason, parallelism introduces a series of problems that are
quite different from those of distribution.

The most recent architectures for databases have gradually become
specialized with regard to the dominant applications, presenting two distinct
components. One component is dedicated to ‘on line’ data management, to
guarantee the modification of data in real time, and the other is responsible
for ‘decision support’, being used to carry out complex data analyses. Thus,
two types of hardware/software architecture have emerged:

• Some systems are aimed at optimized management and reliable
transactions, performing On-Line Transaction Processing, oltp. These
systems are made to manage hundreds or even thousands of transactions
per second, arriving from clients all over the network.

• Other systems are aimed at data analysis, performing On-Line Analytical
Processing, olap. To do this, they must export the data from the oltp
systems, where data is generated, and import them into data warehouses.
(See Chapter 13.)

Data management servers can typically support both oltp, managing high
transaction loads, and olap, for the efficient execution of complex queries.
The reason for both functions being present is because the separation of oltp
and olap is very recent and many application environments do not yet
separate the two functions. However, the separation of oltp and olap allows
for the specialization, better organization, and optimal sizing of the servers.
In this chapter, we will dwell on the technology common to both oltp and
olap, while Chapter 13 will be dedicated to olap describing the
programming paradigms and use of the data warehouse.

A service technology has recently emerged for the creation of distributed
applications, particularly in the presence of separated environments for oltp
and olap: that of data replication. This term denotes the capacity to
construct copies of data, exporting them from one node to another in a
distributed system, to maximize the availability of data and to increase
reliability.

In an overall technological view characterized by the necessity for
interactions between different products, the problems of portability and of
interoperability assume even more importance.

• Portability denotes the possibility of transporting programs from one
environment to another (and it is thus a typical property of compilation
time).

Section 10.1 351
Client-server architecture

• Interoperability denotes the ability of interacting between heterogeneous
systems (and it is thus a typical property of execution time).

In order to obtain portability and interoperability, standards are very
important. In particular, portability depends on language standards
(primarily sql), while interoperability depends on the standards concerning
data access protocols. In this chapter, we will describe the standard Open
Database Connectivity (ODBC), for making heterogeneous databases
communicate among themselves. We will also examine X-OPEN Distributed
Transaction Processing (DTP), a standardized version of the two-phase
commit protocol that ensures the possibility of making different dbms
systems interact in the same acid transaction.

10.1 Client-server architecture
The client-server paradigm is a model of interaction between software
processes, where interacting processes are sub-divided among clients (which
require services) and servers (which offer services). Client-server interaction
thus requires a precise definition of a service interface, which lists the
services offered by the server. The client process is typically dedicated to the
final user; it carries out an active role, in that it autonomously generates
requests for services. The server process on the other hand is reactive. It
carries out a computation only as a result of a request on the part of any
client. Normally, a client process can request in sequence some (few) services
from various server processes, while each server process responds to (many)
requests from many client processes. In this section, we will hypothesize that
each client sends all the requests to a single server, and that these requests
are identified as belonging to the same transaction, initiated at the first
request made by the client. We will deal with the interaction of a client with
various servers in the next section.

It is not necessary for server and client processes to be allocated different
machines. The distinction between client and server processes is an excellent
paradigm for the construction of software independently of the allocation of
processes. However, in data management, allocation of client and server
processes to distinct computers is now widespread.

There are various reasons for the use of the client-server architecture for
databases.

• The functions of client and server are well identified in the database
context. They give rise to a convenient separation of design and
management activities. The application programmer has the responsibility
for writing and managing the software for making the client respond to
specific demands. The database administrator (dba) has responsibility for
data design and management on the server, which is shared among
various clients. The dba must organize the database to guarantee optimal
services to all the client processes.

352 Chapter 10
Distributed architectures

• Apart from the functional breakdown of processes and tasks, the use of
different computers for client and server in the database is particularly
convenient. The computer dedicated to the client must be suitable for
interaction with the user. It is often a personal computer, provided with
productivity tools (electronic mail, word processing, spreadsheets,
Internet access, and workflow management). Among these tools, often
masked by a ‘user-friendly interface’, some applications request the use of
a database. The power of the computer dedicated to the server depends
on the services that it must offer. It must have a large main memory (to
support buffer management) and a high capacity disk (for storing the
entire database).

• The sql language, used in all relational databases, offers an ideal
programming paradigm for the identification of the ‘service interface’.
The sql queries are formulated by the client and sent to the server. The
results of the query are calculated by the server and returned to the
client. The query can be expressed at the client side as an invocation of a
predefined remote service, or can be sent at execution time as a string of
characters. The server processes the queries, extracting the query result
from the database content, and packaging the result of the query.
Furthermore, it carries out any database update as expressed in the query.
Thus, on the network, only the information useful to the client will
travel, and this represents a tiny fraction of the information extracted
from the secondary memory. In addition, the standardization, portability
and interoperability of the sql language allows the construction of client
applications that involve different server systems.

The client-server architecture can adapt itself both to statically-compiled
queries and to queries with dynamic sql. With a static process (‘compile and

Figure 10.1 Client-server architecture.

Client

LAN

Client Client

Database

Input
queue

Output
queue

Database server

Server
process

Section 10.2 353
Distributed databases

store’), the queries are presented to the server once and are then recalled
many times. Using a dynamic process, (‘compile and go’), the queries are
transmitted in the form of strings of characters that are compiled and
processed by the server. In both cases, the optimizer and the access methods
lie with the server, which thus includes all the mechanisms illustrated in the
preceding chapter.

With the static process, a server normally stores a parametric query; at
execution time, the client assigns values to some entry parameters and then
calls the execution of the query, typically using a procedure. Often, the
server that manages such requests is multi-threaded. From the point of view
of the operating system, it behaves like a single process that works
dynamically on behalf of different transactions. Each unit of execution of the
server process for a given transaction is called a thread. This organization,
shown in Figure 10.1, allows the management of servers as permanently
active processes that control an input queue for client requests and an output
queue for the query results. The use of a multi-threaded model is more
convenient than the allocation of a dedicated process to each request,
because it saves process allocation and de-allocation times. The servers can
manage the queues directly or by means of other processes, called
dispatchers, whose task is to distribute the requests to the servers and return
the responses to the clients. In some cases, the dispatchers can dynamically
define the number of active server processes as a function of the number of
requests received. In this case, we say that a server class is available. The
server class contains an arbitrary number of server processes
indistinguishable one from another. This phenomenon is similar to the
management of a supermarket, where the number of open checkouts varies
dynamically depending on the number of customers present.

The architecture illustrated up to now is called a two-tier architecture
because it encompasses a client, with functions both of user interface and of
application management, and a server dedicated to data management.
Recently an alternative architecture has become popular, called three-tier
architecture, in which a second server is present, known as the application
server, responsible for the management of the application logic common to
many clients. In this architecture, the client is named thin-client; it is
responsible only for the interface with the final user. The client sends
requests to the application server, which communicates with the data
management server using the techniques illustrated above. This architecture
is becoming widespread with the growth of the Internet, because it allows
the creation of clients using a simple browser (see Chapter 14).

10.2 Distributed databases
We have seen that in a client-server architecture, a transaction involves at

most one server. When more than one server is involved, we talk of
distributed databases. In this section, we will deal with distributed databases

354 Chapter 10
Distributed architectures

from the functional point of view, looking at how a user can specify
distributed queries. In the next section, we will concentrate on the
technological aspects and we will look at how we need to extend the server
technology so as to allow their use in a distributed database.

10.2.1 Applications of distributed databases
The reasons for the development of distributed solutions in data
management are pragmatic. They respond to the demand for the data
management architecture to conform to the needs of the enterprises in which
data is produced and used, because these enterprises are structurally
distributed. Distributed data management is in contrast to the centralized
data processing organization typical of large computing centres, which was
dominant until the mid-eighties. It allows the distribution of data processing
and control to the environment where it is generated and largely used. On
the technological level, we have recently witnessed the gradual replacement
of centralized systems by distributed systems, justified by many reasons;
among them are greater flexibility, modularity and resistance to failures.
Distributed systems can be configured by the progressive addition and
modification of components, with a much greater flexibility and modularity
than those systems based on the use of centralized resources (mainframes).
Although they are more vulnerable to failures due to their structural
complexity, they are actually capable of so-called ‘graceful degradation’, that
is, of responding to failures with a reduction in performance but without a
total failure.

A first classification of distributed databases considers the type of dbms
and network used. When all the servers use the same dbms, the database is
known as homogenous; otherwise, it is called heterogeneous. A distributed
database can use a local area network (lan) or a wide area network (wan). This
classification introduces a corresponding classification of application
solutions.

Obviously homogenous systems on lans correspond to solutions that are
technologically simpler and more widespread, present in a large number of
application contexts. They include data management applications developed
within a small company, or inside a single building or office. More complex
homogenous applications have become indispensable in contemporary
society. For example, distributed homogenous systems serve many financial
applications (including the management of bank accounts); these are created
both on lans and on wans depending on the distribution of the bank’s
branches in the territory.

The heterogeneous solution is also widely used. For example, many
integrated inter-divisional information systems present in companies are
heterogeneous (perhaps more from necessity than from choice). Each part of
the company often develops its own software independently for its own
applications and in particular independently chooses the software for data
management. Then, at management level, it is discovered that the company

Section 10.2 355
Distributed databases

sectors must interact, but at this point the resulting information system is
heterogeneous. This company evolution justifies the use of open architectures,
that is, of systems that can interact regardless of their heterogeneity. They are
in contrast with the proprietary architectures, in which hardware and
software are provided by a sole supplier, and are capable of guaranteeing
compatibility only within a family of products.

Airline booking systems are often distributed over many nodes linked by
wans. Communication among different systems could be necessary, for
instance, in order to put together a journey of many stages involving more
than one airline; this requires the use of complex protocols based upon the
interaction of heterogeneous systems on wans. Another example of
widespread use, which falls into the context of wans for heterogeneous
systems, is that of inter-banking systems. These allow the execution of
financial operations that involve many banks, in which each bank is in turn
the owner of a distributed database, on a local or wide area network. The
table in Figure 10.2 shows the typical application of distributed databases
described up to now, classifying them according to the type of dbms and
network.

10.2.2 Local independence and co-operation

From an abstract point of view, a distributed database can be considered as
a unique collection of data. Database servers guarantee the application
programs access to these resources, offering the user exactly the same type of
interaction as that obtained by a centralized system. It is, however,
important to note that in a distributed database each server has its own
capacity to manage applications independently. Guaranteeing the
independence of each server is one of the main objectives of distributed
databases.

The reason for having a distributed database is not that of maximizing the
interaction and the necessity of transmitting data via networks. On the
contrary, the planning of data distribution and allocation should be done in
such a way that the largest number possible of applications should operate
independently on a single server, to avoid the large execution costs that are
typical of distributed applications.

Figure 10.2 Examples of typical applications of distributed databases
showing the type of dbms and network.

Type of DBMS Network type

LAN WAN

Homogeneous
Data management and
financial applications

Travel management and
financial applications

Heterogeneous
Inter-divisional
information systems

Integrated banking and
inter-banking systems

356 Chapter 10
Distributed architectures

10.2.3 Data fragmentation and allocation
Data fragmentation is a technique for data organization that allows efficient
data distribution and processing. This technique is applicable only if data
distribution follows a well understood pattern, which is taken into account
during the design of the distributed database.

Let us consider a relation R. Its fragmentation consists of determining a
certain number of fragments Ri, obtained by applying algebraic operations
to R. Depending on the operation used, the fragmentation can be of two
types, horizontal or vertical.

• In horizontal fragmentation, the fragments Ri are groups of tuples having
the same schema as the relation R. Each horizontal fragment can be
interpreted as the result of a selection applied to the relation R.

• In vertical fragmentation, the fragments Ri each have a schema obtained
as a subset of the schema of R. Each vertical fragment can be interpreted
as the result of a projection applied to the relation R.

The fragmentation is correct if the following properties are valid:

• Completeness: each data item of R must be present in one of its fragments
Ri.

• Restorability: the content of R must be restorable from its fragments.

Horizontal fragments are normally disjoint, that is, they have no tuples in
common. Conversely, vertical fragments include the primary key defined for
R, to guarantee the restorability; in this way they constitute a lossless
decomposition of R (as discussed in Chapter 8). Note that fragments are
formally defined using operations on the relations. In other words,
fragmentation expresses logical properties of data.

Let us look at an example of horizontal and vertical fragmentation.
Consider the relation:

EMPLOYEE (Empnum, Name, Deptnum, Salary, Taxes)

The horizontal fragmentation is obtained by subdividing the tuples of
EMPLOYEE into many fragments by selection operations:

EMPLOYEE1 = σEmpnum≤3 EMPLOYEE

EMPLOYEE2 = σEmpnum>3 EMPLOYEE

• The reconstruction of the relation based on its fragments requires a union
operation:

EMPLOYEE = EMPLOYEE1 ∪ EMPLOYEE2

The vertical fragmentation is obtained by subdividing the tuples of
EMPLOYEE into many fragments by projection operations that include in each
fragment the primary key of the relation:

Section 10.2 357
Distributed databases

EMPLOYEE1 = πEmpNum,Name (EMPLOYEE)
EMPLOYEE2 = πEmpNum,DeptName,Salary,Tax (EMPLOYEE)

The reconstruction of the relation based on its fragments requires an equi-
join operation with equal key-values (natural join).

EMPLOYEE = EMPLOYEE1 J EMPLOYEE2

The two examples of horizontal and vertical fragmentation described
above are illustrated in Figure 10.3, Figure 10.4 and Figure 10.5.

Each fragment Ri corresponds to a different physical file and is allocated to
a different server. Thus, the relation is present in a virtual mode (like a view),
while the fragments are actually stored. The allocation schema describes the
mapping of full relations or of fragments of relations to the servers that store
them, allowing the transfer from a logical description to a physical
description of data. This mapping can be:

• non-redundant, when each fragment or relation is allocated to a single
server;

Figure 10.3 Table used in the examples of fragmentation.

Figure 10.4 Example of horizontal fragmentation.

EmpNum Name DeptNum Salary Tax

1 Robert Production 3.7 1.2
2 Greg Administration 3.5 1.1
3 Anne Production 5.3 2.1
4 Charles Marketing 3.5 1.1
5 Alfred Administration 3.7 1.2
6 Paolo Planning 8.3 3.5
7 George Marketing 4.2 1.4

EmpNum Name DeptNum Salary Tax

1 Robert Production 3.7 1.2
2 Greg Administration 3.5 1.1
3 Anne Production 5.3 2.1

First horizontal fragment

EmpNum Name DeptNum Salary Tax

4 Charles Marketing 3.5 1.1
5 Alfred Administration 3.7 1.2
6 Paolo Planning 8.3 3.5
7 George Marketing 4.2 1.4

Second horizontal fragment

358 Chapter 10
Distributed architectures

• redundant, when a fragment or relation is allocated to more than one
server.

10.2.4 Transparency levels
The distinction between fragmentation and allocation allows us to identify
various levels of transparency in the applications. These vary from an
abstract view of data, independent of the distribution, to a concrete view,
dependent on its physical allocation. There are three significant levels of
transparency: transparency of fragmentation, of allocation and of language.
In addition, a system could have a total absence of transparency, when there
is no common language for access to data present in the various servers. In
this case, the programmer must address each server with a specific sql
‘dialect’.

Let us look at an example of these four levels of transparency. Consider the
table that describes the suppliers for a firm:

SUPPLIER(SNum, Name, City)

Fragmented horizontally into two fragments for the cities of London and
Manchester, the only cities in which the company operates:

SUPPLIER1 = σCity=‘London’ (SUPPLIER)
SUPPLIER2 = σCity=‘Manchester’ (SUPPLIER)

Manchester uses a replicated database, as the second fragment is allocated
on two nodes Manchester1 and Manchester2. Thus, the allocation of
fragments is:

SUPPLIER1@company.London.uk
SUPPLIER2@company.Manchester1.uk
SUPPLIER2@company.Manchester2.uk

Let us then consider the simple application that requires a number of
suppliers and returns their names. We can write this application in sql at the
various levels of transparency.

Figure 10.5 Example of vertical fragmentation.

EmpNum Name EmpNum DipNum Salary Tax

1 Robert 1 Production 3.7 1.2
2 Greg 2 Administration 3.5 1.1
3 Anne 3 Production 5.3 2.1
4 Charles 4 Marketing 3.5 1.1
5 Alfred 5 Administration 3.7 1.2
6 Paolo 6 Planning 8.3 3.5
7 George 7 Marketing 4.2 1.4

First vertical fragment Second vertical fragment

Section 10.2 359
Distributed databases

• Fragmentation transparency: on this level, the programmer should not
worry about whether or not the database is distributed or fragmented.
The query is identical to that which would be written for a non-
fragmented relation.

procedure Query1(:snum, :name);
 select Name into :name
 from Supplier
 where SNum = :snum;
end procedure

• Allocation transparency: on this level, the programmer knows the
structure of the fragments, but does not have to indicate their allocation.
In particular, if the system allows replicated fragments (as in our
example), the programmer does not have to indicate which copy is chosen
for access (this additional property is called replication transparency). The
following program examines the fragments in sequence. We assume that
the parameter :empty assumes the value true if the first sql query does
not find a value.

procedure Query2(:snum, :name);
 select Name into :name
 from Supplier1
 where SNum = :snum;
if :empty then
 select Name into :name
 from Supplier2
 where SNum = :snum;
end procedure;

• Language transparency: at this level the programmer must indicate in the
query both the structure of the fragments and their allocation. For
example, a choice must be made to access the fragment stored in the node
Manchester1. This level is the lowest at which fragmentation can be
addressed by using a single query language in which to express the
query.

procedure Query3(:snum, :name);
 select Name into :name
 from Supplier1@company.London.uk
 where SNum = :snum;
if :empty then
 select Name into :name
 from Supplier2@company.Manchester1.uk
 where SNum = :snum;
end procedure;

• Absence of transparency: In this case, each dbms accepts its own sql
‘dialect’, because the system is heterogeneous and the dbmss do not
support a standard of common interoperability. As in the earlier case, the
programmer must indicate explicitly the fragments and their allocation in
the system.

360 Chapter 10
Distributed architectures

Note that the last two levels characterize the queries that are actually
carried out by the servers. Queries expressed at a higher level of
transparency are transformed during the optimization phase, by introducing
into their specifications the choice of particular fragments and their
allocation to specific nodes. Such transformation is done by the distributed
query optimizer, a subsystem that is aware of data fragmentation and
allocation.

This application can be made more efficient by using parallelism: instead
of submitting the two requests in sequence, they can be processed in
parallel, thus saving on the global response time. Note, however, that in this
specific example, parallel processing requires the computation of two
queries (one of which is empty), while the sequential processing is
interrupted if the first query is successful, thereby saving some computation.
We will deal further with parallelism in Section 10.7.

A different strategy is shown in the following program, which uses the
information about the city of the supplier in order to direct the query
towards the right server. The query operates at the level of allocation
transparency. Note that this solution introduces an element of rigidity: if in
future the fragmentation should change, the code would be rewritten.

procedure Query4(:snum, :name, :city);
case :city of
 "London":
 select Name into :name
 from Supplier1
 where SNum = :snum;
 "Manchester":
 select Name into :name
 from Supplier2
 where SNum = :snum;
end procedure;

10.2.5 Classification of transactions
A classification schema of transactions based on the composition of the sql
statements that make up a transaction was suggested by ibm and later
adopted by various other vendors. In this schema, each client refers to a sole
dbms and the distribution of the transaction becomes the task of the dbms.
The client can obviously address local transactions to the dbms, that is,
transactions made up of queries where the tables are all allocated to that
dbms. It can then address non-local transactions, which involve data stored
on other dbmss. These transactions can be more or less complex.

• Remote requests are read-only transactions made up of an arbitrary
number of select queries, addressed to a single remote dbms.

• Remote transactions are transactions made up of any number of sql
commands (select, insert, delete, update) directed to a single remote
dbms.

• Distributed transactions are transactions made up of any number of sql

Section 10.3 361
Technology of distributed databases

commands (select, insert, delete, update) directed to an arbitrary number
of remote dbmss, such that each sql command refers to data that is stored
on a single dbms.

• Distributed requests are arbitrary transactions, made up of an arbitrary
number of sql commands, in which each sql command can refer to data
distributed on any dbms. Note that all the queries at fragmentation
transparency level are classifiable as distributed requests.

This classification is important because it identifies progressive levels of
complexity in the interaction between dbmss. In the first case, the remote
dbms can only be queried. In the second case we can execute update
operations, but each transaction writes on a sole dbms. In the third case we
can include update operations on more than one node, but each sql query is
addresses to a specific dbms. In the last case, the sql query must be
distributed to more than one node. As we shall see, the third case requires
the use of the two-phase commit protocol and the fourth case requires, in
addition, the availability of an optimizer for distributed queries.

A typical example of a transaction is the transfer between two accounts,
described by the relation:

ACCOUNT(AccNum, Name, Total)

We can assume that the relation is fragmented so that all the accounts with
account numbers lower than 10000 are allocated on the first fragment and all
the accounts above this number are allocated to the second fragment. A
transfer of 100,000 from the account number 3154 to account number 14878
thus consists of two operations, one for each fragment. This is an example of
a distributed transaction written at the allocation transparency level.

begin transaction
 update Account1
 set Total = Total - 100000
 where AccNum = 3154;

 update Account2
 set Total = Total + 100000
 where AccNum = 14878;
 commit work;
end transaction

The holders of accounts numbered 3154 and 14878 (and obviously the
bank) wish the transaction to be carried out accurately on both nodes.
Alternatively, it is acceptable that neither of the two modifications is
executed. It is an unacceptable violation of atomicity that one of the
modifications is executed while the other is not.

10.3 Technology of distributed databases
In the above sections, we have seen some characteristics of applications of
distributed databases. We will now look at how to create these applications.

362 Chapter 10
Distributed architectures

First, we will address the problem of understanding how the database
technology must be extended to take into account data distribution. We will
see that some subsystems are not affected by the introduction of distribution,
while other subsystems are deeply affected. Data distribution does not
influence two of the four acid properties of transactions, consistency and
durability.

• Consistency of transactions does not depend on the distribution of data,
because the integrity constraints describe only the local properties of a
dbms. This is more than anything else a limit of the actual dbms
technology, in that integrity constraints could easily refer to distributed
data, but in fact there are no mechanisms that allow their specification or
verification.

• In a similar way, durability is not a problem that depends on the data
distribution, because each system guarantees durability in the case of
local device failures by using local recovery mechanisms (logs,
checkpoints, and dumps).

On the other hand, other subsystems require major enhancements in order
to cope with distributed database technology. We will first look at query
optimization, then at concurrency control and finally at reliability control.

10.3.1 Distributed query optimization
Distributed query optimization is required only when a dbms receives a
distributed request, in which data allocated to more than one dbms is
required for the same query. The dbms that is queried is responsible for the
so-called ‘global optimization’. It decides on the breakdown of the query
into many sub-queries, each addressed to a specific dbms. A strategy of
distributed execution consists of the co-ordinated execution of various
programs on various dbmss and in the exchange of data among them, which
is necessary when the results of a sub-query are used as subjects for another
sub-query.

The global optimizer decides the most convenient plan by examining a
decision tree, as discussed in Section 9.6. Among the cost factors of a
distributed query, there is also the quantity of data transmitted on the
network.

As with centralized systems, the optimizer selects the order of operations
and their method of execution. In addition, it defines the execution strategy
of the operations whose data are allocated to distinct nodes, defining a data
transmission strategy and the allocation of results. When the data is
redundant, it is also necessary to select the particular copy used. As with
centralized optimizers, we can allocate a cost to a leaf node representing the
global cost of a query processing strategy. This time we require the
contribution of three components (extending the formula presented in
Section 9.6.3):

Section 10.3 363
Technology of distributed databases

Ctotal = CI/O × nI/O + Ccpu × ncpu + Ctr × ntr

The two new elements ntr and Ctr measure, respectively, the quantity of
data transmitted on the network and the unit cost of transmission, and these
are added to the processing and input/output costs described in Section 9.6.
The importance of this third factor has changed over time. Originally, the
transmission cost was the most significant factor, and optimization of
distributed queries was based entirely on the reduction of transmission
costs. This simplification of the problem is no longer justified, given that the
transmission rate of data is, especially on lans, comparable to that of input/
output devices.

The submission of a query by a client starts all the processes necessary for
the execution of the query in the various servers. The execution of access
methods happens locally within each dbms.

10.3.2 Concurrency control
Concurrency control in a distributed environment causes theoretical
difficulties. However, in practice, we will see that two-phase locking and
timestamping methods are still valid in a distributed context.

We begin by stating the problem. In a distributed system, a transaction ti
can carry out various sub-transactions tij, where the second subscript
denotes the node of the system on which the sub-transaction works. For
example, a distributed transaction ti, which works on two objects x and y
allocated on the nodes 1 and 2, appears, from the point of view of its
concurrent accesses, as follows:

t1: r11(x) w11(x) r12(y) w12(y)

Note that the local serializability within the schedulers is not sufficient
guarantee of serializability. Let us suppose that there is a second transaction
t2, which also operates on data x and y, but accesses them in reverse order:

t2: r22(y) w22(y) r21(x) w21(x)

It is possible that the two transactions operate on nodes 1 and 2,
presenting two schedules S1 and S2 as follows:

S1: r11(x) w11(x) r21(x) w21(x)

S2: r22(y) w22(y) r12(y) w12(y)

These two schedules are locally serializable. However, when we observe
their global conflict graph, defined as in Section 9.2.3, we discover a cycle
between t1 and t2, in that:

• on node 1, t1 precedes t2 and is in conflict with t2;

• on node 2, t2 precedes t1 and is in conflict with t1.

364 Chapter 10
Distributed architectures

Thus the two executions are not conflict-serializable (csr). It is easy to
construct applications in which two transactions t1 and t2 that act in the way
described by the schedules S1 and S2 cause loss of updates or ghost updates.

Global serializability The global serializability of distributed transac-
tions over the nodes of a distributed database requires the existence of a
unique serial schedule S equivalent to all the local schedules Si produced at
each node. This means that, for each node i, the projection S[i] of S,
containing only the actions that happen on that node, must be equivalent to
the schedule Si. This property is difficult to verify when using schedulers
that directly apply view-equivalence or conflict-equivalence, but can be
immediately verified whenever the strict two-phase locking or the
timestamping method is used. The following properties are valid.

• If each scheduler of a distributed database uses the two-phase locking
method on each node, and carries out the commit action atomically at a
time when all the sub-transactions at the various nodes have acquired all
the resources, then the resulting schedules are globally conflict-
serializable.

• If distributed transactions each acquire a single timestamp and use these
timestamps in their requests to all the schedulers that use concurrency
control based on timestamp, the resulting schedules are globally serial,
based on the order imposed by the timestamps.

The above two properties have great practical relevance, because as a
consequence the methods of two-phase locking and timestamping can be
applied unaltered to distributed databases. In particular, the
synchronization of the commit action in the various nodes, which is required
by two-phase locking, is imposed by the atomicity of the transaction (see the
two-phase commit protocol in Section 10.4).

Lamport method for assigning timestamps To guarantee the effective
function of timestamp-based concurrency control, each transaction must
acquire a timestamp that corresponds to the time at which the distributed
transaction will be synchronized with the other transactions. We can use the
Lamport method for assigning timestamps that reflect the precedence among
events in a distributed system. Using this method, a timestamp is a number
characterized by two groups of digits. The least significant digits identify the
node at which the event occurs; the most significant digits identify the
events that happen at that node. The most significant digits can be obtained
from a local counter, which is incremented at each event; in this way, each
event has a different timestamp. In addition, each time two nodes
communicate by exchanging a message, the timestamps become
synchronized: given that the sending event precedes the receiving event, the
receiving event must have a timestamp greater than the timestamp of the
sending event. This may require the increasing of the local counter on the
receiving node.

Section 10.3 365
Technology of distributed databases

Figure 10.6 describes a certain number of events on three nodes of a
distributed system, and shows n assignments of timestamps obtained using
the Lamport method. Note that each event is characterized by a distinct
timestamp and that the timestamp reflects the order of events produced by
the exchange of messages, denoted by broken arrows.

Distributed deadlock detection Finally, we come to the problem of
distributed deadlocks, that is, deadlocks between distributed transactions.
Resolving them is more complex, as they can be due to circular waiting
situations that happen on two or more nodes. Obviously, the simple solution
of timeout is valid no matter what the context in which the deadlocks are
created, and thus it is used in most systems. There is however, an elegant and
rather efficient algorithm that resolves the deadlocks. It is described below
and is a characteristic example of an asynchronous and distributed protocol,
implemented in a distributed version of ibm db2.

Imagine a distributed database model in which the transactions are broken
down into sub-transactions. In this context, it is possible that the sub-
transactions are activated synchronously, and in this case when the sub-
transaction t11 activates the sub-transaction t12 (for example, using a remote
procedure call, that is, a synchronous call to a procedure that is remotely
executed), t11 waits for the termination of t12. Thus, this model allows for
two distinct types of waiting. Firstly, two sub-transactions of the same
transaction can be in waiting in the distinct dbmss as one waits for the
termination of the other. Secondly, two different sub-transactions on the
same dbms can wait as one blocks a data item to which the other one requires
access.

An example of distributed deadlock is shown in Figure 10.7. The deadlock
is due to the following wait conditions:

1. t11 waits for t12, activated by a remote procedure call (rpc);

2. t12 waits for a resource locked by t22;

3. t22 waits for t21, activated using a remote procedure call;

Figure 10.6 Example of assignment of timestamps using the Lamport
method.

1.1 2.1 7.1 8.1 9.1 10.1 11.1 12.1 13.1 14.1
node 1

1.2 2.2 3.2 4.2 5.2 10.2 11.2 12.2 13.2
node 1

node 1
5.3 6.3 7.3 8.3 11.3 13.3

366 Chapter 10
Distributed architectures

4. finally, t21 waits for a resource locked by t11.

The waiting conditions visible to each dbms can be characterized using
precedence conditions. On dbms 1, we know that t21 is activated by a remote
dbms and is waiting for t11, which in its turn has activated a sub-transaction
on a remote dbms. Thus we have:

EXT → t21 → t11 → EXT

Symmetrically, on dbms 2 we have the precedences:

EXT → t12 → t22 → EXT

Now consider any waiting condition in which a sub-transaction ti,
activated by a remote dbms, also waits because of the lock situation for
another transaction tj, which in its turn waits for a remote sub-transaction.
The waiting condition is summarized using a wait sequence:

(1) EXT → ti → tj → EXT

The algorithm for distributed deadlock detection is periodically activated
on the various dbmss of the system. When it is activated, it analyzes the wait
conditions on its dbms and communicates the wait sequences to other
instances of the same algorithm. To avoid the situation in which the same
deadlock is discovered more than once, the algorithm allows for a message
(1), containing wait sequences, to be sent only ‘ahead’. That is, it is sent
towards the dbms where the sub-transaction for which tj is waiting is
activated. Further, the message is sent only if, for example, i > j and i and j
are the identifiers of the transactions.

The algorithm is activated periodically and works as follows:

1. The messages containing wait sequences arriving from other remote
dbmss are read and the information present in the messages is combined
with the local wait conditions, building a wait graph. Each transaction is
represented on the graph by a single node, independently of the number

Figure 10.7 Example of a distributed deadlock.

DBMS 1 DBMS 2

t11 t12

t21 t22

waiting
(lock)

waiting
(lock)

activation (rpc)

activation (rpc)

Section 10.3 367
Technology of distributed databases

of sub-transactions of which it is composed. The nodes corresponding to
remote transactions are added to the local wait graph.

2. A local deadlock search is carried out. Deadlock situations are resolved
by forcing the abort of one of the transactions involved in the deadlock.

3. The wait sequences are then computed and sent to the remote dbmss
‘ahead’, according to the rule described above. At the end of the
transmission, the algorithm is deactivated.

Figure 10.8 shows the application of this algorithm to a distributed
database.

We assume an initial wait condition characterized by these wait sequences:

S1 : EXT → t3 → t1 → EXT

S2 : EXT → t1 → t2 → EXT

S3 : EXT → t2 → t3 → EXT

In these conditions, given that the wait sequences must be exchanged
‘ahead’, only dbms 1 can transmit its wait sequence to dbms 2, where the
sub-transaction activated by t1 is being carried out. Figure 10.8b illustrates

Figure 10.8 Example of a distributed deadlock detection.

DBMS 1 DBMS 2 DBMS 3

t1

t3

E

E

E

E

t2

t3

a. initial situation

E

E

t1

t2

E t1

t2

t3 E

E

b. first pass of the algorithm

DBMS 2

DBMS 3

c. second pass of the algorithm

E

E

t2

t3

E

E

368 Chapter 10
Distributed architectures

the situation that is verified by dbms 2 after having received the wait
condition S1. Thus a new wait condition appears:

S4 : EXT → t3 → t2 → EXT

This wait condition is sent to dbms 3, where the sub-transaction activated
by t2 is being carried out. Figure 10.8c shows the situation that is generated
in dbms 3 after receiving the wait condition S4. Finally, the deadlock
consisting of the pair t2, t3 is recognized (note that the original deadlock also
involved t1). One of the two transactions is chosen for the rollback, which
involves all of its sub-transactions on all the nodes, and the deadlock is
resolved.

10.3.3 Failures in distributed systems
To conclude our analysis of acid properties for distributed transactions, we
still need to deal with atomicity. To guarantee atomicity it is necessary that
all the nodes that participate in a transaction reach the same decision
regarding the transaction (commit or abort). Thus, it is necessary to follow
particular protocols, known as commit protocols, which allow a transaction
to reach the correct commit or abort decision.

Unfortunately, atomicity is difficult to guarantee, due to many possible
causes of failures that may occur in a distributed system; we turn our
attention to a classification of failures, before focusing on commit protocols
in the next section.

A distributed system is subject to node failures, which may occur on any
node of the system; these may be soft or hard, as discussed in Section 9.4.4.
In addition to node failures, message losses can occur, which leave the
execution in an uncertain situation. To guarantee the progress of a protocol,
each protocol message is followed by an acknowledgement message (ack).
However, the loss of either one of the two messages (the first one or the ack)
leaves the sender uncertain about whether the message has been received.
Since messages can be lost, the commit protocol imposes a limited time on the
reception of each ack message; once the time is expired, the sender decides
to proceed anyway with the protocol. In this case, it is possible that the
timeout expires even when there is no real message loss. Simply, it could
happen that one of the two computers exchanging the messages is
overloaded and thus is too slow to process those messages.

A third kind of failure occurs when some communication links of the
computer network can be interrupted. In this case, in addition to message
losses, another phenomenon may occur: the network partitioning in two sub-
networks that have no communication between each other. This failure can
cause further problems, as a transaction can be simultaneously active in more
than one sub-network.

In summary, the causes of failure in distributed systems amount to node
failures, message losses, or network partitionings; they can jeopardize the

Section 10.4 369
Two-phase commit protocol

atomicity of distributed transactions. We will now devote our attention to
the two-phase commit protocol.

10.4 Two-phase commit protocol
The two-phase commit protocol is similar in essence to a marriage, in that the
decision of two parties is received and registered by a third party, who
ratifies the marriage. In order for the marriage to take place, both
participants must express their wish to marry. The celebrant, during the first
phase, receives the desire to marry, expressed separately by the two parties
in order to give notice in a second phase that the marriage has taken place.
In this context, the servers – who represent the participants to the marriage
– are called resource managers (rm). The celebrant (or coordinator) is
allocated to a process, called the transaction manager (tm). The number of
participants at the marriage is not limited to two, but is arbitrary.

The two-phase commit protocol takes place by means of a rapid exchange
of messages between tm and rm. To make the protocol failure resistant, rm
and tm write some new records in their logs.

10.4.1 New log records
New log records are written during the two-phase commit protocol by
extending the log records shown in Section 9.4.2. Both tm and rm are
provided with their own logs. The tm writes additional log records.

• The prepare record contains the identity of all the rm processes (that is,
their identifiers of nodes and processes). Continuing with the marriage
analogy, this record corresponds to the announcements that are written
before the marriage.

• The global commit or global abort record describes the global decision.
Anticipating the protocol, we note that the time at which the tm writes
in its log the global commit or global abort record, it reaches the final
decision. A global commit decision consists of bringing the entire
transaction to a successful (that is, atomic and durable) termination on all
the nodes on which it works. A global abort decision consists of leaving
the initial database state unaltered on all the nodes at which the
transaction operates.

• The complete record is written at the end of the two-phase commit
protocol.

The rm process represents a sub-transaction. As in the centralized
context, each rm writes a begin record, followed by various records of
insert, delete, and update that represent the operations carried out by sub-
transactions. As regards the two-phase commit protocol, there is a single new
record on the rm.

370 Chapter 10
Distributed architectures

• The ready record indicates the irrevocable availability to participate in the
two-phase commit protocol, thereby contributing to a decision to
commit. The identifier (process identifier and node identifier) of the tm is
also written on this record.

Note that the participant, once the ready record is written, loses all
independence of decision making. The final result of the transaction will be
decided by the tm. Furthermore, a participant can write the ready record
only when it is in a ‘recoverable state’. This means that it must use
appropriate locks to block all the resources to which it has access and it must
follow the wal and commit-precedence rules, as defined in Section 9.4.3, in
the management of its log.

10.4.2 Basic protocol
In the absence of failure, the two-phase commit protocol consists of a rapid
sequence of writes on the log and of exchange of messages between the tm
and the rms. In communication with the rms, the tm can use broadcast
mechanisms that transmit the same message to many nodes. It must then be
able to collect responses arriving from various nodes. Otherwise, the tm uses
a serial communication with each of the rms.

The first phase of the protocol is as follows.

1. The tm writes the prepare record in its log and sends a prepare message
to inform all the rms of the start of the protocol. A timeout is then set by
the tm indicating the maximum time allocated to the completion of the
first phase. The timeout will expire in the case of an excessive delay in
the receipt of the reply message from some of the rms.

2. The rms that are in a recoverable state await for the prepare message. As
soon as the prepare message arrives, they write on their own logs the
ready record and transmit to the tm a ready message, which indicates the
positive choice of commit participation. If an rm is not in a recoverable
state, because a transaction failure has taken place, it sends a not-ready
message and ends the protocol. Any rm can at any time autonomously
abort a sub-transaction, by undoing the effects and ending the protocol
before it begins. As we shall see, the global effect of this situation on the
transaction is a global abort.

3. The tm collects the reply messages from the rms. If it receives a positive
message from all the rms, it writes a global commit record on its log. If,
however, one or more negative messages are received or the timeout
expires without the tm receiving all the messages, the tm writes a
global abort record on the log.

The second phase of the protocol is as follows.

1. The tm transmits its global decision to the rms. It then sets a second
timeout, which will be activated in the case of an excessive delay in the
receipt of responses from the rms.

Section 10.4 371
Two-phase commit protocol

2. The rms that are ready await the decision message. As soon as the
message arrives, they write the commit or abort record on their own logs.
Then they send an acknowledgement to the tm. At this point, the
implementation of the commit or abort proceeds on each server as
described in the preceding chapter. In particular, the pages modified by
the transaction are written to the database by the buffer manager.

3. The tm collects all the ack messages from the rms involved in the second
phase. If the timeout expires without the tm having received all the
acks, the tm sets another timeout and repeats the transmission to all the
rms from which it has not received an ack. This sequence is repeated
until all the rms respond by sending their acks. When all the acks have
arrived, the tm writes the complete record on its log.

To summarize, a communication failure between tm and rm during the
first phase provokes a global abort, while a communication failure between
tm and rm during the second phase provokes a repetition of the
transmissions, until a communication between the tm and all the rms is re-
established. In this way, the final result of the transaction is communicated
to all the rms in a ready condition. The protocol is shown in Figure 10.9,
which describes the exchange of messages and writes on the logs of the tm
and one of the rms.

An rm in a ready state loses its autonomy and awaits the decision of the
tm. This situation is particularly dangerous, as a failure of the tm during the
protocol leaves each rm process in an uncertain state. In this state, the
resources acquired by an rm process (using lock mechanisms) are blocked.
Thus, it runs the risk of blocking large portions of the database for long
periods. The interval that passes between the writing on the participant’s log

Figure 10.9 Two-phase commit protocol.

Prepare

timeout 1

Global Decision

timeout 2

Complete

prepare
msg

Ready

ready
msg

decision
msg

ack
msg

Local Decision

Window of uncertainty

TM

RM

372 Chapter 10
Distributed architectures

of the ready record and the writing of the commit or abort record is called the
window of uncertainty. The protocol is designed to keep this interval to a
minimum.

The entire group of actions carried out by the processes of client, server
and tm is described in Figure 10.10 for a specific rm (but obviously, there
must be at least two rms). The client sends a task to be executed by the rm
and waits for it to be completed. It then sends, either in sequence or in
parallel, other tasks to be executed by other servers. Note that in the model
in Figure 10.10 the client acts as coordinator of the distributed execution.
Alternatively, the client can direct its request to a single rm and this last can
send requests to other rm processes, carrying out the role of coordinator of
the distributed execution. In both cases, the client or the rm process
coordinator waits for all the rms to finish their tasks, and then activates the
two-phase commit protocol, interacting with the tm. At this point, all the
rms are waiting to participate in the commit, receiving the first prepare
message. The commit protocol happens very rapidly, as both the rm and the
tm simply write the records in the log and send messages, thereby
minimizing the window of uncertainty.

In a large number of applications, the processes of client, rm and tm
establish their connections once, when processes are initialized, and then
reuse them many times, for various transactions. They use permanent
communication mechanisms, called sessions, which guarantee an efficient
and robust transmission environment for distributed transactions. The
concept of sessions refers to the communication protocols between processes
and is beyond the scope of this text.

10.4.3 Recovery protocols
Let us now look at the possible causes of error that can affect the execution
of the two-phase commit protocol, and at the recovery actions that take place
in each case.

Figure 10.10 Two-phase commit protocol in the context of a transaction.

exec done

2pc done

Client

TM

RM

Begin Update Update Delete

Section 10.4 373
Two-phase commit protocol

Failure of a participant The failure of a participant causes the loss of the
contents of the buffers and can thus leave the database in an inconsistent
state. As in Section 9.4.4, the state of those participants that are ‘uncertain’
can be deduced from reading the contents of the log, which is supposed to
be stored in the stable memory. The warm restart protocol, as discussed in
Section 9.4.4, tells us how to behave in two cases. In both cases, whether a
transaction is distributed or centralized is irrelevant:

• when the last record written in the log is a record that describes an action
or an abort record, the actions are undone;

• when the last record written in the log is a commit, the actions are redone.

Thus, the only additional case, introduced by the 2pc protocol, concerns
those transactions in which the last record written in the log is a ready. In
this case, the participant is in doubt about the result of the transaction. Note
that the transaction could have committed as a consequence of the positive
indication given by the participant, or could have aborted due to a negative
indication given by some other participant or to the expiring of the timeout
of phase one. During the warm restart protocol, the identifier of the
transactions in doubt are collected in a set (called ready set). For each of these
transactions, we have to request the final result of the transaction to tms.
This can happen as a result of a direct (remote recovery) request from the rm
node to the tm nodes. Alternatively, the information can be transferred to
the tms from the rm, as a repetition of the second phase of the protocol or
following an explicit request to carry out the rm recovery (as in the x-open
protocol, which will be described below).

Coordinator failure The failure of the coordinator happens during the
transmission of messages and can cause their loss. It is possible to use the log
to retrieve the information on the state of the protocol, but the log will not
provide information on which messages have been correctly sent. The state
of the tm is characterized by the following three cases.

• When the last record in the log is a prepare, the failure of the tm might
have placed some rms in a blocked situation. Their recovery, by the tm,
usually happens by deciding on a global abort, writing this record in the
log, and then carrying out the second phase of the protocol.
Alternatively, the tm can also repeat the first phase, hoping that all the
rms are still waiting in a ready condition, in order then to decide on a
global commit. Note that this alternative requires the rm to respond a
ready message while being in the ready state.

• When the last record in the log is a global decision, the failure of the tm
might have caused a situation in which some rms have been correctly
informed of the decision and others have been left in a blocked state. In
this case, the tm must repeat the second phase, redistributing the
decision to all the rms.

374 Chapter 10
Distributed architectures

• When the last record in the log is a complete, the failure of the
coordinator has no effect on the transaction.

Note that the repetition of the second phase can cause a participant to
receive the same decision about the same transaction many times. In this case,
the participant can simply ignore the decision, but must in any case respond
with an ack, to complete the recovery process.

Message loss and network partitioning Finally, let us analyze the cases
of message loss and of network partitioning.

• The loss of a prepare message and the loss of the succeeding ready
messages are not distinguishable by the tm. In both cases, the timeout of
the first phase expires and a global abort decision is made.

• The loss of a decision message or of the succeeding ack message are also
indistinguishable. In both cases, the timeout of the second phase expires
and the second phase is repeated.

• A network partitioning does not cause further problems, in that the
transaction will be successful only if the tm and all the rms belong to the
same partition during the critical phases of the protocol

10.4.4 Protocol optimization
The protocol we have seen is laborious. Up to now, we have assumed that all
the writings in the log were synchronous (that is, carried out using a force
operation) to guarantee durability. Some variations of the protocol allow the
avoidance of the synchronous writing of some log records, based on the use
of default choices on the result of the transaction in case of failure of the tm.
Thus, the tm can, in the absence of information about some participants,
indicate by default that these participants have made a decision to commit or
abort.

Two variants of the protocol are constructed. They are called presumed
commit or presumed abort. We will describe below the protocol of presumed
abort, which is adopted by most commercial dbmss.

Presumed abort protocol The presumed abort protocol is based on the
following rule:

• when a tm receives a remote recovery request from an in doubt rm and
the tm does not know the outcome of that transaction, the tm returns a
global abort decision as default to the rm.

As a consequence of the above rule, we can avoid some synchronous writes
of records in the tm log. In particular, the force of prepare and global abort
records can be avoided. In the case of loss of these records caused by a failure
of the tm, the tm following the default behaviour would give an identical
response during the recovery of the transaction. Furthermore, the complete
record is not critical for the algorithm; in some systems, it is omitted, and in

Section 10.4 375
Two-phase commit protocol

general its loss causes the repetition of the second phase. In conclusion, only
the records ready and commit, in the rm log, and global commit, in the tm
log, must be written synchronously, and must be written using the force
primitive. These records can be written using group operations, as indicated
in Section 9.4.3, in order to improve performance.

‘Read-only’ optimization A further optimization of the two-phase
commit protocol appears when a participant is found to have carried out read
operations but no write operations. In this case, the participant must not
influence the outcome of the transaction, and must remain disinterested in
the 2pc protocol. Note that the participants whose read-only role was known
beforehand could be excluded from the protocol even earlier. The
optimization of the protocol of a participant found to be ‘read-only’ consists
of responding read-only to the prepare message arriving from the
coordinator. The participant at this point does not carry out any write
operation on the log and suspends the execution of the protocol after
sending the message. Having received the read-only reply, the coordinator
ignores the participant in the second phase of the protocol.

10.4.5 Other commit protocols
The main problem of the two-phase commit protocol is the possibility that
an rm remains blocked because of the failure of the tm. To avoid this
problem, other protocols have been developed, with three or four phases.
They make it possible to avoid the blocking by introducing a greater
complexity of execution. We will briefly touch upon three and four phase
protocols.

The four-phase commit protocol The four-phase commit protocol was
created by Tandem, a provider of hardware-software solutions for data
management based on the use of replicated resources to obtain reliability. In
this area, the tm process is also replicated by a backup process, located on a
different node. At each phase of the protocol, the tm first informs the backup
of its decisions and then communicates with the rms, as shown in
Figure 10.11. In this way, the backup knows the exact state of the transaction
and can replace the tm in case of failure of the tm. When a backup becomes
tm, it first activates another backup, to which it communicates the
information about its state, and then continues the execution of the
transaction.

The three-phase commit protocol The three-phase commit protocol has
been defined but not successfully implemented. The basic idea is to
introduce a third phase in the standard protocol, as shown in Figure 10.12.
Note that a participant is in pre-commit state only if all the other participants
are ready, and so are in a recoverable state. The addition of a phase in the
protocol allows the reaction to a failure of the tm by electing one of the
participants as the substitute for the tm. This new coordinator can decide
the result of the transaction by looking at its log.

376 Chapter 10
Distributed architectures

• If the new coordinator finds a ready in its log, it knows that none of the
other participants in the protocol can have gone beyond the pre-commit
condition, and thus can make the decision to abort. Thus the new
coordinator registers a global abort decision and communicates it to the
other participants.

• If the new coordinator finds a pre-commit in its log, it knows that the
other participants are at least in the ready state, and thus can make the
decision to commit. Thus, the participant registers a global commit
decision and communicates it to the other participants.

The three-phase commit protocol has, however, serious inconveniences,
which in practice make it unusable. In the first place, it lengthens the
window of uncertainty, and thus makes blocking more probable. In the
second place, the atomicity can be lost whenever a network partitioning
occurs and two or more participants are chosen as coordinators to end the
protocol (one in each partition). To resolve the problem, we must also be sure
that the commit or abort decision is made by a sufficient number of
participants to guarantee that a different decision could not be made in
another partition. This is done using mechanisms based on the use of votes
and quorums, which go beyond the scope of this textbook.

Figure 10.11 Four-phase commit protocol.

Figure 10.12 Three-phase commit protocol.

P

Prepare Global Commit Complete

coordinator (TM)

backup

GC

CommitReady

participant (RM)

Prepare Pre-Commit Global Commit Complete

Local CommitReady Pre-Commit

Section 10.5 377
Interoperability

10.5 Interoperability
Interoperability is the main problem in the development of heterogeneous
applications for distributed databases. The term denotes the capacity for
interaction, and requires the availability of functions of adaptability and
conversion, which make it possible to exchange information between
systems, networks and applications, even when heterogeneous. Interopera-
bility is made possible by means of standard protocols such as those for the
exchange of files (ftp), electronic mail (smtp/mime), and so on. With
reference to databases, interoperability is guaranteed by the adoption of
suitable standards.

In this section we will look at odbc, a standard to guarantee remote access
(but not the two-phase commit protocol), and x-open dtp, a standard
specifically focused on the commit protocol. In this way, we will set down the
technological premises for the creation of a cooperative architecture between
heterogeneous databases, which will be discussed in the next section. In
Chapter 11, we will also look at the corba standard, which is concerned
with interoperability in the context of generic object-oriented applications.

10.5.1 Open Database Connectivity (ODBC)
The standard Open Database Connectivity (odbc) is an application interface
proposed by Microsoft in 1991 for the construction of heterogeneous
applications. It is supported by most relational products. Using the odbc
interface, an applications written in sql can have access to remote data. The
language supported by odbc is a particularly ‘restricted’ sql, characterized
by a minimal set of instructions, defined in 1991 within the sql Access Group
(sag), a group of about 50 large users of dbmss.

In the odbc architecture, the link between an application and a server
requires the use of a driver, a library that is dynamically connected to the
applications. The driver masks the differences of interaction due not only to
the dbms, but also to the operating system and to the network protocol used.
The driver thus masks all the problems of heterogeneity (not only those
imposed by the dbms), and facilitates the writing of applications. In order to
guarantee the compatibility with the odbc standard, each dbms supplier
must guarantee drivers that allow for the use of that dbms within the
environment of a specific network and with a specific operating system. For
example, the trio (Sybase, Windows/NT, Novell) identifies a specific driver.

Access to a remote database using odbc requires the cooperation of four
system components (see Figure 10.13).

• The application issues the sql queries, in a way that is independent of the
communication protocol, the dbms server, and the operating system of
the node where the dbms is installed; all these features are masked by
drivers.

• The driver manager is responsible for loading the drivers at the request of

378 Chapter 10
Distributed architectures

the application. This software is supplied by Microsoft and also
guarantees some functions for converting the names of data items used by
the application into names used by the dbms. These functions guarantee
the correct operation of the driver.

• The drivers are responsible for carrying out odbc functions. Thus, they
can execute sql queries, possibly translating them to adapt to the syntax
and semantics of specific products. Drivers are also responsible for
returning results to applications, using buffering mechanisms.

• The data source is the remote dbms system, which carries out the
functions transmitted by the client.

In odbc it is possible to request transactional commands commit-work and
rollback-work, which ensure the atomicity of the transactions. These
instructions must however be addressed specifically to one dbms server,
because odbc does not directly support the two-phase commit protocol. In
addition, the error codes are standardized to allow the control of error
conditions at the time of execution. sql queries can be specified in a static
way, or can be included in strings that are generated and executed
dynamically as discussed in Section 4.6.3. In this case, the execution is
subject to compilation errors when the sql code contained in the strings is
incorrect.

10.5.2 X-OPEN Distributed Transaction Processing (DTP)
X-OPEN Distributed Transaction Processing (dtp) is a protocol that guarantees
the interoperability of transactional computations on dbmss of different
suppliers. x-open dtp assumes the presence of one client, several rms and
one tm, which interact as described in Figure 10.10 (already discussed). The
protocol consists of two interfaces:

Figure 10.13 Architecture of odbc.

Driver
(DBMS/OS/network)

ODBC
driver manager

Application

Data source

Section 10.5 379
Interoperability

• the interface between client and tm, called TM-interface;

• the interface between tm and each rm, called XA-interface.

In order to guarantee that their servers are accessible to the tms, the
vendors of dbmss must guarantee the availability of the xa-interface. For
this reason, in addition to a proprietary version of the two-phase commit
protocol (used to create homogenous applications) various relational dbmss
support an implementation of the xa-interface (used to create heterogeneous
transactional applications). The x-open standard is adopted by various
products specializing in transaction management, such as Encina (a product
of the Transarc company) and Tuxedo (from Unix Systems, originally at&t),
which provide the tm component.

The main characteristics of the x-open dtp standard are as follows.

• The standard allows for totally passive rms. All the protocol control is
concentrated in the tm, which activates the rm functions, made available
in the form of a library of remotely callable primitives.

• The protocol uses the two-phase commit protocol with the presumed
abort and read-only optimizations described above.

• The protocol supports heuristic decisions, which in the presence of failures
allow the evolution of a transaction under the control of the operator.
These heuristic decisions can cause a loss of atomicity, and in this case,
the protocol guarantees that the client processes are notified.

The tm-interface is made up of the following procedures:

• tm_init and tm_exit, to initiate and terminate the client-tm dialogue.

• tm_open, to open a session with the tm. The session allows the
establishment of a stable support for the client-tm-rm communications,
which can be used by multiple transactions. The session is closed at the
beginning of the request for the primitive tm_term from the client.

• tm_begin, to begin a transaction.

• tm_commit, to request a global commit.

The xa-interface is made up of the following procedures:

• xa_open and xa_close, to open and close a session between tm and a given
rm; the tm issues several xa_open requests with all the rms participating
in transactions, after the establishment of a session with the client;

• xa_start and xa_end, to activate and complete a new rm transaction;

• xa_precom, to request that the rm carry out the first phase of the commit
protocol; the rm process can respond positively to the call only if it is in a
recoverable state;

380 Chapter 10
Distributed architectures

• xa_commit and xa_abort, to communicate the global decision about the
transaction;

• xa_recover, to initiate a recovery procedure, which is made necessary
after the possible failure of a process (tm of rm);

• xa_forget, to allow an rm to forget transactions decided in a heuristic
manner.

A typical interaction among client, tm and rm is shown in Figure 10.14.

When an rm is blocked because of the failure of the tm, an operator can
impose a heuristic decision (generally the abort), thus allowing the release of
the resources. The recovery procedure is guided by the tm, which calls the
rm immediately after its successful restart from the failure. At this point, the
rm process consults its log and indicates three sets of transactions:

• transactions in doubt;

• transactions decided by a heuristic commit;

• transactions decided by a heuristic abort.

Figure 10.14 Interactions among client, tm and server with the x-open
dtp protocol.

TM-Interface

tm_init()

tm_open()

tm_begin()

tm_commit()

Client-TM dialogue:

xa_open()

xa_start()

xa_precom()

xa_commit()

xa_abort()

Session opening

Transaction starts

Transaction ends (2PC)

XA-Interface

Session close

Recovery

xa_commit()

xa_abort()

xa_forget()

(TM-driven)

xa_end()

xa_close()tm_exit()

xa_recover()

Section 10.6 381
Co-operation among pre-existing systems

The tm process communicates to the transactions in doubt their actual
result (commit or abort) and uses its log to verify whether the heuristic
decisions are in conflict with those communicated to the client. If this
happens, it notifies the client, informing it of the inconsistency. The
resolution of inconsistencies due to erroneous heuristic decisions is
application-specific. In any case, the transactions decided heuristically are
then forgotten by the rm, following a primitive of xa_forget, sent by the tm.

10.6 Co-operation among pre-existing systems
The rapid development of information technology provides possibilities for
the integration among pre-existing information systems. This can happen for
different reasons, which range from the simple demand for integration of
components developed separately within the same organization, to the co-
operation or fusion of different companies and organizations.

In this context, we must distinguish between interoperability and co-
operation. The latter consists of the capacity of the applications of a system
to make use of application services made available by other systems, possibly
managed by different organizations. Obviously, the application servers also
use interoperability services.

Co-operation is sometimes centred on processes; the systems offer one
another services, by exchanging messages, information or documents, or by
triggering activities, without making remote data explicitly visible. We will
concentrate instead on data-centred co-operation, in which the data is
naturally distributed, heterogeneous and autonomous, and accessible from
remote locations according to some co-operation agreement.

In general, each system should continue to satisfy local user requests, even
when carrying out global functions at the same time.

Autonomy, heterogeneity and distribution often cause major difficulties
for the development of co-operative systems. They are sometimes seen as
obstacles, to be removed by means of appropriate standardization initiatives
and rationalization activities. Among these activities, the integration of
databases is sometimes attempted; but such integration is quite difficult.
Often the demands of each of the system components vary with time and
therefore, over-ambitious integration and standardization objectives are
destined to fail, or to generate very laborious alignment processes. In this
context, the ‘ideal’ model, a highly integrated database, which can be
queried transparently and efficiently, is impossible to develop and manage,
and in any case is usually too expensive.

There can be many forms of co-operation centred on data. They differ in
levels of transparency, complexity of the operations managed and level of
currency of data.

• The transparency level, as discussed in Section 10.2.3, measures how the
distribution and heterogeneity of the data are masked, and thus how the
set of involved databases appear from the outside as a single database.

382 Chapter 10
Distributed architectures

• The complexity of distributed operations is a measure of the degree of co-
ordination necessary to carry out operations on the co-operating
databases.

• The currency level indicates whether the data being accessed is up-to-date
or not. In particular, in a co-operating system there are two possible
situations: (a) direct access to up-to-date remote data; (b) access to derived
data, often managed by a system that is more easily accessible, but whose
content is typically not up-to-date.

Based on the above criteria, we can identify three architectures, which
represent the three options for guaranteeing data-based co-operation.

A first category is that of multi-database systems, shown in Figure 10.15.
In these systems, each of the participating databases continues to be used by
its respective users (programs or end users). The single systems are also
accessed by modules, called mediators, which transform and filter the
accesses, showing only the portion of database that must be exported, and
makes it available to a global manager, which carries out the integration. This
architecture presents an integrated view to the users, ‘as if the database were
a single entity’. It thus provides a high level of transparency. The currency
is also high, because data is accessed directly. At the same time, the
complexity is also high; in general, data cannot be modified by means of
mediators, because the local management of modifications at each source
system is preferable.

A second category of systems uses replicated data to guarantee read only
access to secondary copies of the information provided externally. An
example of a system that falls into this category is shown in Figure 10.16: the
only difference from the one in Figure 10.15 is the presence of the data
warehouse. The data warehouse contains data extracted from various
heterogeneous distributed systems and offers a global view of data. These

Figure 10.15 Architecture of a multi-database system.

client client

clientclient Mediator Mediator Mediator

Local manager Local manager Local manager

Global manager

DB DB DB

Section 10.7 383
Parallelism

systems also guarantee a high level of transparency, but have a reduced
degree of currency. They support complex read-only queries, while updates
are not relevant, since it is not possible to update the data sources through
the data warehouse. We will look further into this concept in Chapter 13.

Finally, a third typical architecture is that of local information systems with
external data access, as shown in Figure 10.17. The substantial difference
from earlier cases lies in the fact that in this architecture, data integration is
carried out explicitly by the application (that is, the client). For this reason,
the architecture has a low degree of transparency and complexity, with a
degree of currency that depends on specific demands. In the example, three
sources are integrated: an external database, a local database and a data
warehouse, which in turn uses three sources of information.

10.7 Parallelism
Parallelism is an important component of database technology. Having
witnessed the failure of special architectures for databases (the so-called
database machines) during the eighties, parallelism was developed during
the nineties along with the spread of standard multiprocessor architectures,
that is, architectures that are not specifically dedicated to databases. From the
architectural point of view, parallelism is possible with multiprocessor
architectures both with and without shared memory. Obviously these have
different technical solutions, but in this section we will concentrate on the
aspects more specifically linked to data management without dwelling on the
technological differences of multiprocessor architectures.

Figure 10.16 Architecture for data warehouse systems.

clientclient Mediator Mediator Mediator

Local manager Local manager Local manager

DB DB DB

Integrator

client client

DW manager

Data Warehouse

384 Chapter 10
Distributed architectures

The reason for the success of parallelism in databases is that the
computations carried out on a database lend themselves to being carried out
in parallel with great efficiency. For example, a complete scan of a large
database can be executed using n scans, each on a portion of the database. If
the database is stored on n different disks managed by n different processors,
the response time will be approximately 1/n of the time required for a serial
search. In general, data management operations are quite repetitive in
nature, and therefore they are suitable for being carried out in parallel,
thereby reducing the time to process a query.

10.7.1 Inter-query and intra-query parallelism
Parallelism is introduced in databases for a specific purpose, that is, to
guarantee better performance. There are two types of parallelism:

• Parallelism is called inter-query when it carries out different queries in
parallel. In this case, the load imposed on the dbms is typically
characterized by many very simple transactions, which arrive frequently
(up to thousands of transactions per second). As was indicated at the
beginning of this chapter, this parallelism is particularly useful when the
dbms manages on-line transactions (an otlp system).

• Parallelism is known as intra-query when it carries out part of the same
query in parallel. In this case, the load on the dbms is characterized by a
few extremely complex queries, and thus it is appropriate to subdivide
each query into various partial sub-queries, to be entrusted to various
processors. This parallelism is particularly useful when the dbms
manages transactions for the analysis of data (an olap system).

In both cases, parallelism allows each processor to be allocated a part of the
load. In inter-query parallelism, characterized by a heavy transaction load

Figure 10.17 Architecture with external data access.

client

clientMediator Mediator Mediator

Local manager Local manager Local manager

DB DB DB

Integrator

client client

DW manager

Data Warehouse

Local manager

DB

Mediator

Local manager

DB

Section 10.7 385
Parallelism

but by a limited number of services offered, parallelism is introduced by
multiplying the number of servers and allocating an optimal number of
requests to each server. In many cases, the queries are collected by a
dispatcher process, whose sole task is to redirect each query to one of the
servers. For example, the dispatcher might equalize the load on the servers,
or it might direct each query to the server that can gain the most efficient
access to the data involved in the query.

Intra-query parallelism is characterized by complex queries, which
involve many operators and are evaluated on large amounts of data. In
general, a well-defined set of processes is applied in order to answer the same
query in parallel; queries are carried out one after another, using the entire
multi-processor system for each query. In order to take advantage of intra-
query parallelism, the optimizer must decompose the query into sub-queries
and add the provisions for co-ordination and synchronization between them.
The sub-queries can be limited to the distributed execution of specific
operations (for example: scan, sort, join) or each can be more complex,
carrying out a chain of operations.

10.7.2 Parallelism and data fragmentation
Parallelism is normally associated with data fragmentation: the fragments are
distributed among many processors and allocated to distinct secondary
memory devices. For example, consider a database for the management of
bank accounts, characterized by the following relations:

ACCOUNT(AccNum, Name, Balance)
TRANSACTION(AccNum, Date, SerialNumber, TransactionType, Amount)

Suppose that the tables are fragmented based on predefined intervals of
account number, and each fragment is assigned to a processor. This
fragmentation can be static, that is, permanent, or dynamic, that is, created
to respond to a specific query. In the second case, which applies to complex
olap queries, it is necessary to include, in the cost of the query, the initial
distribution of the data on the different secondary memory devices of the
parallel system.

A typical otlp query is the request for the balance of a specific account
holder:

procedure Query5(:acc-num, :total);
 select Balance into :total
 from Account
 where AccNum = :acc-num;
end procedure

A typical olap query is the request for the account holders who have
carried out transactions for total amounts above 100,000 during 1998.

procedure Query6();
 select AccNum, sum(Amount)
 from Account join Transaction on

386 Chapter 10
Distributed architectures

 Account.AccNum = Transaction.AccNum
 where Date >= 1.1.1998 and Date < 1.1.1999
 group by AccNum
 having sum(Amount) > 100000
end procedure;

In general, the oltp queries can be directed towards specific fragments
depending on their selection predicates. olap queries, on the other hand, are
carried out on all of the fragments in parallel.

Note that the proposed fragmentation and allocation of data about
accounts and transactions allows the execution of distributed joins among
fragments, that is, the join of pairs of fragments corresponding to the same
account number interval. The join between the matching fragments can be
carried out in parallel; the parallel execution of n joins on fragments of
dimension (1/n) is obviously preferable to the execution of a single join that
involves the entire table. For this reason, the execution of distributed joins is
essential for intra-query parallelism. In general, when the initial
fragmentation does not allow the distributed execution of the joins present
in the query, data is dynamically redistributed to support distributed joins.

10.7.3 Speed-up and scale-up
The effects of parallelism are typically described by two curves, called speed-
up and scale-up.

The speed-up curve characterizes only inter-query parallelism and
measures the increase of services, measured in tps (transactions per second),
against the increase in the number of processors. Figure 10.18 illustrates an
ideal situation in which the services increase almost linearly against the
increase in processors. oltp systems guarantee services very close to the
ideal, and many vendors are capable of showing almost linear speed-up
curves.

Figure 10.18 Speed-up in a parallel system.

tps

200

140

120

80

40

0
8 16 24 32

Number of processors

Section 10.7 387
Parallelism

The scale-up curve characterizes both inter-query parallelism and intra-
query parallelism, and measures the average cost of a single transaction
against the increase of the number of processors. Figure 10.19 illustrates an
ideal situation, in which the average costs remain almost constant with an
increase in processors. In this case, we say that the system ‘scales’ in an ideal
way. In oltp systems the increase in processors permits the management of
a greater number of transactions per second and so responds to an increased
transaction load. In olap systems, the increase in processors allows an
increase in data, which occurs when the data warehouse grows. Both the
oltp systems and the olap systems guarantee services that are very close to
the ideal, and many constructors are able to show almost constant scale-up
curves.

10.7.4 Transaction benchmarks
Speed-up and scale-up curves have introduced the general problem of a
comparative evaluation of dbms performances, whether centralized,
distributed or parallel. Measuring the services offered by a dbms requires
the existence of specific and precise objectives for transactions and for the
loading conditions in which the measures operate. These specifications are
called benchmarks. After a long competition among various bodies for the
proposal of a standard, the standardization activities of tpc (Transaction
Processing Performance Council) became accepted. This is a committee of
about thirty suppliers of dbmss and transaction systems.

Within the tpc consortium, three main benchmarks have been defined,
called tpc-a, tpc-b and tpc-c, adapted respectively for oltp applications,
mixed applications and olap applications. Each benchmark is divided into
various cases according to whether it refers to a mainframe-based

Figure 10.19 Scale-up in a parallel system.

Cost/tps

70

60

50

40

30

8 16 24 32
Number of processors

388 Chapter 10
Distributed architectures

architecture, or to a client-server architecture, or to a parallel architecture.
The following parameters are included in the specifications of a benchmark:

• the transaction code; for example, in the tpc-a, a typical transaction on
bank accounts is characterized by direct updates to a few records per
table, with a few well-defined tables that describe money transfers,
historical data and data regarding the bank’s branches;

• the size of the database and the method used for generating data;

• the distribution of the arrivals of transactions, which characterizes the
transaction load in terms of tps;

• the techniques for measuring and auditing the validity of the
benchmarks.

10.8 Replicated databases
Data replication is an essential service for the creation of many distributed
applications. This service is guaranteed by specific products, called data
replicators, which allow the creation of copies of tables or of subsets of tables
in a generic distributed context.

The main function of a data replicator is to maintain the consistency
among copies. In general, there is one main copy and various secondary copies,
and updates are propagated from the main copy to the secondary copies in
an asynchronous way (that is, without using the two-phase commit
protocol). Propagation can be incremental, when it is based on the use of
variations; these are sent from the main copy to the secondary copy.
Alternatively, the entire secondary copy is periodically completely re-
created from the entire main copy. The data replicator does this
transparently, without altering the applications that operate on the main
copy.

The use of replication makes a system less sensitive to failure. For example,
if a main copy is not available due to failure of the corresponding system, it
is at least possible to gain access to one of its copies. A typical distributed
architecture with replicated data is shown in Figure 10.20. This architecture
was introduced for the management of financial applications in which the
possible non-availability of the system could cause serious economic loss.
The architecture allows for the presence of two sites. Each site manages the
entire database; half of which is the main copy and the other half the
secondary copy. The transactions are sent to the main copy and then
redirected to the secondary copy. Each ‘access point’ to the system is
connected to both sites. In the case of a failure that involves only one site,
the system is capable of commuting almost instantly all the transactions onto
the other site, which is powerful enough to sustain the entire load. When the
problem is resolved, the replication manager restores the data transparently
and then resets the two sites to normal operations.

Section 10.8 389
Replicated databases

As we have seen in the introduction of the concept of stable memory (in
Section 9.4.1), redundancy is one of the methods for guaranteeing the
durability of the information in the case of failure. There are some
particularly critical information systems that use replication of data as a
sophisticated form of backup. For example, the information systems of some
Californian banks, located in a seismic area, have all their data replicated in
an identical system, located in a different region. In this case, the copy-
system is not normally able to hold the application load, but it is kept up to
date by replicating on it the transactions that are committed at the main site.

Replication, fragmentation and distribution of data can be combined. For
example, the information system describing production of the various
components of a Tandem hardware architecture was created, towards the
mid-eighties, by incorporating these three technologies. Tandem had about
ten factories in various parts of the world, each responsible for the
production of a specific part of the architecture of a computer (keyboards,
screens, cpu-cases, and so on). The ‘bill-of-materials’ of the available parts in
the company was modelled using an appropriate set of tables. These tables
were fragmented to reflect the physical distribution of the construction
process of the components, and then allocated to the nodes; each node was
co-located with a factory. Fragments were allocated in a redundant way. The
main copy of each fragment was on the node responsible for the production
process of the hardware components described in that fragment, and then
secondary copies of each fragment were stored at all the other nodes. The
replication manager acted periodically, by collecting a batch of modifications

Figure 10.20 Example of architecture with replicated data.

Client Client Client Client Client

Server Server

F1 copy(F2) F2 copy(F1)

390 Chapter 10
Distributed architectures

on a given fragment and applying them asynchronously to all the other
fragments.

 Using this configuration, shown in Figure 10.21, the modifications were
always directed to the main copy, but all queries could be performed locally,
although on data that was not perfectly aligned.

10.8.1 New functions of replication managers
Some products for data replication also support symmetrical replication, in
which the modifications can be carried out on any copy, with a ‘peer-to-peer’
situation among the copies. In this case, clearly, it is possible to introduce
conflicts, in that two copies of the same information are managed in a
concurrent way without concurrency control. Therefore, all the anomalies
described in Section 9.2.2 can appear in this context. To control this
phenomenon, techniques are developed capable of revealing the anomalies
after their occurrence and signalling them to a manager of the database, to
deal with the inconsistencies in a way that depends on the specific
application.

This problem has become more significant in the context of mobile
distributed systems, in which the connection with the database can be
broken. This happens when salespersons can connect to the database in order
to download the availability of merchandise and upload the orders received.
The salespersons use laptop computers as client machines. In this case, a
salesperson can be disconnected from the database for many hours, accepting

Figure 10.21 Tandem information system.

update process
(batch)

F1

copy(F2)

copy(F3)

DBMS 1

DBMS 2

copy(F1)

F2

copy(F3)

Section 10.10 391
Exercises

transactions on the laptop copy. This copy is ‘reconciled’ with the main copy
when the salesperson reconnects to it, at the end of the sale activity.

10.9 Bibliography
This chapter also refers to the texts by Gray and Reuter [46] and Ceri and
Pelagatti [18], mentioned in the previous chapter. Distributed databases are
described in the more recent textbook by Ozsu and Valduriez [66]. The
applications of distributed databases are described by Gray and Anderton
[44]; the two-phase commit algorithms, and in particular their optimizations,
the standardization in x-open and their use within the field of commercial
systems, are widely described by Samaras et al. [72]; distributed detection of
deadlocks is described by Obermarck [62] and Lamport clocks are defined by
Lamport [54]. The aspects relating to the co-operation of databases can be
studied more widely in the texts by Brodie and Stonebraker [11] and Kim [52]
and in the articles by Bernstein [9] and Sheth and Larson [76].

10.10 Exercises

Exercise 10.1 Consider the database:

PRODUCTION(SerialNumber, PartType, Model, Quantity, Machine)
PICKUP(SerialNumber, Lot, Client, SalesPerson, Amount)

CLIENT(Name, City, Address)
SALESPERSON(Name, City, Address)

Assume four production centres located in Dublin, San José, Zurich, and
Taiwan and three sales points, located in San José, Zurich and Taiwan. Each
production centre is responsible for one type of part; the parts are CPU,
Keyboard, Screen and Cable. Suppose also three sales points, located in San
José, Zurich and Taiwan. Suppose that the sales are distributed by
geographic location; thus, Zurich clients are served only by salespeople in
Zurich (assume that the sales point in Zurich also serves Dublin). Assume that
each geographic area has its own database (that is, databases are available in
Dublin, San José, Zurich, and Taiwan). Design the horizontal fragmentation
of the tables PRODUCTION, PICKUP, CLIENT and SALESPERSON. Express the
following queries on transparency levels of fragmentation, allocation and
language:

1. Determine the available quantity of the product 77y6878.

2. Determine the clients who have bought a lot from the retailer Wong, who
has an office in Taiwan.

3. Determine the machines used for the production of the parts type
Keyboard sold to the client Brown.

392 Chapter 10
Distributed architectures

4. Modify the address of the retailer Brown, who is moving from ‘27
Church St.’ in Dublin to ‘43 Pak Hoi St.’ in Taiwan.

5. Calculate the sum of the amounts of the orders received in San José,
Zurich, and Taiwan (note that the aggregate functions are also
distributable).

Making any necessary assumptions about the use of the dbms in Zurich,
write a remote request, a remote transaction, a distributed transaction and a
distributed request.

Exercise 10.2 Assign the timestamps to the events described in
Figure 10.22 with the Lamport method, and indicate which events are
pseudo-simultaneous (events at different nodes that cannot be ordered).

Exercise 10.3 Given the wait conditions shown in Figure 10.23, look for
deadlocks with the distributed deadlock detection algorithm; assume two
different hypotheses of wait conditions for node 4.

Exercise 10.4 Describe how the warm restart protocol (of Chapter 9) is
modified, by taking into account the fact that some sub-transactions can be
in a ready state.

Figure 10.22 Event description for Exercise 10.2.

Figure 10.23 Wait conditions for Exercise 10.3.

node 1

node 2

node 3

t1 Et5 t6

E E

t3 Et2 t5

E Et2

Et4

DBMS 3DBMS 2DBMS 1

t4t6 Et1

E E

t1t4 t6

E E E

DBMS 4, version 1 DBMS 4, version 2

Section 10.10 393
Exercises

Exercise 10.5 Apply the warm restart protocol after the failure of a node,
assuming a two-phase commit protocol, having the following input (where
R(ti) indicates the presence of a ready record):

• B(T1), B(T2), B(T3), I(T1,O1,A1), D(T2,O2,B2), B(T4), R(T1),
U(T4,O3,B3,A3), C(T1), CK(T2,T3,T4), B(T5), B(T6), U(T5,O5,B5,A5),
R(T5), B(T7), U(T7,O6,B6,A6), B(T8), U(T6,O1,B7,A7), A(T7),
R(T6), failure

Exercise 10.6 Describe the warm restart protocol after the failure of a node,
assuming a three-phase commit protocol, having the following input (where
PC(ti) indicates the presence of a pre-commit record):

• B(T1), B(T2), B(T3), I(T1,O1,A1), D(T2,O2,B2), B(T4), R(T1),
U(T4,O3,B3,A3), PC(T1), C(T1), CK(T2,T3,T4), B(T5), B(T6),
U(T5,O5,B5,A5), R(T5), B(T7), U(T7,O6,B6,A6), U(T6,O3,B7,A7),
B(T8), PC(T5), A(T7), R(T6), failure

Exercise 10.7 Given a distributed system with eight nodes, assign a
quorum necessary to decide commit and a quorum necessary to decide
abort to maximize the probability of reaching a commit decision whenever
there are four partitions with two nodes each.

Exercise 10.8 On the same database schema as in Exercise 10.1, describe an
execution schema for the following queries that maximize the inter-query
parallelism:

1. extract the sum of the production quantities, grouped according to type
and model of parts;

2. extract the average value of parts sold by the salespeople, grouped
according to type and model of parts.

Exercise 10.9 Describe an example of replicated database behaviour that
produces a data inconsistency.

Exercise 10.10 Describe an example of symmetrical replication that
produces a data inconsistency.

394 Chapter 10
Distributed architectures

Part IV

IVDatabase evolution

11
11Object databases

Object databases integrate database technology with the object-oriented
paradigm. Object orientation was originally introduced within the field of
programming languages and has become very popular as a paradigm for the
organization and design of software systems. Object databases were
originally developed in the mid eighties, in response to application demands
for which the relational model was found to be inadequate.

In object databases, each entity of the real world is represented by an
object. Classical examples of objects are:

• electronic components, designed using a Computer Aided Design (cad)
system;

• mechanical components, designed using a Computer Aided Manufacturing
(Cam) system;

• specifications and programs, managed in a Computer Aided Software
Engineering (case) environment;

• multimedia documents, which includes texts, images and sound, managed
by multimedia document managers;

• spatial or geographic data, such as geometric figures or maps, managed by
Geographic Information Systems (gis).

These kinds of objects differ greatly from each other and are managed by
specialized applications and systems. A common requirement of all of these
applications is that of organizing the data as complex and unitary objects.
This demand is not satisfied by the relational model, in which each ‘real
world object’ is distributed among a number of tables. To view the object in
its entirety requires the execution of complex queries that reconstruct the
various components of an object from tables in the database, by using joins.
Object databases represent real world objects by means of data objects with
complex structure and with rich semantic relationships. These are modelled
by means of constructs similar to those used for conceptual design,

398 Chapter 11
Object databases

introduced in Chapter 5. The most relevant features introduced by object
databases are:

• the use of inheritance, overloading, and late binding, as defined in the
context of object-oriented programming languages;

• the integration of data with the operations (or ‘methods’) that are used for
accessing and modifying objects.

These operations ‘encapsulate’ objects by providing predefined proce-
dures for their manipulation. Operations respond to specific application
demands, hiding a lot of complexity within their algorithms. For example,
consider the operations for the three-dimensional representation of
geometric objects.

There are two approaches for the introduction of objects into databases.
Object-Oriented Database Systems (oodbmss) have taken the revolutionary
approach, extending the dbmss based on the characteristics of object-
oriented programming languages. Object-Relational Database Systems
(ordbmss) have on the other hand assumed the evolutionary approach, by
integrating the object concept into the relational model. It should be noted
that the two approaches, which appeared to be in sharp conflict at the
beginning of the nineties, have recently turned out to be convergent.

In this chapter, we will first deal with oodbmss, introducing the typical
components of the object models: type constructors, classes, methods,
generalization hierarchies and mechanisms for the redefinition and
refinement of methods. To describe these components, we will use the o2
system as a reference oodbms. o2 was created in France by o2 Technology,
and is currently a product of Ardent Software. We will then introduce the
standards odl (Object Data Language) and oql (Object Query Language) for
the definition and querying of oodbmss, developed within the Object
Database Management Group (odmg).

We will then describe ordbmss, introducing the data model for sql-3
(which is based on the classical notions of type, relation, hierarchy and
function) and some elements of the sql-3 query language. We will then give
a brief description of multimedia databases, illustrating some of the
characteristics necessary for the management of multimedia objects within
the database, including an overview of Geographic Information Systems
(gis). We will conclude the chapter with a look at the main technological
extensions needed for data management using object-oriented organization.
In particular, we will discuss interoperability in the wider context of the
standards corba and idl, introduced by the Object Management Group
(omg).

11.1 Object-Oriented databases (OODBMSs)
In comparison to the relative simplicity of the relational model, object-
oriented databases significantly extend the expressive power of the data

Section 11.1 399
Object-Oriented databases (OODBMSs)

model. The data model exhibits many of the characteristics of the Entity-
Relationship model, seen in Chapter 5. In displaying the characteristics of
the model, we use the syntax of a specific system (o2); this is required
because the reference standards of odmg do not cover some aspects (for
example the implementation of methods) that are important for the
understanding of the oodbms approach.

11.1.1 Types
In an object database, types allow the definition of the properties of the
objects. In particular, types define both static properties (which describe the
structure of the objects) and dynamic properties (which describe the
behaviour of the objects, by defining the operations, or ‘methods’, applicable
to objects).

We will begin with the static part of types; the dynamic nature of types
will be discussed in Section 11.1.3. The static part of types is constructed
using type constructors and an extensive set of atomic data types, which
include the classic data types present in programming languages: for
example, integers, reals, boolean, and strings. Some systems allow the
definition of enumeration types, the values of which are explicitly listed by
the user. Atomic types include object identifiers (oid) which will be
introduced later in the chapter. Most systems support the null value
(sometimes indicated as nil) in all the atomic types. As in the relational
model, nil is a polymorphic value, that is, belonging to many types.

Each type definition associates a name to a type. For example:
Address:string is a type definition, which associates the name ‘Address’ to
the string atomic type.

Complex data types Type constructors allow the definition of types
called complex data types, which dictate the structure of the instances (called
complex objects) of an object database. A recursive definition of complex data
types (based on type constructors) is as follows. Let us fix a set of atomic data
types.

• The record constructor allows the definition of types whose instances are
tuples of (complex) values of possibly different types. If T1,…,Tn are type
names and A1,…,An are distinct labels, which we will call attributes, T =
record-of(A1 : T1,…,An : Tn) is a record type.

• Set, bag and list constructors allow the definition of types whose
instances are collections of (complex) values of the same type. Sets are
non-ordered collections without duplicates, bags are non-ordered
collections allowing duplicates, and lists are ordered collections, possibly
with duplicates. If T1 is a type, then T = set-of(T1) is a set type, T = bag-
of(T1) is a bag type and T = list-of(T1) is a list type.

Given a complex type T, an object of data type T is an instance of T. Type
constructors are orthogonal, that is, they can be applied arbitrarily, resulting

400 Chapter 11
Object databases

in objects of arbitrary complexity. However, as is customary in many object
systems, we assume that a data type definition always has the record
constructor at the top level. Thus, given an object x of type T = record-of
(A1:T1,…,An:Tn), we can say that the values for the attributes A1,…An are
the properties of x. The use of type constructors guarantees the structural
complexity of objects; in particular, if a real-world object is complex, type
constructors allow one to model its data structure accurately. Some object
databases, however, do not support all constructors, and in any case, it is not
generally convenient to construct excessively complex types, because it then
becomes difficult to access the type components using programming and
query languages.

Let us look at an example of definition of a type for the complex object
AUTOMOBILE, characterized by various properties: RegistrationNumber, Model,
Manufacturer, Colour, Price, MechanicalParts. Some of these properties have a
complex structure of their own.

Automobile: record-of(
 RegistrationNumber: string,
 Model: string,
 Manufacturer: record-of(
 Name: string,
 President: string,
 Factories: set-of(
 record-of(
 Name: string,
 City: string,
 NoOfEmployees: integer))),
 Colour: string,
 Price: integer,
 MechanicalParts: record-of(
 Motor: string,
 ShockAbsorber: string))

Given this type definition, we can show some typical values that are
compatible with the definition. In the following example, records are
contained within square brackets and sets in curved brackets:

V1: ["MI67T891", "Uno", ["Fiat", "Agnelli", {["Mirafiori",
 "Torino", 10000], ["Trattori", "Modena", 1000]}),
 "blue", 7000, ["1100CV", "Monroe"]]

Given a value of type record, we can gain access to its components using
the classic dot notation, which can be applied recursively. For example:

V1.Colour = "blue"
V1.Manufacturer.President = "Agnelli"
V1.MechanicalParts.ShockAbsorber = "Monroe"

Objects and values The above example demonstrates how we can satisfy
the demand for allocating an arbitrarily complex structure to a single object.
Thus, an automobile (or an integrated circuit) is described in a more detailed
and unitary manner than it would be by using, for example, the relational
model. However, this example also illustrates the limitations of a description

Section 11.1 401
Object-Oriented databases (OODBMSs)

based on ‘values’: for each automobile, made, say, by Fiat, the description of
the manufacturer is repeated. Now, the manufacturer, in its turn, is made up
of various data, including the name of the president and the locations of the
factories. Such a description obviously introduces redundancy and goes
against the normalization principles, discussed in Chapter 8.

In order to obviate this problem, we introduce object identifiers (oid). The
structural part of an object is made up of a pair (OID, Value). The value is an
instance of the object’s type; we call it the ‘state’ of an object. oids provide
the unambiguous identification of every object in the database, and allow the
construction of references between objects. In the actual systems, oids are
automatically assigned at object creation and are generally not visible to the
users. An object can include explicit references to other objects: this can be
implemented at schema level by allowing, in a data type definition, the
notation *T, which denotes oids of objects of type T. If a property of an
object has type *T, then we say it is object-valued.

The following definition introduces references to objects:

Automobile: record-of(RegistrationNumber: string,
 Model: string,
 Manufacturer: *Manufacturer,
 Colour: string,
 Price: integer,
 MechanicalParts: record-of(
 Motor: string,
 ShockAbsorber: string)
Manufacturer: record-of(Name: string,
 President: string,
 Factories: set-of(*Factory))
Factory: record-of(Name: string,
 City: string,
 NoOfEmployees: integer)

A set of instances of the new type definitions is as follows:

O1: <OID1, ["MI67T891", "Uno", OID2, "blue", 7000,
 ["1100CV", "Monroe"]]
O2: <OID2, ["Fiat", "Agnelli", {OID3, OID4}]>
O3: <OID3, ["Mirafiori", "Turin", 10000]>
O4: <OID4, ["Trattori", "Modena", 1000]>

The example shows that object-valued properties allow references
between objects (from an automobile to its manufacturer, from the
manufacturer to its factory) and the sharing of objects by other objects (the
same manufacturer is referenced by various automobiles). For example:

• the value O1.manufacturer is the oid of the object O2;

• the value O1.manufacturer.president is the string Agnelli.

Identity and equality The use of the oid also guarantees the possibility
that two distinct objects have the same state and differ only in the oid (for
example, two automobiles with the same properties); this possibility is not
allowed by the relational model.

402 Chapter 11
Object databases

Two objects 01 and 02 are identical when they have the same oid (and
obviously also the same state); in addition to identity, in the object-oriented
model, there are two notions of equality:

• superficial equality (==) requires that two objects have the same state;

• deep equality (===) requires that two objects have identical ‘reachable’
values obtained by recursively substituting, at each object reference, the
objects that can be reached using the oids for the oids themselves.

Note that the state of an object includes the oids of object-valued
properties, and thus superficial equality implies deep equality. Note also that
the construction of reachable values for testing deep equality could build
very large objects. It could include all of the objects in the database and
could even be endless in the presence of cyclic references. In general, many
OODBMS systems offer an operator to verify the superficial equality of two
objects, while deep equality must be programmed, for specific types, using
suitable equality predicates on their reachable values.

For example, consider the following type definitions and the following
objects:

T1: record-of(A: integer, B: *T2)
T2: record-of(C: character, D: *T3)
T3: record-of(E: integer)

O1: <OID1, [120, OID4]> of type T1
O2: <OID2, [120, OID4]> of type T1
O3: <OID3, [120, OID5]> of type T1
O4: <OID4, ["a", OID6]> of type T2
O5: <OID5, ["a", OID7]> of type T2
O6: <OID6, [15]> of type T3
O7: <OID7, [15]> of type T3

In this case:

• the superficial equalities are: O1==O2, 06==07;

• the deep equalities are: O1===O2, O1===O3, O2===O3, O4===O5, O6===O7.

The condition for defining deep equality of objects X and Y of type T1 can
be programmed as follows: X.A=Y.A and X.B.C=Y.B.C and X.B.D.E=Y.B.D.E.

11.1.2 Classes
A class performs the function of an object container, to and from which
objects can be dynamically added and removed. Objects belonging to the
same class are homogeneous, that is, they have the same type. In the ddl,
type definitions are typically given as a part of the class definitions. In
general, the class definition is separated into two parts.

• The interface describes the type of the objects belonging to the class,
which includes the signatures of all its methods; each signature consists
of a list of the name and type of each parameter of the method.

Section 11.1 403
Object-Oriented databases (OODBMSs)

Parameters, used in input to or in output from the method, enable the
invocation of the method from within a program.

• The implementation describes the implementation of methods and,
sometimes, the data structure used for the storage of objects.

The interface describes only the operations applicable to objects, while
implementation hides the coding of operations. However, in object databases
the values of objects are often visible using some user interfaces other than
methods (for example, using the query language). Thus, oodbmss do not
give a rigorous interpretation to encapsulation. (The strict observance of
encapsulation would force each access to an object to occur by means of a
method.) We concentrate on the interface and will look at the description of
implementation in the next section, dedicated to methods.

The distinction between types and classes is one of the most controversial
arguments in the programming language field and in object databases. In our
data model, types are abstractions that allow the description of both the state
and the behaviour, while classes describe both the extensional
representation of objects, and the implementation of methods relating to a
type. The type describes abstract properties, while class describes the
implementation of these abstract properties using data structures and
programs. We have thus presented a data model in which:

• types and classes are distinct concepts;

• each class is associated to a single type;

• the concept of class describes both the implementation and the extension
of a type.

The relationship among values, types and classes is shown in Figure 11.1.
Each object has a value, which belongs to a type. Each object belongs to a
class, which has a type.

More complex object-oriented data models use the concept of class solely
for defining the implementation of methods. They then introduce a third
concept, that of extension, which allows the insertion of objects of the same
type and class into different collections (or ‘extents’) and to give different

Figure 11.1 Relationship between values, objects, types and classes.

Class

describescontains

has

has

Type

ValueObject

404 Chapter 11
Object databases

names to these collections (for example, the type citizen could correspond to
a same class but to different collections, called Londoner and Florentine). In
this case, the three concepts of type, class and extension would be present.
On the other hand, some oodbmss do not distinguish types or classes, in that
they unite the two concepts and give the type the role of defining extensions
and implementations of methods.

For example, let us look at how in O2 the definition of class syntactically
includes the type definition. Note the use of class names in the type
definition, which are implicitly interpreted as references:

add class Automobile
 type tuple(RegistrationNumber: string,
 Model: string,
 Maker: Manufacturer,
 Colour: string,
 Price: integer,
 MechanicalParts: tuple(Motor: string,
 ShockAbsorber: string))

add class Manufacturer
 type tuple(Name: string,
 President: Person,
 Factories: set(Factory))

add class Factory
 type tuple(Name: string,
 City: string,
 NoOfEmployees: integer)

add class Person
 type tuple(Name: string,
 Address: string,
 TaxCode: string)

The class structure can be represented graphically, highlighting the links
between classes corresponding to object-valued properties. Figure 11.2
shows the four classes introduced up to now, inserted into a schema that
includes other classes and a generalization hierarchy, to be discussed later.

11.1.3 Methods
Methods are used to manipulate the objects of an oodbms. Their presence is
the main innovative element in an oodbms when compared to a relational
database. A method has a signature, which describes the parameters of the
method and includes all the information that allows its invocation, and an
implementation, which contains the method code. Often the implementation
of methods is written in an object-oriented programming language, such as
Smalltalk or c++. The signature of the method is one of the components of
the class definition.

In general, each method is associated with a specific object class. In this
case, the method has a specific object class as target. There are, however,
systems that allow multi-target methods, which are applied to an arbitrary

Section 11.1 405
Object-Oriented databases (OODBMSs)

number of objects without favouring one in any specific manner. In this case,
their definition is given separately from the class definition. We will assume,
furthermore, that each method has an arbitrary number of input parameters
and a single output parameter. These assumptions are valid for the o2 system
(but not in standard oql, described in Section 11.2).

The methods present in an oodbms can be classified into four categories:

• constructors are used to construct objects based on their input parameters;

• destructors are used to cancel objects and possible other objects linked to
them;

• transformers change the contents of the state of the objects;

• accessors are used to access portions of the object’s state.

Other methods cannot be classified on the basis of this schema, and
respond to specific application demands. In many systems, a distinction is
made between public and private methods. Public methods can be called
from any application program, while private methods can be called only from
within other methods of the same class. Based on this distinction, objects are
encapsulated to the maximum when it is possible to access them only by
means of public methods.

In the ddl, signatures of methods may be introduced as part of the class
definition; alternatively, each method can be autonomously introduced by a
specific definition, in which the class target is nominated. This second option
allows an incremental definition of the schema, and will be used later. The
init method is a constructor; it builds part of the state of a newly created
object of the class AUTOMOBILE. It receives as input parameters some values

Figure 11.2 Database schema for the description of automobiles.

RegistrationNumber: string,
Model: string,
Maker: Manufacturer,
Colour: string,
Price: integer,
MechanicalParts:[

Motor: string,
ShockAbsorber: string]

Automobile Manufacturer

Name: string,
President: Person,
Factories: {Factory}

Factory

Name: string,
City: string,
NoOfEmployees: integer

VintageCar

ManufactureDate: integer MaxSpeed: integer
Driver: Person

SportsCar

Person

Name: string,
Address: string,
TaxCode: string

VintageSportsCar

PastVictories: {string}

406 Chapter 11
Object databases

that should be assigned as the initial state of an object, and returns the object
itself as output parameter. In the example, the method is applied to an object
of the class AUTOMOBILE, which can be considered as an implicitly defined
input parameter. Let us look at the definition of a signature (add method
instruction) and of implementation (body instruction) in o2.

add method init(RegistrationNumber_par: string,
 Model_par: string,
 Colour_par: string,
 Price_par: integer): Automobile
 in class Automobile is public

body init(RegistrationNumber_par: string,
 Model_par: string,
 Colour_par: string,
 Price_par: integer):
 Automobile in class Automobile
co2{self -> RegistrationNumber = RegistrationNumber_par;
 self -> Model = Model_par;
 self -> Colour = Colour_par;
 self -> Price = Price_par;
 return(self); }$

Note that the implementation of methods is written in co2, an extension
of c, which allows direct and transparent access to the objects stored in the
database. Syntactically, the implementations are enclosed in a block initially
delimited by a keyword co2 and terminated by the symbol $. These symbols
invoke an appropriate pre-processor at execution time. The variable self,
introduced implicitly in the implementation, denotes the object of the class
target to which the method is applied. With a different terminology, the
invocation of a method on a given object is denoted as sending a message to
that object; self denotes the receiving object, that is, the object that should
receive the message. The dot notation, introduced in Section 11.1.1, is used
in co2 as a c access mechanisms.

The invocation of the method init, in a program written in co2, is as
follows:

execute co2 {
 o2 Automobile X;
 X = new(Automobile);
 [X init("MI56T778", "Panda", "blue", 12000)]; }$

The first instruction of the program defines a variable o2 named X and of
type Automobile. The second instruction creates an object of the class
AUTOMOBILE, using the invocation of the new method. The polymorphic
method new is available within all classes for the creation of new objects and
their insertion into the class. Finally, the third instruction applies the method
init to that object, giving an initial value to some of its properties. Note that
in the method call we indicate the target object and the name of the method,
followed by a list of the actual values of the input parameters. At the end of
the execution of the method, the object on which the method itself is invoked
is returned as an output parameter.

Section 11.1 407
Object-Oriented databases (OODBMSs)

The method Increase in the class AUTOMOBILE is a transformer. It increases
the price by a certain amount. The amount is the only parameter of the
method.

add method Increase(Amount: integer)
 in class Automobile is public

body Increase(Amount: integer) in class Automobile
 co2{ self -> Price += Amount;}$

The next example shows the nested invocation of the init and Increase
methods, which are possible as the init method returns the target object as
output parameter:1

execute co2 {
 o2 Automobile X;
 [[X init("MI56T778", "Panda", "blue", 12000)]
 Increase(2500)];}$

To end this section, we summarize the properties of objects. Each object
has an oid, a state and a behaviour. The oid guarantees the unambiguous
identification of the object in the database, and allows the construction of
references between objects. The state of an object is the set of values assumed
by its properties at a particular time. Finally, the behaviour of an object is
defined by the methods that can be applied to the object itself, and
predefines its evolution with time.

Impedance mismatch These examples show an important characteristic
of object-oriented databases: programs can manipulate persistent objects
using instructions of a programming language. It is said that object-oriented
databases resolve the impedance mismatch, introduced in Section 4.6.1,
which characterizes relational query languages. The mismatch consist of the
difference between operating upon scalar variables one at a time, as
programming languages do, and processing sets of tuples, as in sql. In effect,
this mismatch requires the use of mechanisms such as cursors for scanning
the results of a query one by one; but cursors, as illustrated in Section 4.6.2,
are very rigid and not very user-friendly. In contrast, in the programming of
oodbmss, the programming language for writing methods acts upon
persistent objects one by one, in the same way as it acts with the temporary
variables of the program. In most cases, the program manipulates temporary
and persistent objects in exactly the same way. In this case, it is said that
persistence is an orthogonal characteristic, of which the programmer is
unaware.

Historically, in object-oriented databases, much importance was given to
this aspect, favouring the use of programming with imperative style in access
to data. More recently, however, a demand has emerged for adding a query
language to oodbs, for accessing objects based on their contents. As we shall

1. Note that the example is not very meaningful, as it first creates and then
modifies the Price property, causing its immediate increase.

408 Chapter 11
Object databases

see in Section 11.2.2, oql offers a query language for object-oriented
databases, comparable to sql.

Criteria for designing methods One of the main advantages of object-
oriented programming is the possibility of reusing the various system
components. If the methods are carefully designed, most of the application
code is defined only once, is included in the methods, and is used by various
applications.

Some criteria help the designer in the design of methods to guarantee their
maximum reusability. omt is a popular object-oriented software design
methodology, described by Rumbaugh et al. [71] which makes the following
suggestions.

1. Methods must be brief. Informally, their code must not extend beyond
more than two pages of text. Longer methods should be decomposed.

2. Methods should be coherent (that is, developing a single function) and
consistent (that is, using consistent notations; for example, a common
style for introducing variable names).

3. Methods should not internally confuse policies with implementations.
Separating them increases the possibility of sharing the implementations
among different policies.

4. Methods should anticipate requirements for future applications: rather
than limiting themselves to carrying out the minimal requests for
current applications, they should be more wide-ranging and deal with
more general cases.

5. Methods should be independent. They should use information defined
locally or accepted as parameters, avoiding the use of global variables.

6. Inheritance should be exploited as much as possible. The most commonly
used methods should be defined in the super-classes and reused in the
sub-classes. We will develop this concept in the next section.

11.1.4 Generalization hierarchies
The possibility of establishing generalization hierarchies between classes is
probably the most important abstraction in object-oriented languages and
databases. A generalization hierarchy defines the relationships between a
super-class and its sub-classes. Generalization hierarchies between classes are
very similar to the generalization hierarchies between entities, which we
looked at in the Entity-Relationship model (Chapter 6). They guarantee the
semantic complexity of objects. In a generalization hierarchy:

• all the objects of the sub-class belong automatically to the super-classes;

• all the properties and methods of the super-classes are inherited by the
sub-classes;

Section 11.1 409
Object-Oriented databases (OODBMSs)

• it is possible to introduce new properties and new methods into the
description of sub-classes.

It is possible to redefine the implementation of a method without
modifying its interface, to obtain various implementations of the same
method, which can be called uniformly on objects of different types
belonging to the hierarchy. The system uses the more specific
implementation based on the type of the object. We will deal with this aspect
in Section 11.1.6. It is also possible, even if it causes a few complications, to
refine the state and the behaviour (that is, change the definition of some of
the inherited attributes and methods in the subclasses, making them more
specific). We will deal with this aspect in Section 11.1.7.

Generalizations have transitive properties. Thus if C1 is a sub-class of C2
and C2 is a sub-class of C3, then C1 is also a sub-class of C3. The relation of
sub-class must be acyclic.

Due to inheritance, the definition of sub-classes can be limited to
introducing new attributes and methods, while the attributes and methods
defined for the super-class are automatically inherited by the sub-classes. For
example, we define the sub-class SPORTSCAR and VINTAGECAR of the class
AUTOMOBILE in o2:

add class SportsCar
 inherits Automobile
 type tuple(MaxSpeed: integer,
 Driver: Person)

add class VintageCar
 inherits Automobile
 type tuple(ManufactureDate: integer)

By virtue of inheritance, the class VINTAGECAR inherits the properties and
the methods defined for AUTOMOBILE (for example, the attributes Model and
Colour and the methods init and Increase). We can thus invoke the init
method on an object of the class VINTAGECAR:

execute co2 {
 o2 VintageCar X;
 X = new(VintageCar);
 [X init("MI56543", "Ferrari", "red", 300000)];
 X -> ManufactureDate = 1957; }$

When a method m can be called in a class C1, the implementation of m
could be undefined in the class C1. In this case, there must be an
implementation of m in some super-class C2 of C1; this implementation of m
is executed. When there are two super-classes C2 and C3 of the class C1 that
possess an implementation of m, the implementation of the lowest class in the
hierarchy is chosen; this is also the most specific implementation relative to
the class C1.

Migrations between classes In the presence of generalization
hierarchies, some oodbmss allow objects to migrate from one level of the

410 Chapter 11
Object databases

hierarchy to another. In other oodbmss, objects remain for their entire
existence in the class where they were created. The operation by which an
object migrates from a super-class to a sub-class is called specialization. Due
to a migration, the state of the object is generally modified, adding new
properties. The inverse of specialization is called generalization, and allows
an object to migrate from a sub-class to a super-class. The state in general
loses some of its properties.

For example, an object of the AUTOMOBILE class can be specialized,
becoming an instance of the class VINTAGECAR, at a certain point of its
existence. On the other hand, an object of the SPORTSCAR class to which the
generalization operation is applied, ceases to be an instance of that class,
remaining, however, in the AUTOMOBILE class.

There is a distinction between being an instance or a member of a class. An
object is an instance of a class only if it is the most specialized class for the
object in the environment of a generalization hierarchy. The instances of a
class are automatically members of its super-classes. In some oodbmss, each
object can be instances of many classes, that is, can belong to two or more
distinct more specialized classes, which cannot be compared between
themselves from the hierarchy point of view. In other oodbmss, each object
must be the instance of only one class. In our example, an object of the
AUTOMOBILE class can be instances of the two classes if it is specialized into
both classes SPORTSCAR and VINTAGECAR.

Multiple inheritance In some systems, it is possible for a class to inherit
from more than one super-class. This situation is called multiple inheritance.
For example, we can define the class VINTAGESPORTSCAR with the following
definition:

add class VintageSportsCar
 inherits SportsCar, VintageCar
 type tuple(PastVictories: set(string))

Note that this hierarchy of classes defines a situation illustrated in
Figure 11.3, in which:

• the instances of the class VINTAGESPORTSCAR are automatically members of
the classes AUTOMOBILE, SPORTSCAR and VINTAGECAR;

• some instances of the classes SPORTSCAR and VINTAGECAR are not in the
class VINTAGESPORTSCAR; they are automatically members of the class
AUTOMOBILE;

• finally, there are instances of the AUTOMOBILE class that are not in either
SPORTSCAR or VINTAGECAR.

Note finally that whenever the system allows objects to be instances of two
classes, SPORTSCAR and VINTAGECAR, at the same time (as the most specialized
classes), they can exist in the database without being in the
VINTAGESPORTSCAR class. The belonging of an object to a class is not

Section 11.1 411
Object-Oriented databases (OODBMSs)

automatic, and requires an explicit insertion operation of that object into the
class.

Conflicts Instances of classes with multiple inheritance or objects that are
instances of more that one class can be the source of name conflicts whenever
two or more super-classes have attributes or methods with the same name. In
this case, we must define the policies for conflict resolution, to make the
mechanisms of inheritance unambiguous. We list some of the possible
solutions.

• Reveal the conflict at the time of definition of the classes and do not
accept the definitions as correct. This solution has the disadvantage of
imposing a rethink of already consolidated parts of the schema. The
problem is eliminated only by changing the names of the attributes and/
or methods that cause the conflict.

• Define the mechanisms to make the choice unambiguous. For example, by
using an ordering between classes defined beforehand, or by applying a
method to an object in the context of a given target, which is explicitly
defined in the method call, thus solving the conflict.

• Redefine the properties and methods locally, as described in the next
section. The local redefinition eliminates the conflict.

11.1.5 Persistence
The objects defined in a program can be persistent or temporary. Temporary
objects cease to exist at the end of the execution of a program, while
persistent objects are inserted into the persistent storage space of the oodb.
In general, an object becomes persistent by means of the following
mechanisms.

Figure 11.3 Representation of objects belonging to the classes
AUTOMOBILE, SPORTSCAR, VINTAGECAR and VINTAGESPORTSCAR.

Automobile

SportsCar VintageCarVintage
SportsCar

412 Chapter 11
Object databases

• By insertion into a persistent class. In this case, the primitive new generates
a persistent object, as described in some examples of this section.

• By reachability based on another persistent object. For example, if we
have two objects of the types Automobile and Manufacturer in which the
first refers to the second and then the first is inserted into a persistent
class, then the second also becomes persistent. In this way, the state of an
object that can be reconstructed recursively by means of references is
persistent.

• By denomination, that is, by giving a name to an object (called a handle),
which can be used to find it in a later invocation of the program. For
example, in o2, we can declare a variable and then to give it a name,
making the corresponding object persistent:

X SportsCar;
add name Ferrari_Testa_Rossa: X

Not all of these mechanisms for making objects persistent are supported in
all oodbmss. In some systems, persistence is defined at class level, that is, by
distinguishing between persistent classes and temporary classes. The
persistent or temporary nature of objects is defined when the object is
inserted into the class. Persistence by means of reachability guarantees
referential integrity of the oodb, that is, the automatic maintenance of
referential integrity constraints between classes that are similar to the
referential integrity constraints between tables, discussed in Section 2.2.4.
This type of persistence however, brings some difficulties into the deletion
of the object from the oodb. In practice, an object can be deleted from the
system only when it can no longer be reached by denomination or referenced
by other persistent objects. Deletion is performed by a specific subsystem
called the ‘garbage collector’.

11.1.6 Redefinition of methods
Once a hierarchy has been introduced, we can redefine methods of the sub-
classes. This technique is called overriding of methods and is extremely
useful for guaranteeing the specialization of methods for subclasses, while at
the same time presenting a uniform methods interface. The classic example
that is used to show the advantages of redefinition is the display method,
which is used to show an object on the screen. Let us suppose the existence
of a generic OBJECT class, from which all the other classes inherit. In this class,
we define the interface of the display method, having the target object as its
only input parameter, and a fictitious implementation. The method is then
redefined within all the other classes that inherit from OBJECT. We have, for
example, the classes OWNER, HOUSE, PLAN, SALESCONDITIONS, relating to the
activities of selling a house. Within each class, the display method is
implemented differently. For example, display applied to the house retrieves
and then shows a photograph of the house; for the plan, it shows a floor plan

Section 11.1 413
Object-Oriented databases (OODBMSs)

of the house; for owner and sale conditions, it shows a schema with the
appropriate information. We can thus write code that, given a set S of
heterogeneous objects, calls the function display for it in a compact way, for
example:

for X in S do display(X)

Obviously, the choice of which implementation to invoke depends on the
type of the object to which the method is applied. In particular, if the type
of object is not known at compilation time (for example, because the objects
can be specified during the transaction, or it can migrate between the
classes), this choice must happen at execution time. This characteristic is
called late binding. The system must be able to link dynamically, at execution
time, a specific implementation of the method with the rest of the application
program.

As an effect of redefinition, we can have various versions of the same
method with identical interfaces (and in particular, identical method names).
This phenomenon is called overloading of names of methods.

Let us look at an example of the overriding and overloading of methods.
Consider data management for the design of software systems. In this case,
we will introduce a generalization hierarchy with the generic class FILE and
the sub-classes SOURCE and DOCUMENTATION. These classes are characterized
by attributes introduced locally. The initialization method is able to initialize
the objects based on their types.

add class File
type tuple(Name: string,
 Creator: User,
 Date: date)
method init(Name_par: string) is public

add class Source inherits File
type tuple(Manager: User)

add class Documentation inherits File
type tuple (ValidationDate: Date)

body init(Name_par: string) in class File is public
co2 { self -> Name = Name_par;
 self -> Creator = @ThisUser;
 self -> Date =@Today; }$

body init(Name_par: string) in class Source is public
co2 {[self init@File(Name_par)];
 self -> Manager = @ThisUser; }$

body init(Name_par: string) in class Documentation is public
co2 {[self init@File(Name_par)];
 self -> ValidationDate = @EndOfPeriod; }$

Note that the init method, defined in the FILE class, is reused in the two
sub-classes. The operator @ is used to call the init method as implemented in

414 Chapter 11
Object databases

a different class, thus enabling the reuse of defined methods in generic classes
in the implementation of methods in more specific classes.

Note also that the use of the global variables @ThisUser, @Today and
@EndOfPeriod (also recognized by an initial @) is acceptable in the context of
the implementations of methods. Using the above method definition, we can
initialize an object corresponding to a file independently of where it belongs
in the class hierarchy. In the following code, it is necessary simply to replace
the term CLASS by any of the three class names introduced in the example.

execute co2{
 o2 Class X;
 X = new(Class);
 [X init("myprog")]; }$

11.1.7 Refinement of properties and methods
The redefinition mechanisms seen in the previous paragraph do not modify
the methods interface. However, it is also possible to refine properties and
methods by modifying the interface, by introducing the notion of sub-
typing.

Sub-typing is a relation between types. Intuitively, T1 is a sub-type of T2
if the possible values of type T1 are more specific than the possible values of
T2. For example, if T2 is an enumerated type, T1 can be defined as a subset
of values of T2. Each type is a sub-type of itself, and in the o2 system, in
which the classes are also interpreted as types, if T1 is a sub-class of T2, it is
also a sub-type of T2.

An important case is that of record: given a type record T1 = [A1 : T1,…,
Am : Tm], another record type T2 is a sub-type of T1 if it has the structure T2
= [A1 : T′1,…,Am : T′m,Am+1 : T′m+1,…,An : T′n], with T′i sub-type of Ti for
1 ≤ i ≤ m and with n ≥ m. The sub-types can thus have other attributes that
make them more specific, while the types Ti′ of attributes Ai can be sub-
types of Ti.

Having introduced the notion of sub-type, we can illustrate their use in
the redefinition with refinement both of the properties and of the methods.

• Consider the definition of a class C2, which inherits from C1, and a
generic property A : T of C1, where A is an attribute of type T. The
covariance of the properties consists of giving the property A in C2, which
is redefined, a sub-type T′ of T.

• Consider the definition of a class C2, which inherits from C1 a generic
method m characterized by a certain number of input parameters, of type
Ti, and one output parameter of type T. The covariance of the output
parameter consists of giving the method m′, which is redefined in C2, a
sub-type T′ of T. As regards input parameters:

° the covariance of an input parameter of m with type Ti in C1, consists of
giving to that parameter, which is redefined in C2, a sub-type Ti′ of Ti;

Section 11.1 415
Object-Oriented databases (OODBMSs)

° the contravariance of an input parameter of m with type Ti in C1
consists of giving to that parameter, which is redefined in C2, a type Ti′
such that Ti is a sub-type of Ti′ .

The covariance of properties and of input parameters of methods, adopted
by most object-oriented systems (including o2), is the most intuitive and
useful notion in the specialization of properties and methods. However, the
covariance of input parameters of methods may generate programs which
cannot be statically checked for what concerns the correspondence between
formal and actual parameters in method calls. This is illustrated by the
following example.

Let us examine the mechanisms of redefinition. We adapt the previous
example by adding two classes, USER and PROGRAMMER, whose structure is not
relevant.

add class User ...
ass class Programmer inherits User ...

add class File
type tuple(Name: string,
 Creator: User,
 Date: date)
method init(Name_par: string, User_par: User): File is public

add class Source inherits File
type tuple(Creator: Programmer)
method init(Name_par: string, User_par: Programmer): Source
 is public

body init(Name_par: string, User_par: User): File
 in class File is public
co2 {[self -> Name = Name_par;
 self -> Creator = User_par;
 self -> Date = @Today;
 return(self); }$

body init(Name_par: string, User_par: Programmer): Source
 in class Source is public
co2 {[self init@File(name_par, user_par)];
 return(self)]; }$

Observe that in the redefinition of the SOURCE class, the property Creator
is redefined: the creator is no longer a generic user, but rather a programmer.
This is an example of covariant definition of property, which can be useful
from an application point of view, if we wish to impose the condition that
only the programmers can create source files.

The init method is called with an input parameter, which indicates who
the user is, and must be correctly typed: the initialization of a generic FILE

should receive as input parameter a generic user, but the initialization of a
SOURCE must receive as input parameter a programmer. This is an example of
covariant redefinition of input parameters. It is impossible to check at
compilation time whether the invocation of the method is correct when

416 Chapter 11
Object databases

objects can migrate dynamically from the USER class to the PROGRAMMER class
and vice versa.

Finally, the output parameter of the method is also redefined, in that when
it is invoked in a sub-class it returns a more specific type. This is an example
of covariant redefinition of the output parameter, which poses no problems of
type checking.

11.1.8 The object-oriented database manifesto
To conclude this section on oodbmss, let us remember their main
characteristics, as they are defined in the ‘object-oriented database
manifesto’, an article that first introduced a certain order into the definition
of characteristics of oodbmss. Based on this article, the properties of an
oodbms are classified into mandatory and optional factors. The first ones
include the following 13 properties.

1. Structural complexity, that is, the capacity for defining complex types
using orthogonal type constructors.

2. Object identity, that is, the possibility of unambiguously identifying an
object based on its oid.

3. Encapsulation, that is, the capacity for encapsulating an object within an
interface that defines the public methods applicable to the object, the
only ones capable of modifying the state. In the oodb world, however,
normally the data structure is ‘exposed’. That is, it is made public, to
allow data manipulation by means of query languages.

4. Types and/or classes. The two concepts must both be present; the former
concept represents a verification mechanism for the accuracy of
programs at compilation time; the latter represents a mechanism that
collects the object extensions and defines their implementation.
Conversely, it is not necessary that there be two different ways to express
types and classes, and thus it is possible to express one concept in the
context of the other.

5. Class and/or type hierarchies, that is, the capacity to give semantic
complexity to the oodb by organizing the classes (using generalization
hierarchies) and by giving them more specific types (using type
hierarchies).

6. Overriding, overloading and late binding, which make it possible for each
object the execution of the method most specific to it, determined at
execution time.

7. Computational completeness of the language in which methods are
expressed.

8. Extensibility, that is, the capacity for defining new types based on user
requirements.

Section 11.2 417
The ODMG standard for object-oriented databases

9. Durability, that is, the capacity to support persistent data.

10.Efficiency in the management of secondary memory access.

11. Concurrency, that is, the capacity to manage concurrent accesses.

12.Reliability, that is, the capacity to react to failure.

13.Declarativeness, that is, the presence of a high-level query language.

Some further optional characteristics, which are considered interesting
and useful but not essential in an oodbms, include: multiple inheritance, the
possibility of type checking of a program at compilation time, data
distribution, management of long or embedded transactions, and the
presence of explicit mechanisms for version management.

11.2 The ODMG standard for object-oriented
databases

The Object Database Management Group is a committee in which the main
constructors of oodmbss are represented. The committee was brought
together towards the end of the eighties, when it appeared evident that the
lack of a model and a standard query language in oodbmss was a common
element of weakness in a market that is increasingly demanding portable
solutions. The odmg committee thus proposed a data model with a definition
language (odl), a query language (oql), and mechanisms for the definition
of methods in languages such as c++ and Smalltalk. These standards aim at
achieving interoperability among the multiple systems of different suppliers.

11.2.1 Object Definition Language: ODL
In this section, we will describe the data model odmg-93 and the odl (Object
Definition Language) for the definition of object schemas. In the odmg-93
model there can be many classes for each type, each class containing a
different implementation of the type. odl describes types (and not classes)
and is independent of the programming language chosen for the
implementation of the classes. In odl, the references between types are
called relationships and are bi-directional: for each link between one type
and another, an inverse link is defined. In this way, odl offers a vision of the
object-oriented schemas very close to those of the Entity-Relationship
schemas. An odmg-93 schema is shown in Figure 11.4.

Using the odl syntax, let us look at a part of the example on automobile
management, which was introduced above:

interface Automobile
 {extent Automobiles
 key RegistrationNumber}
 {attribute string RegistrationNumber;
 attribute string Model;
 attribute string Colour;

418 Chapter 11
Object databases

 attribute integer Price
 attribute structure MechanicalParts
 {string Motor,
 string ShockAbsorber};
 relationship <Manufacturer> Maker
 inverse Manufacturer::Builds;}

interface Manufacturer
 {attribute string Name;
 attribute string President;
 relationship set<Automobile> Builds
 inverse Automobile::Maker;
 relationship set<Factory> Factories
 inverse Factory::Manufacturer;}

interface Factory
 {attribute string Name;
 attribute string City;
 attribute integer NoOfEmployees;
 relationship <Manufacturer> Manufacturer
 inverse Manufacturer::Factories}

Note that the first section of the interface, which is optional, describes the
properties of types. This section is present only in the type AUTOMOBILE; the
clause extent introduces the name of the container of objects of type
AUTOMOBILE, and the clause key, as in the relational model, lists the attributes
that identify the objects belonging to the type extensions. Note that the
importance of keys in an oodb is minor in comparison with a relational
database, as the identification is provided by the object identifiers.

We next show the odl syntax for introducing sub-classes with the
example of the definition of SPORTSCAR.

interface SportsCar: Automobile
 {attribute integer MaxSpeed}

In odl, it is possible to define only method interfaces within type
definition. Methods’ implementation is carried out using a programming

Figure 11.4 Object-oriented database schema for the description of cars
according to the odmg-93 model.

Automobile
Maker

Manufacturer

Factories

Manufacturer

Factory

SportsCar

Builds

Section 11.2 419
The ODMG standard for object-oriented databases

language. The standard defines two bindings towards the languages c++ and
Smalltalk, for defining both the class structure and the implementations of
methods. Within the AUTOMOBILE class, the interfaces of methods init and
Increase are defined in odl as follows:

interface Automobile
{...
Automobile init (in string RegistrationNumber_par,
 in string Model_par,
 in string Colour_par,
 in integer Price_par);
void Increase (in integer Amount) raises(ExcessivePrice);
}

The methods in general have multiple input parameters, and can return
zero or more output parameters. In odl, each parameter is characterized by
the keywords in, out, or inout (when a dual role is carried out). In addition,
a method can be characterized by a main output parameter, returned by the
method. The void clause in one of the two examples indicates the absence of
the main parameter. The raises clause indicates the presence of an exception,
which is raised whenever the price evaluated by the method is excessive.

The two examples of definition in o2 and odl show quite different styles
and syntaxes, but also show many common concepts.

11.2.2 Object Query Language: OQL
The oql language, originally developed for o2, was adapted by the odmg,
with various modifications, and is currently considered the standard query
language for oodbmss. oql is an extension of sql, even if the similarities
between the two languages are more apparent than real, and largely depend
on the use of the same keywords. oql, like sql, is a pure query language. It
does not include, for example, control structures. However, from oql it is
possible to invoke methods, which increase its expressive power. Currently,
oql does not include primitives for modifying the state of the objects
contained in the database, as these modifications can be obtained by using
methods. We must remember that, if the system guarantees a ‘strong
encapsulation’, the only modifications of the state of the objects should
happen by means of the use of its public methods.

Below, we will look at some typical queries in oql, which give an idea of
the expressive power of the language, without attempting to deal with all of
its characteristics. The examples of the use of oql given in this section refer
to the database described in Figure 11.2, partly defined in o2 in
Section 11.1.2 and Section 11.1.4.

The first example of the use of this language is the following query, which
retrieves the registration numbers of the red cars:

select distinct x.RegistrationNumber
from x in Automobile
where x.Colour = "red"

420 Chapter 11
Object databases

This query returns an object of the type set(string). The keyword
distinct, as in sql, is used to eliminate duplicates; in this query it could be
omitted if we assume that all the cars have distinct registration values. Note
the use of the variable x, introduced in the from clause and declared on the
AUTOMOBILE class.

The property of inheritance allows the invocation of properties defined
within the generic super-classes. Thus, the query that retrieves the
registration numbers of the red cars that won the 1954 Italian Grand Prix is
simply:

select x.RegistrationNumber
from x in VintageSportsCar
where x.Colour = "red"
and "Italian GP 1954" in x.PastVictories

In the selection predicate, the operator in is used, as the type of the
attribute PastVictories is a set of strings. Note that in this case the result is an
object of type bag(string), although registration numbers typically have no
duplicates.

Complex expressions A characteristic that makes oql more powerful
than sql is the facility of using complex expressions (path expressions) in
any expression where an object property may appear. For example, the next
query retrieves the registration numbers of the vintage cars built at
Maranello and driven by Fangio:

select x.RegistrationNumber
from x in VintageSportsCar
where x.Driver.Name = "Fangio"
and "Maranello" in x.Maker.Factories.Name

Given the schema in Figure 11.2, it is possible to ask whether there exist
people who are both drivers and manufacturers of the same sports cars:

select x.Driver.Name
from x in VintageSportsCar
where x.Driver = x.Manufacturer.President

The result has the type bag(string); in this case there can be several
different drivers with the same name. Note that the above query requires the
identity of the person who is both a driver and president of the firm of
manufacturers. Conversely, the following query also retrieves pairs of
homonymous persons, that is, it requires equality of their names, and thus it
is an incorrect formulation of the previous query:

select x.Driver.Name
from x in VintageSportsCar
where x.Driver.Name = x.Manufacturer.President.Name

Complex oql path expressions can be broken down by introducing
several variables in the from clause, and at the same time adding predicative
expressions that link these variables. This programming style in oql is
similar to the use of joins in sql. For example, the query that extracts the

Section 11.2 421
The ODMG standard for object-oriented databases

Ferrari sports cars that were constructed at Maranello and have a maximum
speed of over 250 Km/h can be expressed using three variables and two
predicates. The variables are, respectively, on SPORTSCAR, MANUFACTURER and
FACTORY. The predicates link the variables two by two – and are thus used in
the same way as a join in sql:

select a.RegistrationNumber
from a in SportsCar, c in Manufacturer, s in Factory
where c = a.Manufacturer and s in c.Factories
 and s.City = "Maranello" and c.Name = "Ferrari"
 and a.MaxSpeed > 250

Construction and use of complex objects In oql it is possible to
introduce structural complexity in all the clauses of a query. The following
query extracts two attributes, whose type in oql is constructed by means of
a record: retrieve distinct models and colours of the sports cars that won the
1986 Le Mans 24 Hours:

select distinct struct(Model: x.Model, Colour: x.Colour)
from x in VintageSportsCar
where "LeMans86" in x.PastVictories

The type of the result is set(record(string, string)).
The following example introduces structural complexity in the select

clause, by adding an oql sub-query into it. The query retrieves the names
of the manufacturers who sell sports cars at a price higher than 200000; for
each of them, it lists the city and number of employees of the factories.

select distinct struct(
 Name: x.Maker.name,
 Fact: (select struct (Cit: y.City,
 Emp: y.NoOfEmployees)
 from y in Factory
 where y in x.maker.Factories))
from x in SportsCar
where x.Price > 200000

Note that in the evaluation of the query, the variable x is associated to those
sports cars that satisfy the selection condition on prices, and y is associated
with those factories that are related to the selected sports cars. The type of
the result is set(record(string,bag(record(string,integer)))).

We can examine the use of an oql sub-query within the from clause, for
the query that extracts the number of models of cars built by manufacturers
that have a global total of employees, in all factories, higher than 4500.

select count(select distinct x.Model
 from x in
 (select y
 from y in Automobile, z in Manufacturer
 where z = y.Maker
 and sum(z.Factories.NoOfEmployees) > 4500))

In this case, the aggregate function count is evaluated in the target list (on
a set without duplicates) and the function sum is evaluated in the where clause

422 Chapter 11
Object databases

of the most internal query (on a set). In general, the aggregate functions
count, min, max, avg, and sum can be applied to sets, bags or lists.

Groupings and orderings Finally, we will show some examples of the use
of grouping and ordering, which are provided in oql. For example, the
following query retrieves the list of registration numbers in the class of cars:

sort x in Automobile by x.RegistrationNumber

The next query has the same expressive power as an sql query with
grouping. It extracts the number of cars grouped according to their
manufacturers. Note the keyword partition, which denotes each partition
obtained using the group by clause.

group a in Automobile
by (constr: a.Maker)
with (AutoNumber: count(select x
 from x in partition))

The result is an object consisting of a set of tuples, which list, for each
value of Maker in AUTOMOBILE, the set of AUTOMOBILE objects with that value
(denoted through their oid) and the cardinality of that set. The type of the
result is therefore set(struct(string,set(OID),integer)).

Finally, grouping can happen according to partition predicates. For
example, the next query classifies the sports cars into low, medium and high
according to the price:

group a in SportsCars
by (Low: a.Price < 50000,
 Medium: a.Price >= 50000 and
 a.Price < 100000,
 High: a.Price >= 100000)

Supposing that n partitions are defined (n equals 3 in the example), the
result has a particular structure. It is a set of records with n + 1 attributes.
The first n attributes are boolean and assume in each record a single value
true (corresponding to the value assumed by the partition) and n − 1 false
values. The attribute n + 1 is a set containing the objects which are part of
each partition. Thus the type of the result is set(struct(boolean, boolean,
boolean, set(OID))>.

It is possible to apply a further aggregate function to this result, for
instance to count the number of elements present in each partition, as
follows:

select struct(Low: x.Low, Medium: x.Medium, High: x.High,
 Total: count(x.partition))
from x in
 (group a in SportsCar
 by (Low: a.Price < 50000,
 Medium: a.Price >= 50000 and
 a.Price < 100000,
 High: a.Price >= 100000))

Section 11.3 423
Object-Relational databases (ORDBMSs)

11.3 Object-Relational databases (ORDBMSs)
Object-Relational databases (ordbmss) are an evolution of relational
databases. These systems introduce compatible extensions of the classic
notion of a table of sql-2, and they allow the expression of most of the
oodbms concepts. In this section, we will show sql-3, the language that is
used to guarantee such compatible extensions. Then we will show the
difference between sql-3 and ‘pure’ object-oriented databases (oodbmss)
illustrated up to now. As we have already observed, the distance between
oodbmss and ordbmss is diminishing, especially in the data model. In the
course of this section, we will first introduce the sql-3 data model and will
then show some characteristics of the sql-3 query language.

11.3.1 SQL-3 data model
The data model used by ordbmss is also called the ‘sql-3 Data Model’, as it
is defined by the Data Definition Language (ddl) of sql-3; it is compatible
with the relational data model, as defined in sql-2. Thus, in the sql-3 model
it is possible to define sql-2 tables, such as for example the classic table for
PERSON, with sql-2 integrity constraints:

create table Person
 Name varchar(30) not null,
 Residence varchar(30),
 TaxCode char(16) primary key)

However, the approach suggested in the ordbmss is first to define a type
for the tuples, to make it reusable. In any type definition, it is possible to use
complex type constructors, which significantly extend the notion of domain
present in sql-2. Availability of type constructors is the first significant
difference from classic relational databases.

Tuple types In the sql-3 data model it is possible to use both tuple types
(row types) and abstract types, which will be defined later. The first are used
essentially for the construction of tuple structures for insertion into the
tables. Thus, the previous definition can be split in the following two
definitions:

create row type PersType(
 Name varchar(30) not null,
 Residence varchar(30),
 TaxCode char(16) primary key)

create table Person of type PersType

In this example, the type PersType can also be used in other tables. It is thus
possible to define:

create table Industrial of type PersType
create table Driver of type PersType

Note that objects and classes in oodbmss correspond to tuples and tables

424 Chapter 11
Object databases

in ordbmss. In the context of ordmbss, the terms object and tuple are
interchangeable.

As in oodbms, it is possible to use type constructors orthogonally to
construct arbitrarily complex types. It is further possible to use references
from one type to another type, and thus create shared objects in the
database. Let us return to the example in Section 11.1 and illustrate the
definition of the corresponding tuple types, other than PersType. Note the use
of the setof constructor (as a constructor of sets) and ref (to denote a
reference to one type from another).

create row type FactoryType(
 Name varchar(25),
 City varchar(7),
 NoOfEmployees integer)

create row type ManufacturerType(
 ConstrId ref(ManufacturerType),
 Name varchar(25),
 President ref(PersType),
 Factories setof(FactoryType))

create row type CarTypeParts(
 Motor char(10),
 ShockAbsorber char(5))

create row type AutoType(
 RegistrationNumber char(10) primary key,
 Model varchar(30),
 Maker ref(ManufacturerType),
 MechanicalParts CarTypeParts)

Note that the types FactoryType and CarTypeParts are used within the types
ManufacturerType and AutoType without introducing the construct ref, and
thus without the introduction of independent objects. In this way, we
construct tables that include sub-tables (at schema level) and objects that
include as components sub-objects (at instance level), by guaranteeing an
arbitrary structural complexity.

Note also that in the definition of the tuple type ManufacturerType, the
attribute ManufacturerId is a reference to ManufacturerType itself, that is, to the
type that is currently being defined. In this case, ManufacturerId carries out
the role of oid; the values for ManufacturerId are system-generated but they
can be used in the queries in the same way as any other attribute and can
carry out the role of key. If this reference mechanism is not explicitly used in
the type definition, then the system generates one oid for each object, but
oids cannot be accessed in the queries. Note moreover, that this use of
identifiers can cause the presence of dangling tuples. Whenever references to
oids are explicitly cancelled or modified by the queries, the system
guarantees the referential integrity only of those references that are not
explicitly modifiable by the users.

At this point, we can create tables for the concepts AUTOMOBILE and

Section 11.3 425
Object-Relational databases (ORDBMSs)

MANUFACTURER, which are included in the schema together with tables,
PRESIDENT and DRIVER, already created.

create table Automobile of type AutoType

create table Manufacturer of type ManufacturerType
values for ManufacturerId are system generated
scope for President is Industrial

Note that the scope clause limits the possible values present in the
attribute President, of the type PersType, to be a reference to the tuples
belonging to the INDUSTRIAL table. If this clause were omitted, the values of
the attribute President could be generic objects of the type PersType, present
in any table that uses this type.

Hierarchies In sql-3, we can define type and table hierarchies. Type
hierarchies are used for extending previously defined types by adding new
properties to them. For example, we can construct a tuple type
VintageCarType by adding the attribute ManufactureYear, as follows:

create row type VintageCarType(
 ManufactureYear integer)
 under AutoType

Table hierarchies are analogous to class hierarchies discussed in
Section 11.1.4. Thus, all sub-tables have as type a sub-type of the table from
which they inherit. In addition, for each object (tuple) present in a sub-table
there must exist an object (tuple) in the tables at all of the hierarchically
higher levels.

The definition of VINTAGECAR as a sub-table of AUTOMOBILE, which requires
an under clause in the context of the creation of the sub-table, can happen in
two ways. It is possible to refer to the sub-type defined previously, as
follows:

create table VintageCar of type VintageCarType under Automobile

Alternatively, we can define independently the type of VINTAGECAR in the
context of type of AUTOMOBILE, assumed implicitly, as follows:

create table VintageCar(
 ManufactureYear integer)
 under Automobile

The only difference consists of the fact that VintageCarType is a reusable
type in the first case and non-reusable, because not named, in the second
case.

Abstract types and functions As well as tuple types, we can define
generic abstract types, which can be used as components in the construction
of tuple types. We can also provide the abstract types with a set of functions,
which can be defined in sql-3 or in an external programming language. The

426 Chapter 11
Object databases

functions carry out the same role as the methods, discussed in Section 11.1.3,
and in particular include standard forms for the constructor, accessors to the
various attributes, and transformers. We can deny access privileges on the
methods, obtaining the effect of encapsulating the data.

Let us look at the definition of the abstract data type CarTypeParts, which
also includes the functions equals and greater than to express, respectively,
equality and comparison between two parts.

create type CarTypeParts(
 Motor char(10),
 Power integer,
 Cylinders integer,

 equals EqualPower,
 greater than GreaterPower)

The functions defined in this way can be expressed in sql-3 or in an
external programming language. In any case, their definition requires the
definition of a signature (which, as in Section 11.1.3, identifies the input and
output parameters) and then their implementation. For the signature, a
functional notation is used, in which there is only one output parameter, and
the input parameters are enclosed within brackets. Each input parameter has
a name and a type. The output parameter has no name and can be omitted; if
the function has an output type, this is indicated after the returns clause.

Below, we will look at the two functions introduced above for the type
CarTypeParts. The two implementations are self-explanatory, in that they are
limited to a boolean expression constructed using the values of the attributes
of the two parameters. We use a dot notation to extract the attribute of a table
referenced by a variable, as in sql-2. Note that, based on the arbitrary
definitions given, two cars can be simultaneously either equal or ordered by
the comparison; this example shows that the meaning of the functions is
really dependent on the code of the method.

create function EqualPower(:p1 CarTypeParts,
 :p2 CarTypeParts)
 returns boolean;
 returns (:p1.Power = :p2.Power)

create function GreaterPower(:p1 CarTypeParts,
 :p2 CarTypeParts)
 returns boolean;
 returns ((:p1.Power > :p2.Power) or
 ((:p1.Power = :p2.Power) and
 (:p1.Cylinders > :p2.Cylinders)))

Finally, let us look at how reference is made in sql-3 to an external
implementation, using a specific programming language.

create function EqualPower(:p1 CarTypeParts,
 :p2 CarTypeParts)
 returns boolean as external name Myfile language C;

Section 11.3 427
Object-Relational databases (ORDBMSs)

11.3.2 SQL-3 query language
The query language sql-3 is compatible with sql-2. Thus, we can define
‘standard’ relational queries on the ‘standard’ tables. For example, the
following query is written in sql-2 and compatible with sql-3:

select Name
from Person
where TaxCode = 'TRE SFN 56D23 S541S'

Below, we will look briefly at two new features of sql-3, called deferencing
and double dot notation, which allow access either to related objects or to
component sub-objects. We will also look at the operations for nesting and
unnesting, which enable the modification of complex object structures.

Deferencing Navigation among the references between types in sql-3
requires the deferencing operator. This operator allows access from a source
object x to an object y referenced in x as an object-valued property A in the
following way: x -> A. The following example shows the use of the deferen-
cing operator to access the value of the attribute Name of the object of the
INDUSTRIAL table from objects of the MANUFACTURER table. In particular, it
accesses those objects that satisfy the predicate Name = 'Fiat'.

select President -> Name
from Manufacturer
where Name = 'Fiat'

In sql-3 the attributes of types oid can be used explicitly in queries, and
in particular can be compared by the equality operator with the references
to tuples of the same type. The above query can thus be expressed as follows:

select Name
from Manufacturer, Industrial
where Manufacturer.Name = 'Fiat'
 and Manufacturer.President = Industrial.ManufacturerId

The query constructs a join between the tables MANUFACTURER and
INDUSTRIAL, in which the attribute President of the first table is compared with
the identifier of the second table.

Double dot notation sql-3 does not use the deferencing operation for
accessing sub-components, but rather it introduces a new double dot
operator. If an object x contains a sub-object y with attribute A, access to A
happens by means of the expression x..A. The following example illustrates
the use of double dot to access the Motor attribute of the sub-object
MechanicalParts of cars. Note also the use of deferencing for access from an
automobile to its manufacturer and from the manufacturer to the name of its
president.

select Maker -> President -> Name
from Automobile
where MechanicalParts..Motor = 'XV154'

Nesting and unnesting We have seen that the sql-3 model allows the

428 Chapter 11
Object databases

construction of arbitrarily complex data from the structural point of view.
The sql-3 query language allows the building of query results that have
different structures with respect to those supported in the schema, by means
of the two operations of nesting and unnesting.

Unnesting (or flattening) is carried out by simply extracting a ‘flat’
relational structure by omitting some of the original type constructors (such
as setof). For example, the next query shows the extraction of the pairs of
names, manufacturer and cities of automobile developers. Flattening is
obtained by assigning a structured attribute to a variable.

select C.Name, S.City
from Manufacturer as C, C.Factory as S

In contrast, nesting is created by using the group by operator, which
constructs (as in sql-2 and oql) partitions of equal value on the grouping
attribute. In sql-3, it is possible to extract the set of values present in a
partition, and this causes the construction of a nested result.

select City, set(Name)
from Manufacturer
group by City

11.3.3 The third generation database manifesto
To conclude this section on ordbmss, we must remember the ‘third
generation database manifesto’, an article that represents the ordbms ‘reply’
to the oodbms manifesto. The article defines the third generation database
as a natural evolution of relational databases, which in their turn had
replaced hierarchical databases and network databases, that is, the ‘first
generation’ of dbmss. The demand for a ‘change of generation’ is due to the
necessity for supporting complex data and functions within the dbms.

The article begins with three basic assumptions: third generation systems
must be able to manage complex objects and rules, be compatible with
second generation systems (that is, pure relational databases) and be open to
interaction with other systems. In particular, the second assumption relating
to the compatibility between second and third generations sets this
manifesto against that of the oodbms manifesto. The article then presents a
series of proposals, many of which agree with those mentioned in the
oodbms manifesto. We can list the most important ones.

1. A third generation dbms must have a rich type system, which must
include orthogonal constructors for arrays, sequences, records and sets.

2. A third generation dbms must allow generalization hierarchies among
types, possibly also with multiple inheritance.

3. Functions (including procedures and methods) are useful characteristics,
especially when accompanied by encapsulation.

4. It makes sense for a system to allocate oids to single objects if a primary

Section 11.4 429
Multimedia databases

key is not available among the attributes defined by the user. Otherwise,
it is better to resort to key attributes for the identification of objects.

5. Active rules (triggers) and passive rules (integrity constraints) will
become an essential component of third generation dbmss.

6. Independently of how much this is desirable, sql is the reference
language for dbmss (it is a ‘communication language for intergalactic
dataspeak’).

Discussing the merits of the third generation manifesto, written in 1990, is
difficult. Nevertheless, we can at least state that the last ‘prophecy’ has been
confirmed in the last decade relating to sql. In spite of the success of oql,
sql remains clearly the most widespread language in commercial databases.

11.4 Multimedia databases
In recent years, there has been an increasing demand for the management,
along with alphanumeric data, of other data, that represents documents,
images, video and audio, and which are generically known as ‘multimedia
data’. By ‘multimedia database’ we mean a system with the capacity to store,
query and show multimedia data. In this chapter, we discuss specific aspects
of multimedia data management, by regarding multimedia data as particular
types of data, whose efficient management requires specific abstractions.
However, multimedia data can also be managed by relational databases.

11.4.1 Types of multimedia data
We will begin with an analysis of the characteristics of the main types of
multimedia data: images, audio, video, documents and annotations.

Images The demand for the storage of images within objects, often
described by associated alphanumeric information, is increasingly
widespread. Databases of images are used in the clinical field, where for
example, each patient’s x-rays are stored along with the patient’s clinical
records; police departments all over the world exchange detailed reports of
wanted criminals, which contain images of their faces; estate agencies and
realtors illustrate the houses on sale using photos; descriptions of tourist
resorts include pictures. The main difficulty in the management of images is
the high number of bits necessary for their storage in binary form. To reduce
this number, standard formats are used. These include gif, jpeg, tiff and
png which allow image representation in compressed form.

Audio Audio data can contain conversations, music and other sounds (for
example ‘audio clips’, which are associated with the use of commands on the
personal computer). An audio signal is typically segmented into small
temporal frames within which the signal is presented more or less uniformly,
that is, characterized by more or less constant amplitude and frequency. A

430 Chapter 11
Object databases

large number of frames are required, however, to segment an audio recording
in a way that guarantees good reproduction: for ten minutes of audio, up to
100,000 frames can be required. Thus, storage of audio recordings also
requires use of compression techniques.

Video Videos are collections of images (or frames) shown one after another
by a reproduction device. A video can illustrate an historic event, a lesson,
animals in action in their natural habitat, and so on. If the storage of images
causes storage problems, videos exacerbate the problem, considering that a
60-minute video can contain more than 100,000 frames. There are several
standards for video management (mpeg-1, mpeg-2, mpeg-4), which use
different levels of compression. For example, mpeg-1 is of insufficient quality
to guarantee television reproduction, mpeg-2 makes this possible by
increasing the video quality (but also requires a greater number of bits) and
mpeg-4 further improves the quality, allowing high-definition television
reproduction.

Documents Documents are made up of text and images, presented using a
precise format. For example, the page of a newspaper, or the home page of
the authors of this book, or a business letter written on headed paper and
signed by the author, are examples of documents. The so-called ‘digital
libraries’ are intended to store millions of books and other documents, and
to make them available on the Internet. For the construction of documents,
mark-up languages such as html, xml or sgml can be used (see Chapter 14).

Annotations Finally, annotations are items of free text, sometimes even
hand-written, which are added to other multimedia data for specific
purposes (usually for the convenience of the writer, or for linking one
document to another). Each annotation has personal characteristics, so in the
management of annotations the user assumes a controlling role. Thus, the
user decides, for example, whether annotations are to be accessible to other
users or kept private.

11.4.2 Queries on multimedia data
While the coding of multimedia data is a general problem, the ability to
query large amounts of multimedia data is a more specific problem of
multimedia databases. In this section, we will look at some classic examples
of querying applied to multimedia data, dealing more with their formulation
than with the description of techniques for computing the result.

For example, a query to an archive of images can aim at the extraction of
images with certain characteristics. We might need to find all the lung x-rays
showing signs of bronchial pneumonia; or the individuals who most
resemble the identikit picture transmitted by the police investigating a bank
robbery; or all the Renaissance paintings of Madonna and Child stored in the
Louvre. If the search for an image based on its characteristics already seems
hard, it is even more difficult to extract audio signals or videos based on

Section 11.4 431
Multimedia databases

particular patterns. For example, suppose we want to find all the music of
Wagner in which the same theme occurs, or the video sequences in which
there appear goals scored by the Brazilian national soccer team. In these
cases, the pattern must be reconstructed by operating on multiple frames or
temporal windows. In all of the above cases, the query must initially exploit
the structural information associated with multimedia data, in order to
extract a few multimedia objects. After this, it will be necessary to evaluate,
for each extracted object, its ‘similarity’ to the criteria requested.

In general, it is possible to select a multimedia object only in probabilistic
terms. It will therefore be possible to present the result of a query starting
from data that has the highest probability of satisfying the request, by
setting a given probability threshold. Adaptive techniques allow the user to
guide the search.

11.4.3 Document search
The most frequently occurring case of query on multimedia data is the
extraction of documents that contain particular textual information. In this
case, it is possible to use well-known and efficient techniques of information
retrieval. To get an idea of the efficiency of such methods, it is sufficient to
consider the quality of the ‘search engines’ on the Web, which find sites
based on a few keywords. (For example, all the Web sites that contain the
word ‘Ferrari’).

Information retrieval queries are typically composed by means of
keywords, related by boolean operators. Text matching techniques are based
on the capacity to extract useful information from a text in order to decide
whether it is relevant to a query. This information is reduced to an optimized
representation of the main keywords present in the text, with an associated
indication of their frequency of occurrence. To construct this information for
a generic text, it is necessary to operate as follows.

• Exclude irrelevant words from the text (articles, conjunctions,
prepositions, etc.), which appear frequently but are not essential. These
are known as ‘stop words.’

• Reduce similar words to a single keyword (also known as ‘stemming’). For
example, the words ‘inhabits’, ‘habitation’, ‘inhabited’, ‘inhabitant’ are all
linked to the unique concept of ‘inhabit’ and can thus be replaced by it.

• Allocate its own frequency to each keyword, defined as the ratio between
the number of occurrences of the word and the total number of words
present in the text.

At this point, the search for texts that satisfy a user query is reduced to the
search for a text in which the keywords proposed by the user appear, in a
combination compatible with the user request, with highest frequency. To
define the efficiency of the search better, two measures are defined: precision
and recall. Let us suppose that for each document, we know a-priori whether

432 Chapter 11
Object databases

it is relevant, that is, whether it should be part of the result of the query or
not. Then:

• precision indicates the number of relevant documents extracted as a
percentage of the total extracted documents;

• recall indicates the number of relevant documents extracted as a
percentage of the total documents in the database.

A good search algorithm must try to take account of both these factors.
Firstly, it must offer a good degree of precision, to present documents that are
highly relevant. Secondly, it needs a good recall, to reduce the risk of
omitting the documents that are most relevant to the user.

Several techniques can be used for describing textual documents.
Documents can be represented by using matrices, in which the rows and
columns of the matrix represent respectively the documents and the
keywords, and each element of the matrix represents the frequency of the
keyword within the document.

Alternatively, we can represent the correspondence between keywords
and documents by using inverted indexes. The indexes are organized as
trees, containing at their intermediate nodes the keywords as illustrated in
Section 9.5.5; leaves of the tree contain the identifiers of the documents
corresponding to each keyword. Using these data structures, it is easy to
extract the identifiers of documents that satisfy boolean conditions on
keywords. For example, the intersection of two keywords is obtained simply
by making an intersection of the sets of document identifiers. This is done by
running through the index twice, with the two keywords selected by the
user.

Other data structures first highlight the keywords of high frequency. For
example, the signature of a document is a compact representation of the n
keywords that appear in a document with highest frequency. Matching
techniques are used for extracting the documents that respond to a given
query by looking only at their signature; the signature can also be used to
decide whether two documents are similar.

11.4.4 Representation of spatial data
Spatial data is used for describing the information present in a space of n
dimensions, for example a geographical map (two-dimensional) or the project
for a building under construction (three-dimensional). Spatial data
management is a very specific application, which has recently acquired great
importance. For this reason, it is often carried out by dedicated systems,
called Geographic Information Systems (gis).

The main problem of spatial data management is the selection of a data
structure that allows the response to queries about the arrangement of data
in the space. For example: extracting all the points of a map that are within
a given distance from a particular point on the map; determining all the

Section 11.4 433
Multimedia databases

regions that are near to a given region; or determining the points of a map
that are found along a line, and could represent the cities found along the
course of a river. Obviously, giss can describe not only the arrangement of
data in the space, but also the characteristics of each point, line or region of
the space. For example, points that describe cities have other information, as
well as their own geographical co-ordinates, such as the population and the
height above sea-level. Regions are characterized, for example, by the
prevalent type of agriculture, or by the average monthly rainfall per unit
surface. Lines can represent rivers, roads or railways. Using giss, it will be
possible to express queries in which spatial aspects are involved. The
efficient management of spatial data requires the information to be organized
using special data structures, which allow efficient execution of the queries.
In particular, various types of tree structures allow the management of
collections of points (for example, the cities in a geographical map) and they
respond efficiently to queries of the following type: ‘Extract all the cities that
are less than a certain distance from a determined point.’ Each point is
represented by a tree node. Each node includes its co-ordinates X and Y, an
item of information specific to the node and the pointers to the nodes of the
successors.

In 2-d tree organization (see Figure 11.5), each node has at most two

successors. In this organization, the root node represents an entire
geographic zone, and each node sub-divides the geographic zone
represented by it into two zones using a line, which goes through the point
whose co-ordinates are stored with the node. The line is horizontal or

Figure 11.5 A 2-d tree.

B

C
D

E

F

A

Second division

Fi
rs

t
di

vi
si

on

T
hi

rd
 d

iv
is

io
n

Fourth division

434 Chapter 11
Object databases

vertical according to whether the node is at an even or uneven distance in
relation to the root. In Figure 11.5, A is the root node, B and C its
descendents, E the descendent of C, F the descendent of E and D the
descendent of B. Looking at the bottom right corner of the figure, A divides
the figure vertically, C horizontally, E vertically and F horizontally.

In quadtree organization (see Figure 11.6), each node sub-divides the

geographical zone that it represents into four zones, using two lines,
horizontal and vertical, which pass through the point itself. Thus, each node
has four successors, which represent the four quadrants. In Figure 11.6, A is
the root node, B, C, D and E are its descendents, and F is a descendent of E.
Each point subdivides the figure into four zones.

Various commercial systems are specifically dedicated to the management
of spatial data. The best known is arc/info, which has a subsystem for the
management of spatial data and can be integrated with the main relational
databases. The Open gis (ogis) Committee is currently standardizing the
format for the exchange of spatial data, to allow interoperability between the
various gis products.

11.5 Technological extensions for object-oriented
databases
Object-oriented databases use database management systems technology,
described in Chapter 9 and Chapter 10, but introduce some rather important
technological extensions.

Figure 11.6 A quadtree.

B

C
D

E

F

A First quad division

Fi
rs

t
qu

ad
 d

iv
is

io
n

Second quad division

Third quad division

Se
co

nd
 q

ua
d

di
vi

si
on

T
hi

rd
 q

ua
d

di
vi

si
on

Section 11.5 435
Technological extensions for object-oriented databases

11.5.1 Representation of data and identifiers
The first problem is presented by the representation of complex objects in
secondary memory, that is, in the object servers. To store a hierarchy of classes
using files there are two approaches.

• The horizontal approach consists of storing each object adjacently. In
particular, all the instances of a same class are stored within the same file.
Thus, we would have, for the example in Figure 11.2, a file for each of the
classes AUTOMOBILE, SPORTSCAR, VINTAGECAR, and VINTAGESPORTSCAR. Using
this approach, access to a single object is particularly efficient.
Conversely, the selection of objects based on their general properties is
very laborious (for example, access to a generic automobile based on the
attribute Colour requires access to four files).

• The vertical approach consists of storing the same properties adjacently,
breaking an object down into its components. This approach is also called
‘normalized’ in that it could be directly applied to the relational model. In
this case, we again have a file for each of the four classes mentioned.
However, the file automobile contains information about all the objects
that are instances or members of the AUTOMOBILE class. The objects are
reconstructed based on references between their components, so that to
collect all the information about objects of the class VINTAGESPORTSCAR

requires access to four files.

These solutions are similar to the various options of translation from the
Entity-Relationship model to the relational model that we discussed for
logical database design (see Chapter 7). The horizontal solution is more
consistent with the object paradigm because it manages each object in a
unitary manner. However, it presents problems when an object can be an
instance of more than one class. It is possible to choose an intermediate
solution as well, when this is suggested by the demands of a particular
application.

The vertical solution can also be used for managing structural complexity
(due to the use of type constructors). In this case, however, references
between sub-objects must be created at the time of partitioning an object and
cannot reuse the object identifiers allocated to the entire objects. In addition,
system-generated identifiers or counters must be used for managing the
extensions of sets, bags, and lists.

Documents and multimedia data are typically represented as binary
objects (binary long objects or blobs) and stored in specific files (one for each
binary object).

A characteristic problem of oodbmss is the representation of oids, for
which two solutions are given.

• Use of a physical address, that is, including the physical allocation (block)
of the object in the secondary memory. The obvious advantage is the
speed of access. The disadvantage is the difficulty in moving an object to a

436 Chapter 11
Object databases

different physical location, which can be managed using an indirect
address, leaving a pointer to the new location in the page on which the
object was initially stored.

• Use of a surrogate, that is, a value that is allocated unambiguously to an
object using an algorithm (for example by allocating progressive numbers
to objects, generated by a counter). An index or a hashing mechanism is
then used to produce the physical address of each object out of the
surrogate, thereby guaranteeing that objects can be accessed efficiently.
In general, surrogates are unique in the context of specific extents, such
as all the objects of a given class or at a given node of a distributed
database. It is then necessary to generate surrogates by using distinct
counters for each extent, and then add to the oid the indication of the
extent to which the object belongs. oids can be large: in many
distributed system implementations based on the standard corba, which
we will see later, they can be as large as 64 bytes.

11.5.2 Complex indexes
In object systems, it is important to allow efficient access to path expressions,
for efficient execution of queries and programs. To this end, complex indexes
are developed for object-oriented databases.

Suppose that, for the database in Figure 11.2, a CITY class can be reached
from the FACTORY class, using the Name attribute. Consider a complex path
expression:

X.Maker.Factories.City.Name

To carry out a query or a program that uses this path, we must find
automobiles which are linked to cities with given values, such as ‘London’,
‘Boston’, etc., by going along the paths connecting CITY to AUTOMOBILE in the
schema. In this way, we find the objects of the class AUTOMOBILE that satisfy
the predicate:

X.Maker.Factories.City.Name = ‘London’

Complex indexes that can be defined in an oodbms are of different types.

• A multi-index organization guarantees the presence of an index for each
property used along the path expression. Thus, proceeding backwards:

° an index from the strings corresponding to names of cities to the
objects in CITY;

° an index from the objects in CITY to the objects in FACTORY;

° an index from the objects in FACTORY to the objects in MANUFACTURER;

° an index from the objects in MANUFACTURER to the objects in
AUTOMOBILE.

The use of the four indexes recalls the nested-loop method for the
execution of joins (Section 9.6.2).

Section 11.5 437
Technological extensions for object-oriented databases

• A nested index directly connects the values that appear at one end of the
chain to the objects that are at the other end of the chain. Thus, from the
constant value ‘London’ one immediately makes access to all the objects
of the class AUTOMOBILE that satisfy the predicate.

• Finally, an index path expression allows us to navigate from the values that
appear at the end of the path to the objects of all the classes that appear
along the path. Thus, from a city name it is possible to navigate back-
wards to CITY objects, FACTORY objects, MANUFACTURER objects or
AUTOMOBILE objects.

Indexes introduced in this way are created with b+ trees of a particular
structure. In managing these trees, we must take into account the creation
and cancellation of intermediate objects, which can change the structure of
the indexes.

11.5.3 Client-server architecture
In object-oriented databases too, objects are stored on servers dedicated to
data management. As object-oriented database applications were developed
in the nineties, object-oriented systems adopted the client-server
architecture from their early development. However, especially in oodbms,
the paradigm for interaction between the client and the server is different,
because clients execute application programs written in an imperative
language. Thus, in oodbmss, query languages such as sql are replaced by
imperative programming. We recall from Section 10.1 that the client-server
separation of work induced by the use of sql is one of the main reasons for
the success of client-server architectures within the context of relational
systems.

This paradigm change brings a different sub-division of tasks in client-
server architecture, peculiar to object-oriented databases, in which the client
system imports entire objects. In this way, the application programs can be
carried out directly in the client system buffers. Imagine for example an
engineering application, in which the user designs a mechanical component
or a chip. Once the entire object is loaded on the workstation, the user no
longer interacts with the object server for the duration of the design session.
If, on the other hand, the objects remained in the server buffer during the
design session, there would be laborious interactions between client and
server, possibly causing overloading of the input/output channels and of the
network.

In order to facilitate the input/output of objects, many systems use the
same representation in the main memory as the objects existing in the
secondary memory, and thus transfer from the servers to the client entire
pages of memory. A typical optimization that takes place at the time of
loading of objects from the secondary memory to the main memory buffers
is the conversion of oids. The oids are changed from (complex) pointers to

438 Chapter 11
Object databases

secondary memory into (simple) pointers to main memory. This operation
takes the name pointer swizzling, and is justified by the greater efficiency and
compactness of the main memory addresses compared to those of the
secondary memory. In general, the pointer is rewritten exactly above the OID,
leaving the page structure unaltered. To optimize the conversion process, the
conversion from oid to main memory pointer can be at the first time when
an application really uses the pointer. At the time of reloading of the objects
in the secondary memory, it is necessary to carry out the reverse conversion.
Suitable data structures on the client maintain the correspondence between
pointers in the main memory and the original oid value.

11.5.4 Transactions
On a transactional level, object-oriented databases offer, in addition to the

classic acid transaction properties, also less restrictive mechanisms, which
facilitate the co-operation among users. Let us look briefly at the
requirements of some of these mechanisms.

• In concurrency control, check-out operations are normally defined. These
allow the loading of entire objects to the workstation on which a user is
operating, at the same time allowing other users to access the object on
the database. In this way, the user may work on an object for long work
sessions, at the same time allowing other users to have access to the object
present on the server. Obviously, the dual operation of check-in, in which
the object is returned to the server, requires the co-operation with the
other users, who must be informed of the changes to the object.

• Another method for guaranteeing concurrent co-operative processes is
based on the use of versions, that is, various copies of the same object at
different times. In this case, it is also possible to define relations between
objects that represent the evolution constraints between different
versions. This problem is particularly critical in the context of case tools,
in which it is necessary to allow for and to document the evolution of
software and to guarantee that various versions constitute a unique
logical unit (for example, with respect to the process of compilation and
linking).

• In some applications, long transactions can be expected. An example is the
transaction that occurs between the check-in and check-out of an object,
which can be transferred to a design workstation for days at a time; yet,
from the viewpoint of the other users, the changes constitute a unique,
long transaction.

• Finally, transactions can be composed of nested transactions. This
approach, which can also be developed for relational systems, occurs
when a client process must create a unique task by communicating with
various distinct servers that do not allow the use of global transactions. In
this case, the global atomicity is obtained by means of co-ordination

Section 11.5 439
Technological extensions for object-oriented databases

between several, low-level, acid transactions. The most typical example is
the organization of a trip, which might require access to a hotel booking
system, a car hire company and the booking systems of various airlines.
Each insertion or cancellation operation on one of the dbmss is managed
like an acid transaction. Now, consider the case where it is impossible to
book one of the resources, but this is revealed only after the booking of
many of the others. Then, the cancellation of the booking already
confirmed takes place through compensating transactions, activated by the
co-ordinator of the complex transaction. The global atomicity is
guaranteed when all compensation activities terminate. Co-ordination of
activities is under the responsibility of a complex transaction manager.

11.5.5 Distribution and interoperability: CORBA
The object-oriented programming paradigm is suggested for the
construction of distributed and heterogeneous software systems. The
modularity inherent in the separation between interface and implementation
guarantees a level of transparency that can also hide the data distribution.

corba (Common Object Request Broker Architecture) is an emerging
architecture for the management of distributed objects, proposed by the
Object Management Group (omg) in 1991 (version 1.1), and then updated in
1995 (version 2.0). The main objective of corba is to guarantee
interoperability of distributed objects, which client processes can access by
invoking their methods. The clients do not need to know the location of
objects or the language in which the methods are implemented; it is sufficient
to know their interfaces. Object interfaces are defined by means of an
interface definition language, idl. idl uses the same syntactic conventions as
c++ and does not place any particular emphasis on data management.
Nonetheless, it is compatible with odl, the language proposed by odmg for
the standardization of oodbms interfaces, which we saw in Section 11.2.1.
The descriptive power of idl is strictly included in the descriptive power of
odl.

The corba architecture consists of three elements.

• The client sends requests about objects. The interfaces for using the
objects written in idl are available to the client in the form of libraries. It
is possible to have both static interfaces (precompiled), called stubs,
which define a fixed way in which the clients invoke the services, or
dynamic interfaces, which allow an invocation of services at execution
time. The clients can also access services provided by request managers,
described below.

• The request manager or object request broker (orb) receives the request for
objects by the clients and is responsible for identifying the objects in a
distributed system. The orb prepares the implementation of the objects
to receive requests and to manage communications; after a client request
it transfers control to the object adaptors or directly to the

440 Chapter 11
Object databases

implementation of the objects. In case of error, the orb transmits
exceptions to the clients. The orb also offers services to clients and object
implementation, described below.

• The object adaptor offers services for access to object implementations,
including the activation and de-activation of objects and of their
implementation, and the recording of new implementations.

• Object implementation provides object semantics, using given data
structures and method implementations. These are accessible using a
skeleton written in idl. An implementation can, in turn, require services
made available by the object adaptor or the orb.

Figure 11.7 illustrates the interactions among clients, request managers,
adaptors and object implementations, according to corba architecture. Note
that the modules with rounded corners refer to applications (clients and
object implementations), while all the other modules are part of the corba
architecture. The dynamic invocation libraries and the stubs of static
descriptions are linked to the client codes, while the idl skeletons are linked
to the object implementation codes. The orb service interface is identical for
all the orb implementations, while each type of object has a given stub and
a skeleton. Finally, there can be various object adaptors, each presenting the
same object from a different viewpoint. The main advantage of this
architecture is the ability of clients to connect to remote objects without
knowing the details about their location and implementation. Clients interact
with ORBs provided by different vendors and are not sensitive to object
evolution as long as objects do not change their interfaces; of course,

Figure 11.7 Interaction among the four components of a corba
architecture.

Client
Object

implementation

Dynamic
Invocation

Stubs in
IDL

IDL
skeletons

ORB
services

Object
adaptor

Object Request Broker (ORB)

Section 11.6 441
Bibliography

implementations must continue to provide the correct application semantics.
Another advantage of invocation of methods in corba is that idl supports
generalization hierarchies, and thus makes it possible for object methods to
be inherited.

In version 2.0 of the standard, a series of services has been defined, the
creation of which is still proceeding. We list a few of the most important
services.

• Object services guarantee object functions, including durability, trans-
actions, concurrency control, privacy, time management and notification
of events. These services are presented as components described in idl
and extend the functionality of orb systems.

• Common facilities define rules for the use of objects. They specialize in
four application domains. The domains are:

° user interfaces;

° information management (including mechanisms for the management
and exchange of documents);

° system management (including installation, configuration and repair of
distributed objects);

° task management, to support the co-ordination of tasks (workflow) and
the organization of task-performing agents.

omg is continuously asking for new services to be proposed and then
developed, through a mechanism of public dissemination. From the
transaction point of view, corba adheres to the x-open dtp standard,
described in Section 10.5.2. Clients become transactional by invoking
appropriate methods that are part of a transactional service added to corba
2.0, which includes the start and the termination of the transactions. These
methods guarantee the acid properties of the transactions and manage the
logs and locks as described in Chapter 9 and Chapter 10.

11.6 Bibliography
Various texts are specifically dedicated to object-oriented databases, includ-
ing the books by Bertino and Martino [10], Cattel [13] and Loomis [56]. The
book edited by Bancilhon, Delobel, and Kanellakis [6], contains various arti-
cles on the o2 system. The first article contains the Manifesto of object-orient-
ed databases mentioned in the text. The standard odmg-93 and the odl and
oql languages are described Cattel [13], while the corba architecture is de-
scribed in various omg publications, including Siegel [77]. A global view of
relational and object-oriented databases is offered by Stonebraker [79], while
the Manifesto on third generation databases is published as Stonebraker et al.
[81]. Multimedia databases are described in the book by Subrahmanian [83].
A classic text on spatial data structures is that by Samet [73].

442 Chapter 11
Object databases

11.7 Exercises

Exercise 11.1 Define a class GEOMETRICFIGURE and three subclasses SQUARE,
CIRCLE and RECTANGLE. Define a method Area, the implementation of which
in GEOMETRICFIGURE returns the value zero, while in the sub-classes it is
evaluated as a function of the properties of the given sub-classes. Show the
invocation of the method by a program that scans a list of geometric figures
of an arbitrary nature.

Exercise 11.2 Define a data dictionary of an object-oriented database.
Suggest the introduction of classes and hierarchies concerning various
concepts of an object-oriented schema, classes, atomic types, types
structured using various constructors, generalization hierarchies and
methods with their input/output parameters. Populate the data dictionary
with data that describes part of the schema dealing with the management of
automobiles, described in Figure 11.2. Then think of a query that allows, for
example, the extraction of a list of the classes and methods with covariant
redefinition of the output parameters.

Exercise 11.3 Consider the following schema of an o2 object-oriented
database:

add class City
 type tuple(Name: string,
 Nation: string,
 Monuments: set(Monuments),
 Hotels: list(Hotel));

add class Hotel
 type tuple(Name: string,
 Address: tuple(Street: string,
 City: City,
 Number: integer,
 PostCode: string);
 Stars: integer,
 Features: list(string));

add class Place
 type tuple(Name: string,
 Photograph: Bitmap,
 Address: tuple(Street: string,
 City: City,
 Number: integer,
 PostCode: string);
 ThingsToSee: set(TouristService));

add class Monument inherits Place
 type tuple(ConstructionDate: date,
 ClosingDays: list(string),
 AdmissionPrice: integer,
 Architect: Person);

Section 11.7 443
Exercises

add class TouristService
 type tuple(Name: string,
 Places: set(Place),
 Cost: integer);

add class Theatre inherits Monument
 type tuple(ShowDays: list(date))

add class TheatreShow
 type tuple(Title: string,
 Place: Theatre,
 Character: Person,
 Rehearsals: set(date));

add class Concert inherits TheatreShow
 type tuple(Characters: Director,
 Orchestra: set(Musicians));

add class Person
 type tuple(Name: string,
 TaxCode: string,
 Nationality: string);

add class Director inherits Person
 type tuple(Appointment: Theatre);

add class Musician inherits Person
 type tuple(Instruments: set(string));

1. Graphically describe the above schema as illustrated in Figure 11.2.

2. Define the initialization methods of the classes PLACE, MONUMENT and
THEATRE, reusing the methods while descending along the generalization
hierarchy.

3. Which property of the schema is redefined in a covariant way?

4. Define the signature of the initialization method of a theatre show and
then refine the signature in a covariant way in the input parameters
whenever the show is a concert.

5. Give an example of invocation of the method defined above, in which it
is not possible to verify its accuracy at the time of compilation.

Exercise 11.4 Describe the schema of the object-oriented database of
Exercise 11.3 using the standard odmg-93. Describe it graphically using the
method illustrated in Figure 11.4.

Exercise 11.5 With reference to the object-oriented database schema in
Exercise 11.3, write the following queries in oql:

1. Extract the names of the four star hotels in Como.

2. Extract the names and costs of tourist services offered in Paris.

444 Chapter 11
Object databases

3. Extract the names of the five star hotels in the cities in which concerts
conducted by Muti are planned.

4. Extract the names of the monuments in Paris created by Italian
architects.

5. Extract the tourist services on offer partly in Paris and partly in another
city.

6. Extract the names of the artistic directors of a theatre where no concerts
are presented.

7. Extract the title of the concert, conductor, musicians and instruments
used by each musician in the concerts of 12-2-99 in Milan.

8. Extract the cities having more than 10 monuments and fewer than five
hotels.

9. Extract the names of the French architects who are also musicians.

10.Extract the total number of concerts conducted by Muti in either Italian
or French theatres.

11. Extract the total number of concerts given in each Italian theatre.

12.Classify the monuments in Paris according to the date of construction.
Use the classifications: ‘Renaissance’ (from 1450 to 1550), ‘Baroque’ (from
1550 to 1800), ‘Imperial’ (from 1800 to 1900), ‘Modern’ (from 1900 to
today), and count the number of elements in each class.

Exercise 11.6 Use the sql-3 syntax to describe the object model presented
in Exercise 11.3 (represent o2 lists as sets).

Exercise 11.7 Considering the sql-3 database schema introduced in the
previous exercise, express the following queries in sql-3.

1. Retrieve the names of the cities having ‘Liechtenstein’ as nation.

2. Retrieve the names of the musicians playing in the concerts directed by
Karajan.

3. Retrieve the names of the monuments in London constructed in the 17th

Century and closed on Mondays.

4. Retrieve the names of the directors who perform at theatres different
from those to which they are affiliated.

5. Retrieve, for each theatre, the titles of all of the concerts that are planned
for the year 2000.

Exercise 11.8 Build a 2d-tree and quadtree representation of the sequence
of bi-dimensional points: A(5,4), B(3,3) C(6,2), D(2,2), E(4,6), F(1,1), G(7,5).

Section 11.7 445
Exercises

How many intermediate nodes appear, in the two representations, between
A and F and between A and G?

Exercise 11.9 With reference to the object-oriented database schema of
Exercise 11.3, indicate a choice of complex indexes for the efficient
management of the path expressions that are most used by the queries of
Exercise 11.5.

446 Chapter 11
Object databases

12
12Active databases

An active database system is a dbms that supports an integrated subsystem
for the definition and management of production rules (active rules). The
rules follow the event-condition-action paradigm: each rule reacts to some
events, evaluates a condition and, based on the truth value of the condition,
might carry out an action. The execution of the rules happens under the
control of an autonomous subsystem, known as the rule engine, which keeps
track of the events that have occurred and schedules the rules for execution.
Thus, an active database system can execute either transactions, which are
explicitly initiated by the users, or rules, which are under the control of the
system. We say that the resulting system exhibits a reactive behaviour, which
differs from the typical passive behaviour of a dbms without active rules.

When a dbms is active, the part of the application that is normally
encoded by programs can also be expressed by means of active rules. As we
shall see, active rules can, for example, manage integrity constraints,
calculate derived data and manage exceptions, as well as pursue business
objectives. This phenomenon adds a new dimension to the independence of
the database, called knowledge independence: knowledge of a reactive type is
removed from the application programs and coded in the form of active rules.
Knowledge independence introduces an important advantage, because rules
are defined with the ddl and are part of the schema, and therefore they are
shared by all the applications, instead of being replicated in all the
application programs. Modifications to the reactive behaviour can be
managed by simply changing the active rules, without the need to modify
the applications.

Many prototype systems, both relational and object-oriented, provide
active rules that are particularly expressive and powerful. In this chapter, we
will concentrate on active databases supported by relational dbmss; almost
all relational systems support simple active rules, called triggers, and
therefore can be considered active databases in their own right. In this
chapter we will use the terms ‘active rule’ and ‘trigger’ as synonymous.

448 Chapter 12
Active databases

Unfortunately, there is no consolidated standard proposal for triggers, as
they were not defined in sql-2. Thus, first we will give a general description,
which can be adapted easily enough to any relational system. Next, we will
describe the syntax and semantics of two specific relational systems, Oracle
and db2. Covering db2 is particularly useful because the sql-3 standard for
active rules includes a standardization of triggers that uses the same
solutions as db2. We will complete this chapter with a discussion on
properties of active databases and with an illustration of their applications.

12.1 Trigger behaviour in a relational system
The creation of triggers is part of the data definition language (ddl). Triggers
can be dynamically created and dropped; in some systems they can also be
dynamically activated and deactivated. Triggers are based on the event-
condition-action (eca) paradigm:

• the events are data manipulation primitives in sql (insert, delete,
update);

• the condition (which can sometimes be omitted) is a boolean predicate,
expressed in sql;

• the action is a sequence of generic sql primitives, sometimes enriched by
an integrated programming language available within the environment of
a specific product (for example, pl/sql in Oracle).

Triggers respond to events relating to a given table, called the trigger’s target.
The eca paradigm behaves in a simple and intuitive way: when the event

is verified, if the condition is satisfied, then the action is carried out. It is said
that a trigger is activated by the event, is considered during the verification
of its condition and is executed if the condition is true, and therefore the
action part is carried out. However, there are significant differences in the
ways in that systems define the activation, consideration and execution of
triggers.

Relational triggers have two levels of granularity, called row-level and
statement-level. In the first case, activation takes place for each tuple
involved in the operation; we say that the system has a tuple-oriented
behaviour. In the second case, activation takes place only once for each sql
primitive, referring to all the tuples invoked by the primitive, with a set-
oriented behaviour. Furthermore, triggers can have immediate or deferred
functionality. The evaluation of immediate triggers normally happens
immediately after the events that activated them (after option). Less often,
the evaluation of immediate triggers logically precedes the event to which it
refers (before option). The deferred evaluation of triggers happens at the end
of the transaction, following a commit-work command.

Triggers can activate themselves one after another. This happens when the
action of a trigger is also the event of another trigger. In this case, it is said

Section 12.2 449
Definition and use of triggers in Oracle

that the triggers are cascading. Triggers can also activate themselves one after
another indefinitely, generating a computation that does not terminate. We
will address this problem in Section 12.5.

12.2 Definition and use of triggers in Oracle
We will look first at the syntactic characteristics of the command to create
triggers, and will then demonstrate their behaviour using a typical
application.

12.2.1 Trigger syntax in Oracle
The syntax for the creation of triggers in Oracle is as follows:

create trigger TriggerName
 Mode Event { , Event}
 on TargetTable
 [[referencing Reference]
 for each row
 [when SQLPredicate]]
 PL/SQLBlock

The Mode is before or after, the Event is insert, delete, or update; update
may be followed by attribute names of the target table. The referencing
clause allows the introduction of variable names, for referring to the old and
new values of the row that is changed, with one or both of the following
clauses:

old as OldVariable
| new as NewVariable

We will now discuss the various characteristics in detail. Each trigger
controls any combination of the three dml update primitives (insert, delete,
and update) on the target table. The granularity of triggers is determined by
the optional clause for each row, which is present in the case of row-level
granularity, while it is omitted in the case of statement-level granularity. The
condition (SQLPredicate) can be present only in the triggers with row-level
granularity and consists of a simple predicate on the current tuple. Triggers
with statement-level granularity, however, may substitute condition
predicates with the control structures of the action part. The action, both
with row and statement-level granularity, is written in pl/sql, which
extends sql by adding the typical constructs of a programming language (as
shown in Appendix C). The action part cannot contain ddl instructions or
transactional commands.

References to the before (old) and after (new) states of the row that is
modified are possible only if a trigger is row-level. In the case of insert only
the after state is defined, and in the case of delete only the before state is
defined. The old and new variables are implicitly available to indicate,
respectively, the old and new state of a tuple. Variable names other than old
and new can be introduced by the referencing clause.

450 Chapter 12
Active databases

12.2.2 Behaviour of triggers in Oracle
Triggers in Oracle are immediate and allow for both the before and after
options on both row- and statement-level granularity. Thus, combining the
two granularities and the two functions, four combinations are obtained for
each event:

before row
before statement
after row
after statment

The execution of an insert, delete or update statement in sql is
interwoven with the execution of the triggers that are activated by them,
according to the following algorithm:

1. The before statement-level triggers are considered and possibly executed.

2. For each tuple of the target table involved in the statement:

(a) the before row-level triggers are considered and possibly executed.
(b) the statement is applied to the tuple, and then the integrity checks

relative to the tuple are carried out.
(c) the after row-level triggers are considered and possibly executed.

3. The integrity checks for the entire table are carried out.

4. The after statement-level triggers are considered and possibly executed.

If an error occurs during the evaluation or one trigger, then all the
modifications carried out as a consequence of the sql primitive that activates
the trigger execution are undone. Oracle thus guarantees a partial rollback of
the primitive and of all the actions caused by the triggers. Early versions of
Oracle imposed a limit of one trigger per kind (before/after row/statement);
recent versions have abolished these limitations, without, however,
indicating how to prioritize triggers of the same kind that are activated by
the same event.

The actions carried out by the triggers can cause the activation of other
triggers. In this case, the execution of the current trigger is suspended and
the other activated triggers are considered, by recursively applying the
algorithm illustrated above. The highest number of triggers in cascade (that
is, activated in sequence according to this schema) is 32. Once this level is
reached, the system assumes that an infinite execution has occurred and
suspends the execution, raising a specific exception.

12.2.3 Example of execution
We illustrate triggers in Oracle by showing them at work on a classical
warehouse management problem. The Reorder trigger, illustrated below, is
used to generate a new order automatically, by entering a tuple in the
PENDINGORDERS table, whenever the available quantity, QtyAvbl, of a

Section 12.2 451
Definition and use of triggers in Oracle

particular part of the WAREHOUSE table falls below a specific reorder level
(QtyLimit):

create trigger Reorder
after update of QtyAvbl on Warehouse
when (new.QtyAvbl < new.QtyLimit)
for each row
 declare
 X number;
 begin
 select count(*) into X
 from PendingOrders
 where Part = new.Part;
 if X = 0
 then
 insert into PendingOrders
 values (new.Part, new.QtyReord, sysdate);
 end if;
 end;

This trigger has a row-level granularity and is considered immediately
after each modification of the attribute QtyAvbl. The condition is evaluated
row by row, comparing the values of the attributes QtyAvbl and QtyLimit; it
is true if the available quantity falls below the limit. The action is a program
written in pl/sql. In the program, a numeric variable X is initially declared;
it stores the number of orders already placed for the part being considered.
We assume that PENDINGORDERS is emptied when the corresponding parts are
delivered to the warehouse; at each time, only one order should be present
for each part. Thus, if X is not zero, no new order is issued. If instead X is zero,
an order is generated by inserting a tuple into the table PENDINGORDERS. The
order contains the part numbers, the reorder quantity QtyReord (assumed to
be fixed) and the current date. The values of the tuples that refer to the
execution of the trigger are accessed by use of the correlation variable new.
Assume that the initial content of the WAREHOUSE table is as shown in
Figure 12.1.

Consider then the following transaction activated on 10/10/1999:

T1: update Warehouse
 set QtyAvbl = QtyAvbl - 70
 where Part = 1

This transaction causes the activation, consideration and execution of the
Reorder trigger, causing the insertion into the PENDINGORDERS table of the

Figure 12.1 Initial state of the WAREHOUSE table.

WAREHOUSE Part QtyAvbl QtyLimit QtyReord

1 200 150 100
2 780 500 200
3 450 400 120

452 Chapter 12
Active databases

tuple (1, 100, 10/10/1999). Suppose that next the following transaction is
carried out:

T2: update Warehouse
 set QtyAvbl = QtyAvbl - 60
 where Part <= 3

The trigger is thus considered for all parts, and the condition is verified for
parts 1 and 3. However, the action on part 1 has no effect, because we assume
that PENDINGORDERS still contains the tuple relating to part 1. Thus, the
execution of the trigger causes the insertion into PENDINGORDERS of the single
tuple (3, 120, 10/10/1999), relating to part 3.

12.3 Definition and use of triggers in DB2
In this section we will first look at the syntactic characteristics of the create
trigger command, and will then discuss its behaviour and an application
example.

12.3.1 Trigger syntax in DB2
Each trigger in db2 is activated by a single event, which can be any data
modification primitive in sql. As in Oracle, triggers are activated
immediately, before or after the event to which they refer, and have both row
and statement-level granularity. The syntax of the creation instruction for
triggers is as follows:

create trigger TriggerName
 Mode Event on TargetTable
 [referencing Reference]
 for each Level
 [when (SQLPredicate)]
 SQLProceduralStatement

where the Mode is before or after, the Event is insert, delete, or update
(update may be followed by attributes of the target table), and the Level is row
or statement. The referencing clause allows the introduction of variable
names. If the level is row, the variables refer to the tuple that is changed; they
are defined by the clauses:

old as OldTupleVar
| new as NewTupleVar

If the level is statement, then the variables refer to the table that is changed,
with the clauses:

old_table as OldTableVar
| new_table as NewTableVar

As in Oracle, variables old, new, old_table and new_table are implicitly
available, while the referencing clause enables the introduction of different
variables. In the case of insertion, only the new or new_table variables are
defined; in the case of deletion, only the old and old_table variables are
defined.

Section 12.3 453
Definition and use of triggers in DB2

12.3.2 Behaviour of triggers in DB2
In db2, triggers activated before an event, the before-triggers, are used only
to determine errors and to modify the values assigned to the new variables.
These cannot contain dml commands that cause a modification of the state
of the database, and thus cannot activate other triggers. The system
guarantees a behaviour in which the side-effects of the before-triggers
become visible before the execution of the sql primitive that activates them.
The before-triggers can thus require the prior evaluation of the new values
produced by the sql primitive, which are stored in temporary data
structures.

Various triggers on different levels of granularity can refer to the same
event. These are considered in an order managed by the system, which takes
into account their time of creation. Row-level and statement-level triggers
can be ordered arbitrarily (while in Oracle the relative ordering between
triggers of different granularity is fixed, as illustrated by the algorithm in
Section 12.2.2). If an action of a trigger with row-level granularity contains
many SQL primitives, they are all carried out for one tuple before moving on
to the next.

db2 manuals describe precisely how the evaluation of triggers is carried
out with reference to integrity constraints, in particular the referential ones,
which are associated with a compensation action. Following a primitive S,
the consideration and execution of the before-triggers are first carried out,
and can cause modifications to the new variables. Then, the actions that are
required for referential integrity are carried out. These actions can cause the
activation of many triggers, which are added to the after-trigger activated by
S. Finally, the system considers and executes all the activated triggers, based
on their system-defined priorities. When the execution of these triggers
contains sql statements that may cause the activation of other triggers, the
state of execution of the rule scheduling algorithm is saved and the system
reacts by considering the triggers that were subsequently activated, thus
initiating a recursive evaluation. At the end, the state of execution of the rule
scheduling algorithm is restored, and the execution of the trigger that was
suspended is resumed.

12.3.3 Example of execution
Consider a database containing the tables PART, DISTRIBUTOR, and AUDIT. The
PART table has as its primary key the attribute, PartNum; it has also three
other attributes, Supplier, City and Cost. A referential integrity constraint is
present in the table PART and refers to the DISTRIBUTOR table:

foreign key (Supplier)
 references Distributor
 on delete set null

Let us consider the following triggers:

• SoleSupplier is a before-trigger that prevents the modification of the

454 Chapter 12
Active databases

Supplier attribute unless it is changed to the null value. In all the other
cases, this gives an exception that forces a rollback of the primitive.

• AuditPart is an after-trigger that records in the AUDIT table the number of
tuples modified in the PART table.

create trigger SoleSupplier
before update of Supplier on Part
referencing new as N
for each row
when (N.Supplier is not null)
 signal sqlstate '70005' ('Cannot change supplier')

create trigger AuditPart
after update on Part
referencing old_table as OT
for each statement
insert into Audit
 values(user, current-date, (select count(*) from OT))

For example, the removal from the DISTRIBUTOR table of all the suppliers
located in Penang causes the violation of the referential integrity constraint.
At this point, the management policy for violations of the constraint causes
the modification to the null value of all the tuples of the PART table that
remain dangling after the deletion. This activates the two triggers
SoleSupplier and AuditPart. The first is a before-trigger, which is thus
considered first. Its evaluation, tuple by tuple, happens logically before the
modification, but it has available the N value, which describes the variation.
Thus, this value is found to be NULL, and the condition is found to be false.
Finally, the AuditPart trigger is activated, inserting into the table AUDIT a
single tuple containing the user code, the current data and the number of
modified tuples.

12.4 Advanced features of active rules
Building on the basic characteristics of relational triggers, seen above, some
advanced systems and prototypes of active database systems have various
characteristics that increase the expressive power of active rules. Their
advanced features are as follows.

Temporal and user-defined events With regard to events, these can
include temporal or user-defined events. The first ones allow the expression
of time-dependent events such as, for example, ‘every Friday evening’ or ‘at
17:30 on 20/6/1999’. User defined events are explicitly named and then
raised by users’ programs. For instance, a ‘high-water’ user-defined event
could be defined and then raised by an application; the raising would
activate a rule that reacts to the event.

Event expressions The activation of triggers can depend not only on a
single event, but also on a set of events with a simple disjunctive
interpretation. Activation can also depend on generic boolean expressions of

Section 12.5 455
Properties of active rules

events, constructed according to more complex operators, such as precedence
among events and the conjunction of events.

Instead-of mode As well as the before and after modes, there is also
another mode, called instead of. When the condition of the corresponding
rule is true, the action is carried out in place of the activation event.
However, rules with instead of modes may give rather complex and
unintuitive semantics (such as: ‘when updating the salary of X, instead
update the salary of Y’); therefore, this clause is not present in most systems.

Detached consideration and execution The consideration and/or
execution of rules can be detached. In this case, the consideration or
execution would take place in the context of another transaction, which can
be completely independent or can be co-ordinated with the transaction in
which the event is verified, using mechanisms of reciprocal dependence.

Priorities The conflicts between rules activated by the same event can be
resolved by explicit priorities, defined directly by the user when the rule is
created. They can be expressed either as a partial ordering (using precedence
relations between rules), or as a total ordering (using numeric priorities). The
explicit priorities substitute priority mechanisms implicitly present in the
systems.

Rule sets Rules can be organized in sets and each rule set can be separately
activated and deactivated.

12.5 Properties of active rules
It is not difficult to design each individual active rule, once its event,
condition and action are clearly identified. However, understanding the
collective behaviour of active rules is more complex, because their
interaction is often subtle. For this reason, the main problem in the design of
active databases lies in understanding the behaviour of complex sets of rules.
The main properties of these rules are termination, confluence and identical
observable behaviour.

• A set of rules guarantees termination when, for each transaction that may
activate the execution of rules, this execution produces a final state in a
finite number of steps.

• A set of rules guarantees confluence when, for each transaction that may
activate the execution of rules, the execution terminates producing a
unique final state, which does not depend on the order of execution of
rules.

• A set of rules guarantees an identical observable behaviour when, for each
transaction that may activate the execution of rules, this execution is
confluent and all the visible actions carried out by the rule are identical
and produced in the same order.

456 Chapter 12
Active databases

These properties are not of equal importance or desirability. In particular,
termination is an essential property; we must avoid a situation in which
transactions, activated by the user, cause infinite executions normally
revealed by the raising of an exception when the maximum number of
recursively executed rules is exceeded. Note that infinite executions are due
to rules written by the database administrator, and the user would have great
difficulty in understanding the situation and finding a remedy. On the other
hand, confluence and identical observable behaviour might not be essential,
especially in the presence of various equally acceptable solutions of the same
problem.

The process of rule analysis allows the verification of whether the
properties requested are valid for a particular set of rules. In particular, an
essential tool for verifying the termination of a set of rules is the activation
graph, which represents interactions among rules. The graph is created by
adding a node for each rule and an arc from a rule R1 to a rule R2 when the
action of R1 contains a dml primitive that is also one of the events of R2. A
necessary condition for non-termination is the presence of cycles in the
activation graph: only in this case we can have an infinite sequence of
execution of rules. An example of an activation graph is shown in
Figure 12.2.

Systems with many active rules are often cyclic. However, only a few
cycles actually correspond to critical situations. In fact, cyclicity is a
necessary but not sufficient condition for non-termination. Most cycles are
indeed ‘innocuous’, as they describe an acceptable mutual interaction
between rules.

Let us consider, for example, the rule SalaryControl (written in db2), which
creates a ‘conservative’ policy of salary control. It reduces the salary of all
the employees when the average salary goes beyond a certain level:

create trigger SalaryControl
after update of Salary on Employee
then update Employee
 set Salary = 0.9 * Salary
 where (select avg(Salary) from Employee) > 100

Figure 12.2 Cyclic activation graph.

R11

R33

R22 R44

Section 12.6 457
Applications of active databases

The activation graph for this rule has only one node and a ring; thus, it
presents a cycle, which indicates the possibility that the rule is re-activated
by itself. On the other hand, whatever the initial transaction, the execution
of the rule eventually terminates, as the rule progressively reduces the
salaries until they are again within the established level. At this point, the
condition is false. However, a slightly different rule, which gives a rise of
salary rather than decreasing it, presents termination problems:

create trigger SalaryControl2
after update of Salary on Employee
then update Employee
 set Salary = 1.1 * Salary
 where (select avg(Salary) from Employee) > 100

The activation graph associated with this rule does not change. However,
if the rule is executed once, it will be executed an infinite number of times,
causing non-termination, as the operation carried out by the rule is unable
to make its condition false.

This example shows that the cycles give only ‘indications’ of possible
causes of non-termination. A detailed analysis of cycles, which can be partly
automated, can give rise to the conclusion that a cycle is innocuous, or
instead to suggest modifications to rules that guarantee its termination.

12.6 Applications of active databases
Active rules respond to several application needs. Many classic applications
of active rules are internal to the database: the active rule manager works as
a subsystem of the dbms to implement some of its functions. In this case,
triggers are generated by the system and are thus not visible to the users. The
typical characteristic of internal applications is the possibility of giving a
declarative specification of the functions, from which to derive the active
rules. The main functions that can be entrusted to active rules of an internal
type include the management of integrity constraints of a predefined
structure, the calculation of derived data, and the management of replicated
data. Other functions include version management, privacy management,
data security enforcement and event logging.

Other rules, classified as external, express knowledge specific to the
application, which are beyond predefined and rigid schemas. These rules are
also called business rules as they express the strategies of a company for
carrying out its primary functions (see also Chapter 5 and Chapter 6). In the
case of business rules, there are no fixed techniques for the derivation of
rules based on specifications. Consequently, each problem must be
confronted separately. Below, we will look briefly at referential integrity and
then we show some business rules.

12.6.1 Referential integrity management
The management of integrity constraints using active rules requires first that

458 Chapter 12
Active databases

the constraint be expressed in the form of an sql predicate. The predicate
will correspond to the condition part of one or more active rules associated
with the constraint; note, however, that the predicate must be negated in the
rule, so that the consideration yields a truth value when the constraint is
actually violated. After this, the designer will concentrate on the events that
can cause a violation of the constraint. They contribute to the event parts of
active rules. Finally, the designer will have to decide which action to carry
out following the violation of the constraint. For example, the action could
be to force the partial rollback of the primitive that has caused the violation,
or could carry out a repair action, which corrects the violation of the
constraint. This is how the action part of the active rule is constructed.

We illustrate this general approach to integrity maintenance with active
rules by means of the classical referential integrity constraint. Note,
however, that most systems manage referential integrity by means of ad hoc
methods.

We look again at the simple referential integrity constraint discussed in
Section 4.1.7. Given the tables EMPLOYEE and DEPARTMENT, the constraint
indicates that the Dept attribute of EMPLOYEE is a foreign key, referencing the
attribute DeptName of DEPARTMENT. The referential integrity specification is
given by means of the following clause, inserted into the definition of the
EMPLOYEE table:

foreign key(Dept) references Department(DeptName)
 on delete set null,
 on update cascade

We may consider the foreign key clause as a declarative specification of
both the condition of the constraint and of the repair actions that must be
performed to restore the database consistency. The operations that can
violate this constraint are:

• insert into EMPLOYEE;

• delete from DEPARTMENT;

• update to EMPLOYEE.Dept;

• update to DEPARTMENT.DeptName.

The constraint can be expressed as an assertion for the table EMPLOYEE,
which imposes for each employee the existence of a department to which the
employee belongs:

exists (select * from Department
 where DeptName = Employee.Dept)

Note that this assertion indicates a property that must be true for all
employees, but in an active rule, we are interested in capturing the situations
that violate the constraint. We will therefore use the negation of the assertion
illustrated above as the basis for building the condition to be included
within the active rules:

Section 12.6 459
Applications of active databases

not exists (select * from Department
 where DeptName = Employee.Dept)

The constraint can also be expressed as an assertion, already presented in
negative form, for the table, DEPARTMENT. In this case, the constraint is
violated if there is an employee without a department:

exists (select * from Employee
 where Dept not in
 (select Deptname from Department))

We then need to construct four active rules. Two react to each insertion in
EMPLOYEE or modification of the Dept attribute, cancelling the effect of the
operations if they violate the constraint. Remember that, according to the
definition of referential integrity, violations caused by operations on the
internal table have to cause a rejection of the operation. The other two rules
react to each deletion from DEPARTMENT or update of the Dept attribute, and
implement the policies specified with the constraint.

The first rule is coded by the following trigger in db2:

create trigger DeptRef1
after insert on Employee
for each row
when (not exists
 (select * from Department
 where DeptName = New.Dept))
signal sqlstate '70006' (‘employee without department');

The second rule is the same except for the event:

create trigger DeptRef2
after update of Dept on Employee
for each row
when (not exists
 (select * from Department
 where DeptName = New.Dept))
signal sqlstate '70006' (‘employee without department');

The third rule reacts to the cancellation of a tuple of DEPARTMENT, imposing
a null value on the attribute Dept of the tuples involved:

create trigger DeptRef3
after delete on Department
for each row
when (exists
 (select * from Employee
 where Dept = Old.Deptname))
update Employee
 set Dept = null
 where Dept = Old.Deptname

Note that the condition is simpler than that shown above. It identifies as
critical those employees whose departments coincide with a department
removed by the delete operation. In fact, the condition could even be
omitted, as the action is performed on all and only the tuples that satisfy the
condition.

460 Chapter 12
Active databases

The fourth rule reacts to modification of the attribute DeptName of
DEPARTMENT, reproducing on EMPLOYEE the same modification on the Dept
attribute as in the DEPARTMENT table:

create trigger DeptRef4
after update of Department on Deptname
for each row
when (exists
 (select * from Employee
 where DeptName = Old.DeptName))
update Employee
 set Dept = New.Deptname
 where Dept = Old.Deptname

Note that in this case, too, the condition is optimized and could even be
omitted.

12.6.2 Business rules
Business rules express the strategies of a company in pursuing its objectives.
Examples are the rules that describe the buying and selling of stocks based
on the fluctuations in the market, rules for the management of a transport
network or of energy, or rules for the management of a warehouse based on
the variations of available quantities of each part (see Section 12.2.3). Some
of these rules are simple alerters, which limit themselves to the action part
and emit messages and warnings, leaving the users to manage abnormal
situations.

Business rules have already been introduced in Section 5.3.1 to express
schema constraints. Remember that these were classified as integrity or
derivation rules. Integrity rules are predicates that express conditions that
must be true. In commercial dbmss, they can be programmed using the check
clause or using assertions. However, many dbmss introduce restrictions on
the predicate that are expressible using these clauses, thus limiting their
effective usability. Furthermore, the use of sql-2 constraints goes together
with adopting the reaction policies present in the standard (or supported by
dbmss), while the desired reaction is often different. Therefore, active rules
(which are supported by most relational dbmss) can be used for the
specification and implementation of ‘generic’ constraints and ‘arbitrary’
reactions.

Let us look at how we can program the business rule br2 introduced in
Section 5.3.1, using an active rule. The business rule is repeated here: (br2)
an employee must not have a salary greater than that of the manager of the
department to which he or she belongs.

Let us use the tables EMPLOYEE and DEPARTMENT, where EmpNum is the
primary key of EMPLOYEE and DeptNum is the primary key of DEPARTMENT;
EMPLOYEE has the attributes Mgr, Salary, and DeptNum, and DEPARTMENT has the
attribute Director. The operations that can violate the constraint are the
update of the salary of the employees in their double role as employee and

Section 12.8 461
Exercises

manager, and the insertion of a new employee. Let us suppose that among
these, the critical modification to be monitored is the increase in the salary
awarded to an employee. Let us also suppose that the reaction policy is to
block the update, and to signal this behaviour. These choices correspond to
the following trigger, written using the db2 syntax:

create trigger ExcessiveSalary
after update on Salary of Employee
for each row
when New.Salary > select Salary
 from Employee
 where EmpNum in
 (select Director
 from Department
 where DeptNum = New.DeptNum)
then signal sqlstate '70005' ('Salary too high')

The rules concerning warehouse management or the handling of suppliers,
illustrated in Section 12.2.3 and Section 12.3.3, can be considered as other
examples of application-specific business rules.

Business rules are particularly advantageous when they express the
reactive policies at schema level (and are thus valid for all applications)
because they allow an unambiguous and centralized specification. This
allows the property of knowledge independence, discussed in the introductory
section to this chapter.

12.7 Bibliography
The book by Widom and Ceri [91], contains a thorough description of active
database research prototypes, as well as a general introduction to commercial
systems and applications. The book includes chapters dedicated to several
research prototypes: Postgres, Ariel, Starburst, a-rdl, Chimera, Hipac, and
Ode; two chapters also discuss commercial systems and applications.
Furthermore, one of the six parts of Zaniolo et al. [94] is dedicated to active
databases. A description of the triggers available in Oracle Server is discussed
in their manuals: [65] and [64]. Triggers in ibm db2 are described by
Cochrane, Pirahesh, and Mattos [25], as well as in the book by Chamberlin
[20] that gives a complete description of the db2 system. The possibility of
giving a declarative specification and then deriving the active rules was
introduced by Ceri and Widom [19]. A methodology for design of databases
that makes much use of active rules and also of object-oriented services is
described in the book by Ceri and Fraternali [15].

12.8 Exercises
Exercise 12.1 Given the relational schema:

EMPLOYEE(Name, Salary, DeptNum)
DEPARTMENT(DeptNum, ManagerName)

462 Chapter 12
Active databases

define the following active rules in Oracle and db2.

1. A rule that deletes all the employees belonging to a department when
that department is deleted.

2. A rule that reacts to the deletion of the employee who is manager in a
department by deleting that department and all its employees.

3. A rule that, each time that salary of an employee becomes higher than
that of his or her manager, makes that salary equal to that of the
manager.

4. A rule that, each time the salaries are modified, verifies that there are no
departments in which the average salary increases more that three
percent, and in this case cancels the modification.

5. A rule that, each time that the salaries are modified, verifies their average
and if it is higher than 50 thousand, deletes all the employees whose
salaries have been modified and are higher than 80 thousand.

Exercise 12.2 Referring to the active database system in Exercise 12.1,
consider a database state with eight employees: Glenna, Mary, Tom, Bob,
Andrew, Gary, Sandro and Clara, in which:

• Glenna is manager of department 1;

• Mary is manager of department 2, in which Tom and Andrew work;

• Gary is manager of department 3, in which Sandro and Clara work;

• Bob is manager of department 4.

Describe a sql transaction that deletes the employee Glenna and then
modifies some of the employees’ salaries, thus activating rules 3–5. Describe
the behaviour of triggers after these modifications; describe the state of the
database after each statement and rule execution and at the end of the
transaction.

Exercise 12.3 Discuss the properties of termination, confluence and
observable determination for the rules of Exercise 12.1.

Exercise 12.4 Given the relational schema:

STUDENT(Name, Subject, Supervisor)
PROFESSOR(Name, Subject)
COURSE(Title, Professor)

EXAM(StudentName, CourseTitle)

Describe the triggers that manager the following integrity constraints
(business rules):

Section 12.8 463
Exercises

1. Each student must work in the same area as his or her supervisor.

2. Each student must have taken at least three courses in the subject of his
or her supervisor.

3. Each student must have taken the exam for the course taught by his or
her supervisor.

464 Chapter 12
Active databases

13
13Data analysis

Database technology, as illustrated in Chapter 9 and Chapter 10, was
developed for supporting efficient and reliable on-line data management.
Using On Line Transaction Processing (oltp) technology, companies collect
large amounts of data that enable their everyday operations. For example,
banks collect data about their clients’ transactions, and large supermarket
chains collect data about their daily sales. This data could be useful to the
companies not only on an operational level, but also for management,
planning and decision support. For example, it could be possible to
determine which of the financial products offered by a bank are the most
successful, or observe the variations in sales of the various products in
relation to the various promotions to evaluate their effectiveness. In practice,
past and present data allows an analysis process essential for planning the
future undertakings of the business.

For many decades, technological developments have neglected data
analysis. It was thought that query languages were sufficient for both
operational activity and for data analysis. Indeed, sql allows the
specification of complex queries, and thus offers some useful characteristics
for data analysis (such as data aggregation). However, data analysis languages
must be suitable for users who are not computer experts, and sql is not
sufficiently user-friendly for them. Moreover, it is extremely difficult to
optimize data management so that it simultaneously satisfies the demands of
analysis and operational applications; thus, the latter have generally
prevailed over the former.

At the beginning of the nineties, parallel to the development of networks
and data distribution products, a new architecture became popular,
characterized by the separation of environments: alongside the traditional
oltp systems, other systems were developed, dedicated to On-line Analytical
Processing (olap). This term states that data analysis happens on-line, that is,
by means of interactive tools. The main element of olap architecture is the
data warehouse, which carries out the same role as the database for oltp
architectures. New languages and paradigms were developed in order to

466 Chapter 13
Data analysis

facilitate data analysis by the olap clients. In this architecture, shown in
Figure 13.1, oltp systems carry out the role of data sources, providing data
for the olap environment.

While the oltp systems are normally shared by a high number of end users
(mentioned in the first chapter), olap systems are characterized by the
presence of few users (the ‘analysts’), who perform strategic business
functions and carry out decision support activities. In most cases, data
analysis is carried out by a group of specialists who perform studies
commissioned by their directors, in direct contact with the business
management of their company. Sometimes, data analysis tools are used by
managers themselves. There is a need, therefore, to provide the olap tools
with user-friendly interfaces, to allow immediate and efficient decision-
making, without the need for intermediaries.

While oltp systems describe the ‘current state’ of an application, the data
present in the warehouse can be historic; in many cases, full histories are
stored, to describe data changes over a period. The data import mechanisms
are usually asynchronous and periodical, so as not to overload the ‘data
sources’, especially in the case of oltp systems with particularly critical
performances. Misalignments between data at oltp sources and the data
warehouse are generally acceptable for many data analysis applications, since
analysis can still be carried out if data is not fully up-to-date.

Another important problem in the management of a warehouse is that of
data quality. Often, the simple gathering of data in the warehouse does not
allow significant analysis, as the data often contains many inaccuracies,
errors and omissions. Finally, data warehouses support data mining, that is,
the search for hidden information in the data.

In this chapter, we will first describe the architecture of a data warehouse,
illustrating how it is decomposed into modules. We will then deal with the
structure of the data warehouse and the new operations introduced into the

Figure 13.1 Separation between the oltp and olap environments.

On-line processing
END USERS ANALYSTS

Complex queries

Database Data
warehouse

Section 13.1 467
Data warehouse architecture

data warehouse to facilitate data analysis. We will conclude the chapter with
a brief description of the main data mining problems and techniques.

13.1 Data warehouse architecture
As illustrated in Figure 13.2, a data warehouse (dw) contains data that is
extracted from one or more systems, called data sources. These include a large
range of systems, including relational and object-oriented dbmss, but also
pre-relational dbmss or file-based data organizations (legacy systems). For the
extraction of data from heterogeneous sources and legacy systems, the
techniques discussed in Section 10.6 are used.

The architecture of a dw contains the following components, which do not
necessarily all have to be present. The first two components operate on the
data source.

• The filter component checks data accuracy before its insertion into the
warehouse. The filters can eliminate data that is clearly incorrect based on
integrity constraints and rules relating to single data sources. They can
also reveal, and sometimes correct, inconsistencies in the data extracted
from multiple data sources. In this way, they perform data cleaning; this is
essential to ensure a satisfactory level of data quality. It is important to
proceed cautiously in the construction of warehouses, verifying data
quality on small samples before carrying out a global loading.

Figure 13.2 Architecture of a data warehouse.

Export

Data mining

Data access

Loader

Refresh

Data
source

Export

Filter

Export

Filter

Data
source

Export

Filter

Data
source

Data warehouse

468 Chapter 13
Data analysis

• The export component is used for extracting data from the data sources.
The process of extraction is normally incremental: the export component
builds the collection of all the changes to the data source, which are next
imported by the dw.

The next five components operate on the data warehouse.

• The loader is responsible for the initial loading of data into the dw. This
component prepares the data for operational use, carrying out both
ordering and aggregation operations and constructing the dw data
structures. Typically, loader operations are carried out in batches when
the dw is not used for analysis (for instance, at night). If the dw uses
parallelism (illustrated in Section 10.7), this module also takes care of
initial fragmentation of data. In some applications, characterized by a
limited quantity of data, this module is invoked for loading the entire
contents of the dw after each change to the data sources. More often, the
dw data is incrementally updated by the refresh component, which is
discussed next.

• The refresh component updates the contents of the dw by incrementally
propagating to it the updates of the data sources. Changes in the data
source are captured by means of two techniques: data shipping and
transaction shipping. The first one uses triggers (see Chapter 12) installed
in the data source, which, transparent to the applications, records
deletions, insertions, and modifications in suitable variation files.
Modifications are often treated as pairs of insertions and deletions. The
second technique uses the transaction log (see Section 9.4.2) to construct
the variation files. In both cases, the variation files are transmitted to the
dw and then used to refresh the dw; old values are typically marked as
historic data, but not deleted.

• The data access component is responsible for carrying out operations of
data analysis. In the dw, this module efficiently computes complex
relational queries, with joins, orderings, and complex aggregations. It also
computes dw-specific new operations, such as roll up, drill down and data
cube, which will be illustrated in Section 13.3. This module is paired with
client systems that offer user-friendly interfaces, suitable for the data
analysis specialist.

• The data mining component allows the execution of complex research on
information ‘hidden’ within the data, using the techniques discussed in
Section 13.5.

• The export component is used for exporting the data present in a
warehouse to other dws, thus creating a hierarchical architecture.

In addition, DWs are often provided with modules that support their
design and management:

Section 13.2 469
Schemas for data warehouses

• A case environment for supporting dw design, similar to the tools
illustrated in Chapter 7.

• The data dictionary, which describes the contents of the dw, useful for
understanding which data analysis can be carried out. In practice, this
component provides the users with a glossary, similar to the one
described in Chapter 5.

We close this section about the dw architecture with some considerations
regarding data quality. Data quality is an essential element for the success of
a dw. If the stored data contains errors, the resulting analysis will necessarily
produce erroneous results, and the use of the dw could at this point be
counter-productive. Unfortunately, various factors prejudice data quality.

When source data has no integrity constraints, for example because it is
managed by pre-relational technology, the quantity of dirty data is very
high. Typical estimates indicate that erroneous data in commercial
applications fluctuates between 5 and 30 percent of the total.

To obtain high levels of quality we must use filters, expressing a large
number of integrity rules and either correcting or eliminating the data that
does not satisfy these rules. More generally, the quality of a data source is
improved by carefully observing the data production process, and ensuring
that verification and correction of the data is carried out during data
production.

13.2 Schemas for data warehouses
The construction of a company dw, which describes all the data present in a
company, is an ambitious aim, often quite difficult to achieve. For this reason,
the prevalent approach is to construct the dw by concentrating separately
on simple subsets of company data (known as departmental data), for which
the analytical aim is clear. Each simplified schema of departmental data takes
the name data mart. Each data mart is organized according to a simple
structure, called the multidimensional schema or, more simply, the star
schema. The first term implies the presence of multiple dimensions of
analysis; the second indicates the ‘star’ structure of the data mart schema
once interpreted using the classic Entity-Relationship model.

13.2.1 Star schema
The star schema has a very simple structure, shown in Figure 13.3 using the
Entity-Relationship model. A central entity represents the facts on which the
analysis is focused. Various entities arranged in rays around it represent the
dimensions of the analysis. Various one-to-many relationships connect each
occurrence of fact to exactly one occurrence of each of the dimensions.

The schema in Figure 13.3 represents the management of a supermarket
chain. The entity at the centre of the star represents the sales, that is, the

470 Chapter 13
Data analysis

facts of interest; the dimensions represent the products sold, the
supermarkets, the promotions and the times of each sale.

The schema in Figure 13.4 represents the management of payments by an
insurance company. The entity at the centre of the star represents payments
relating to those claims that are honoured by the company; the dimensions
represent the insurance policies, the clients, the times and the types of
problems that cause the claim.

The schema in Figure 13.5 represents the management of therapies in a
group of hospitals. The entity at the centre of the star represents the

Figure 13.3 Data mart for a supermarket chain.

Figure 13.4 Data mart for an insurance company.

PRODUCT

SALE

TIME

SUPERMARKET PROMOTION

(1,1)

(0,N)

(0,N) (1,1) (1,1) (0,N)

(1,1)

(0,N)

POLICY

PAYMENT

TIME

CLIENT PROBLEM

(1,1)

(0,N)

(0,N) (1,1) (1,1) (0,N)

(1,1)

(0,N)

Section 13.2 471
Schemas for data warehouses

therapies; dimensions represent the illnesses, the patients, the doctors in
charge and the hospitals to which the patients are admitted.

As shown in the three data marts, the main characteristic of the star
schema is the use of a regular structure, independent of the problem under
consideration. Obviously, the number of dimensions can be different, but at
least two dimensions are needed (because, otherwise, the model degenerates
into a simple one-to-many hierarchy). A high number of dimensions is also
inadvisable, because data analysis can then become too complex.

13.2.2 Star schema for a supermarket chain
Let us look more closely at the data mart for the management of a
supermarket chain, showing the relational schema corresponding to the e-r
schema. By applying the translation techniques presented in Chapter 7, we
translate one-to-many relationships by giving to the central entity an
identifier composed of the set of the identifiers of each dimension. Thus, each
tuple of the SALE relation has four codes, ProdCode, MarketCode, PromoCode
and TimeCode, which, taken together, form a primary key. We can thus better
describe an elementary sale as the set of all the sales that are carried out in a
unit of time, relating to a product, acquired with a promotion and in a
particular supermarket. Each occurrence of sale is thus in its turn an item of
aggregated data. The non-key attributes are the quantity sold (Qty) and the
amount of revenues (Revenue). We assume that each sale is for one and one
only promotion, and we deal with the sales of products having no
promotions by relating it to a ‘dummy’ occurrence of promotion.

Let us now look at the attributes for the four dimensions.

Figure 13.5 Data mart for a medical information system.

PATIENT

THERAPY

HOSPITAL

DOCTOR ILLNESS

(1,1)

(0,N)

(0,N) (1,1) (1,1) (0,N)

(1,1)

(0,N)

472 Chapter 13
Data analysis

• The products are identified by the code (ProdCode) and have as attributes
Name, Category, Subcategory, Brand, Weight, and Supplier.

• The supermarkets are identified by the code (MarketCode) and have as
attributes Name, City, Region, Zone, Size, and Layout of the supermarket
(e.g., on one floor or on two floors, and so on).

• The promotions are identified by the code (PromoCode) and have as
attributes Name, Type, discount Percentage, FlagCoupon, (which indicates
the presence of coupons in newspapers), StartDate and EndDate of the
promotions, Cost and advertising Agency.

• Time is identified by the code (TimeCode) and has attributes that describe
the day of sale within the week (DayWk: Sunday to Saturday), of the
month (DayMonth: 1 to 31) and the year (DayYear: 1 to 365), then the week
within the month (WeekMonth) and the year (WeekYear), then the month
within the year (MonthYear), the Season, the PreholidayFlag, which indicates
whether the sale happens on a day before a holiday and finally the
HolidayFlag, which indicates whether the sale happens during a holiday.

Dimensions, in general, present redundancies (due to the lack of
normalization, see Chapter 8) and derived data. For example, in the time
dimension, from the day of the year and a calendar we can derive the values
of all the other time-related attributes. Similarly, if a city appears several
times in the SUPERMARKET relation, its region and zone are repeated.
Redundancy is introduced to facilitate as much as possible the data analysis
operations and to make them more efficient; for example, to allow the
selection of all the sales that happen in April or on a Monday before a
holiday.

The e-r schema is translated, using the techniques discussed in Chapter 7,
into a logical relational schema, arranged as follows:

SALE(ProdCode, MarketCode, PromoCode, TimeCode, Qty, Revenue)
PRODUCT(ProdCode, Name, Category, SubCategory, Brand, Weight, Supplier)

MARKET(MarketCode, Name, City, Region, Zone, Size, Layout)
PROMOTION(PromoCode, Name, Type, Percentage, FlagCoupon, StartDate,

EndDate, Cost, Agency)
TIME(TimeCode, DayWeek, DayMonth, DayYear, WeekMonth, WeekYear,

MonthYear, Season, PreholidayFlag, HolidayFlag)

The fact relation is in Boyce–Codd normal form (see Chapter 8), in that each
attribute that is not a key depends functionally on the sole key of the
relation. On the other hand, as we have discussed above, dimensions are
generally non-normalized relations. Finally, there are four referential
integrity constraints between each of the attributes that make up the key of
the fact table and the dimension tables. Each of the four codes that make up
the key of the fact table is an external key, referencing to the dimension table
which has it as primary key.

Section 13.2 473
Schemas for data warehouses

13.2.3 Snowflake schema
The snowflake schema is an evolution of the simple star schema in which the
dimensions are structured hierarchically. The schema is introduced to take
into account the presence of non-normalized dimensions. Figure 13.6
illustrates the data mart for the management of supermarkets, represented by
the snowflake schema. While the dimensions of the promotions are
unchanged, the other dimensions are organized hierarchically:

• The dimensions of supermarkets are structured according to the hierarchy
ZONE, REGION, CITY, SUPERMARKET. Each zone includes many regions, each
region includes many cities, and each city has one or more supermarkets.

• The PRODUCT dimension is represented by a hierarchy with two new
entities, the SUPPLIER and the CATEGORY of the product.

• The time dimension is structured according to the hierarchy DAY, MONTH,
and YEAR.

Attributes of the star schema are distributed to the various entities of the
snowflake schema, thus eliminating (or reducing) the sources of redundancy.

All the relationships described in Figure 13.6 are one-to-many, as each
occurrence is connected to one and one only occurrence of the levels
immediately above it.

Figure 13.6 Snowflake schema for a supermarket chain.

SUPPLIER PRODUCT CATEGORY

SUPER-
MARKET SALE PROMOTION

DAY MONTH YEARCITY

REGION

ZONE

(0,N) (1,1) (1,1) (0,N)

(0,N)

(1,1)

(1,1) (0,N)

(1,1)

(0,N)

(0,N) (1,1)

(1,1)

(0,N)

(1,1)

(0,N)

(1,1)

(0,N)

(1,1) (0,N) (1,1) (0,N)

474 Chapter 13
Data analysis

The main advantage of the star schema is its simplicity, which, as we will
see in the next section, allows the creation of only very simple interfaces for
the formulation of queries. The snowflake schema represents the hierarchies
explicitly, thus reducing redundancies and anomalies, but it is slightly more
complex. However, easy-to-use interfaces are also available with this schema
in order to support the preparation of queries. Below, we will assume the use
of the star schema, leaving the reader to deal with the generalization in the
case of the snowflake schema.

13.3 Operations for data analysis
We now illustrate the interfaces for the formulation of queries and introduce
some operations to increase the expressive power of query languages.

13.3.1 Query formulation interfaces
Conducting data analysis for a given data mart, organized according to the
star schema, requires first the extraction of a subset of facts and dimensions,
based on the needs of the particular data analysis activity. These data
extractions follow a standard paradigm: dimensions are used to select the
data and to group it, while aggregate functions are usually applied to facts.
It is thus possible to construct predefined modules for data retrieval from the
dw, in which predefined choices are offered for the selection, aggregation
and evaluation of aggregate functions.

Figure 13.7 shows a data retrieval interface for the data mart in
Section 13.2.2. As regards the dimensions, three attributes are pre-selected:
the name of the promotion, the name of the product, and the month of sale.
For each fact, the quantities of sales are selected. The value ‘Supersaver’ is
inserted into the lower part of the module. Supersaver identifies this
particular promotion, thus indicating the interest in the sales obtained
through it. Similarly, the value intervals ‘pasta’ and ‘oil’ (for products) and
‘February’ to ‘April’ are selected. The last row of the data extraction interface
defines the structure of the result, which should include the dimensions
PRODUCT (including the selected values ‘pasta’ and ‘oil’) and TIME (ranging
between ‘February’ and ‘April’) and the total quantity of sales.

Figure 13.7 Interface for the formulation of an olap query.

PROMOTION.Name PRODUCT.Name TIME.Month Qty Schema
Three for two Wine Jan…Dec
Coupon 15% Pasta Options
SuperSaver Oil
SuperSaver Pasta…Oil Feb…Apr Condition

PRODUCT.Name TIME.Month sum View

Section 13.3 475
Operations for data analysis

This interface corresponds to an sql query with a predefined structure,
which is completed by the choices introduced by the user. In the query there
are join clauses (which connect the table of facts to the dimensions), selection
clauses (which extract the relevant data), grouping, ordering, and
aggregation clauses:

select D1.C1, … Dn.Cn, Aggr1(F.C1), … Aggrn(F.Cn)
from Fact as F, Dimension1 as D1, … DimensionN as Dn
where join-condition(F, D1)
 and …
 and join-condition(F, Dn)
 and selection-condition
group by D1.C1, … Dn.Cn
order by D1.C1, … Dn.Cn

In the specific case, the query constructed according to the user choices is
as follows:

select Time.Month, Product.Name, sum(Qty)
from Sale, Time, Product
where Sale.TimeCode = Time.TimeCode
 and Sale.ProductCode = Product.ProductCode
 and Sale.PromoCode = Promotion.PromoCode
 and (Product.Name = 'Pasta' or Product.Name = 'Oil')
 and Time.Month between 'Feb' and 'Apr'
 and Promotion.Name = 'SuperSaver'
group by Time.Month, Product.Name
order by Time.Month, Product.Name

The query result can be presented on the olap client in matrix or in graph
form. In matrix form, dimensions correspond to the rows and columns, and
facts correspond to the cells, as in a spreadsheet (Figure 13.8).

This data representation is quite widely used by the analysis tools, as it
enables spreadsheet operations upon the query results. Classical bar graphs
or pie charts can be used to visualize data; for example, bar graphs may use
different colours to represent different types of product at different times. In
the following, we will keep a relational representation, and we will
concentrate only on the total quantity of pasta sold (Figure 13.9).

13.3.2 Drill-down and roll-up
The spreadsheet analogy is not limited to the presentation of data. In fact, we
have two additional data manipulation primitives that originate from two
typical spreadsheet operations: drill-down and roll-up.

Figure 13.8 Result of the olap query.

Feb Mar Apr

Oil 5K 5K 7K
Pasta 45K 50K 51K

476 Chapter 13
Data analysis

Drill-down allows the addition of a dimension of analysis, thus dis-
aggregating the data. For example, a user could be interested in adding the
distribution of the quantity sold in the sales zones, carrying out the drill-
down operation on Zone. Supposing that the attribute Zone assumes the
values ‘North’, ‘Centre’ and ‘South’, we obtain the table shown in
Figure 13.17.

Roll-up allows instead the elimination of an analysis dimension, re-
aggregating the data. For example, a user might decide that sub-dividing by
zone is more useful than sub-dividing by monthly sales. This result is
obtained by carrying out the roll-up operation on Month, obtaining the result
shown in Figure 13.18.

By alternating roll-up and drill-down operations, the analyst can better
highlight the dimensions that have greater influence over the phenomena
represented by the facts. Note that the roll-up operation can be carried out

Figure 13.9 Subset of the result of the olap query.

Figure 13.10 Drill-down of the table represented in Figure 13.9.

Figure 13.11 Roll-up of the table represented in Figure 13.10.

Time.Month Product.Name sum(Qty)

Feb Pasta 45K
Mar Pasta 50K
Apr Pasta 51K

Time.Month Product.Name Zone sum(Qty)

Feb Pasta North 18K
Feb Pasta Centre 15K
Feb Pasta South 12K
Mar Pasta North 18K
Mar Pasta Centre 18K
Mar Pasta South 14K
Apr Pasta North 18K
Apr Pasta Centre 17K
Apr Pasta South 16K

Product.Name Zone sum(Qty)

Pasta North 54K
Pasta Centre 50K
Pasta South 42K

Section 13.3 477
Operations for data analysis

by operating on the results of the query, while the drill-down operation
requires in general a reformulation and re-evaluation of the query, as it
requires the addition of columns to the query result.

13.3.3 Data cube
The recurring use of aggregations suggested the introduction of a very
powerful operator, known as the data cube, to carry out all the possible
aggregations present in a table extracted for analysis. We will describe the
operator using an example. Let us suppose that the dw contains the
following table, which describes car sales. We will show the sole tuples
relating to the red Ferraris or red Porsches sold between 1998 and 1999
(Figure 13.12).

The data cube is constructed by adding the clause with cube to a query
that contains a group by clause. For example, consider the following query:

select Make, Year, Colour, sum(Sales)
from Sales
where (Make = 'Ferrari' or Make = 'Porsche')
 and Colour = 'Red'
 and Year between 1998 and 1999
group by Make, Year, Colour
with cube

This query extracts all the aggregates constructed by grouping in a
combined way the tuples according to the three dimensions of analysis (Make,
Year and Colour). The aggregation is represented by the polymorphic value
ALL, which (like NULL) is present in all the domains and corresponds to all the
possible values present in the domain (Figure 13.13).

A spatial representation of the data cube structure is shown in
Figure 13.14. The diagram shows a cartesian space constructed on three axes,
corresponding to the domains of three attributes. In this simple example, the
domain Make assumes the values ‘Ferrari’ and ‘Porsche’, the domain Year
assumes the values 1998 and 1999, and the domain Colour assumes the value
‘Red’. The points in the space represent the tuples of Figure 13.12. Note that
not all the points are normally present in the dw. In our example, three out
of four are present. The three cartesian planes represent the aggregations of
one dimension, the cartesian axes represent the aggregations of two
dimensions and the origin of the cartesian axes represents the aggregation of
all three dimensions. Obviously, a conceptually similar cartesian

Figure 13.12 View on a SALE summary table.

Make Year Colour Sales

Ferrari 1998 Red 50
Ferrari 1999 Red 85
Porsche 1998 Red 80

478 Chapter 13
Data analysis

representation in space of n dimensions is possible in the case of data cube
with an arbitrary number of grouping attributes.

The complexity of the evaluation of the data cube increases exponentially
with the increase of the number of attributes that are grouped. A different
extension of sql builds progressive aggregations rather than building all
possible aggregations; thus, the complexity of the evaluation of this
operation increases only in a linear fashion with the increase of the number

Figure 13.13 Data cube of the table represented in Figure 13.12.

Figure 13.14 Spatial representation of the data cube of Figure 13.13.

Make Year Colour sum(Sales)

Ferrari 1998 Red 50
Ferrari 1999 Red 85
Ferrari 1998 ALL 50
Ferrari 1999 ALL 85
Ferrari ALL Red 135
Ferrari ALL ALL 135
Porsche 1998 Red 80
Porsche 1998 ALL 80
Porsche ALL Red 80
Porsche ALL ALL 80
ALL 1998 Red 130
ALL 1999 Red 85
ALL ALL Red 215
ALL 1998 ALL 130
ALL 1999 ALL 85
ALL ALL ALL 215

Porsche

Red

ALL

1999

1998

Ferrari
ALL
ALL

Section 13.4 479
Development of the data warehouse

of grouping attributes. This extension requires the with roll up clause,
which replaces the with cube clause, as illustrated in the following example:

select Make, Year, Colour, sum(Sales)
from Sales
where (Make = 'Ferrari' or Make = 'Porsche')
 and Colour = 'Red'
 and Year between 1998 and 1999
group by Make, Year, Colour
with roll up

The result of the evaluation of this query is shown in Figure 13.5.

Note the progression of the aggregations, from right to left, and note that
the result has fewer tuples than the result of the data cube operation.

The with cube and with roll up queries are present in many relational
dbmss and do not necessarily require the presence of a dw. In any case, an
interpretation of the two queries according to the star model is always
possible, as the attributes of the group by clause carry out the role of
dimensions, while the remaining attributes of the select clause describe the
aggregate operations applied to facts.

13.4 Development of the data warehouse
There are two alternative approaches to the development of a DW.

• The first approach consists of the use of relational technology, suitably
adapted and extended. The data is stored using tables, but the analysis
operations are carried out efficiently using special data structures. This
type of system is called rolap (Relational olap).

• The second, more radical, approach consists of storing data directly in
multi dimensional form, using vector data structures. This type of system
is called molap (Multi-dimensional olap).

Figure 13.15 Roll-up of the table represented in Figure 13.12.

Make Year Colour sum(Sales)

Ferrari 1998 Red 50
Ferrari 1999 Red 85
Porsche 1998 Red 80
Ferrari 1998 ALL 50
Ferrari 1999 ALL 85
Porsche 1998 ALL 80
Ferrari ALL ALL 135
Porsche ALL ALL 80
ALL ALL ALL 215

480 Chapter 13
Data analysis

The molap solution is adopted by a large number of specialized products
in the management of data marts. The rolap solution is used by large
relational vendors. These add olap-specific solutions to all the technological
experience of relational dbmss, and thus it is very probable that rolap will
prevail in the medium or long term.

In each case, the rolap and molap technologies use innovative solutions
for data access, in particular regarding the use of special indexes and view
materialization (explained below). These solutions take into account the fact
that the dw is essentially used for read operations and initial or progressive
loading of data, while modifications and cancellations are rare. Large dws
also use parallelism, with appropriate fragmentation and allocation of data,
to make the queries more efficient. Below, we will concentrate only on rolap
technology.

13.4.1 Bitmap and join indexes
Bitmap indexes allow the efficient creation of conjunctions and disjunctions
in selection conditions, or algebraic operations of union and intersection.
These are based on the idea of representing each tuple as an element of a bit
vector. The length of the vector equals the cardinality of the table. While the
root and the intermediate nodes of a bitmap index remain unchanged (as
with the indexes with b or b+ trees described in Chapter 9), the leaves of the
indexes contain a vector for each value of the index. The bits in the vector
are set to one for the tuples that contain that value and to zero otherwise.

Let us suppose for example that we wish to make use of a bitmap index on
the attributes Name and Agency of the PROMOTION table, described in
Section 13.2.2. To identify the tuple corresponding to the predicate Name =
'SuperSaver' and Agency = 'PromoPlus' we need only access the two vectors
corresponding to the constants ‘SuperSaver’ and ‘PromoPlus’ separately,
using indexes, extract them, and use an and bit by bit. The resulting vector
will contain a one for the tuples that satisfy the condition, which are thus
identified. Similar operations on bits allow the management of disjunctions.

Obviously, a bitmap index is difficult to manage if the table undergoes
modifications. It is convenient to construct it during the data load operation,
for a given cardinality of the table.

Join indexes allow the efficient execution of joins between the dimension
tables and the fact tables. They extract those facts that satisfy conditions
imposed by the dimensions. The join indexes are constructed on the
dimension keys; their leaves, instead of pointing to tuples of dimensions,
point to the tuples of the fact tables that contain those key values.

Referring again to the data mart described in Section 13.2.2, a join index
on the attribute PromoCode will contain in its leaves references to the tuples
of the facts corresponding to each promotion. It is also possible to construct
join indexes on sets of keys of different dimensions, for example on
PromoCode and ProdCode.

Section 13.5 481
Data mining

As always in the case of physical design (see Chapter 9), the use of bitmap
and join indexes is subject to a cost–benefit analysis. The costs are essentially
due to the necessity for constructing and storing indexes permanently, and
the benefits are related to the actual use by the dw system for the resolution
of queries.

13.4.2 View materialization
Many queries to the dw require repeated laborious aggregations and
syntheses. In this case, it is convenient to evaluate views that express the
aggregated data, and store them permanently. This technique is called view
materialization. For example, in the data mart relating to the management of
the supermarkets, a materialized view could contain the sales data
aggregated by product, or the monthly sales of each store. The queries about
these aggregations would be directly carried out on the materialized view,
instead of in the dw.

The choice of views to be materialized is quite a complex problem, which
requires the knowledge of typical queries used in data marts and their
frequency of execution. In general, a view is convenient when it can sensibly
reduce the execution time of several frequently used queries.

As seen in Chapter 3, each view depends on a set of base tables. The
materialization is very convenient in an environment such as the dw, in
which the base tables are not continuously modified. When the tables are
reloaded or incrementally modified, however, we must update the views,
propagating the effects of the modifications on the base tables to them. As
mentioned in Chapter 12, data derivation is a typical internal application of
the active rules, which indeed can be used to incrementally update
materialized views.

13.5 Data mining
The term data mining is used to characterize search techniques used on
information hidden within the data of a dw. Data mining is used for market
research, for example the identification of items bought together or in
sequence so as to optimize the allocation of goods on the shelves of a store or
the selective mailing of advertising material. Another application is
behavioural analysis, for example the search for frauds and the illicit use of
credit cards. Another application is the prediction of future costs based on
historical series, for example, concerning medical treatments. Data mining is
an interdisciplinary subject, which uses not only data management
technology, but also statistics – for the definition of the quality of the
observations – and artificial intelligence – in the process of discovering
general knowledge out of data. Recently, data mining has acquired
significant popularity and has guaranteed a competitive advantage for many
commercial businesses, which have been able to improve their management
and marketing policies.

482 Chapter 13
Data analysis

13.5.1 The data mining process
The objective of data mining is the extraction of useful information from
large sets of data. This task is carried out repetitively and adaptively,
initiating a progressive extraction of knowledge, which is divided into four
phases.

1. Comprehension of the domain: it is impossible to extract useful
information if a good understanding of the application domain in which
it operates is not developed beforehand.

2. Preparation of the data set: this step requires the identification of a
subset of data of the dw on which to carry out the data mining. It also
requires the encoding of data to make it suitable input to the data mining
algorithm.

3. Discovery of patterns: this consists of the application of techniques of
data mining on the data set extracted earlier, in order to discover
repetitive patterns in the data. Later in the chapter, we will concentrate
our attention especially on the techniques used in this step.

4. Evaluation of patterns: this consists of drawing implications from the
discovered patterns, evaluating which experiments to carry out next and
which hypothesis to formulate, or which consequences to draw in the
process of knowledge discovery.

The data mining process has an impact when it allows operational
decisions to be made, for example, modifying the allocation policies of the
merchandise in the large store or changing the credit concession policies.

13.5.2 Data mining problems
Although each application has specific features, there are various general
problems that have been identified with a regular, recurrent structure; these
problems can be formalized and then solved by a suite of data mining
algorithms. Usually, data mining algorithms are characterized by good
scalability, that is, they guarantee good efficiency characteristics when
applied to large data sets. Below, we will look at three classic problems: the
discovery of association rules, discretization and classification.

Discovery or association rules Association rules discover regular
patterns within large data sets, such as the presence of two items within a
group of tuples. The classic example, called basket analysis, is the search for
goods that are frequently purchased together. A table that describes
purchase transactions in a large store is shown in Figure 13.16. Each tuple
represents the purchase of specific merchandise. The transaction code for the
purchase is present in all the tuples and is used to group together all the
tuples in a purchase. Rules discover situations in which the presence of an
item in a transaction is linked to the presence of another item with a high
probability.

Section 13.5 483
Data mining

More correctly, an association rule consists of a premise and a
consequence. Both premise and consequence can be single items or groups
of items. For example, the rule skis → ski poles indicates that the purchase of
skis (premise) is often accompanied by the purchase of ski poles
(consequence). A famous rule about supermarket sales, which is not obvious
at first sight, indicates a connection between nappies (diapers) and beer. The
rule can be explained by considering the fact that nappies are often bought
by fathers (this purchase is both simple and voluminous, hence mothers are
willing to delegate it), but many fathers are also typically attracted by beer.
This rule has caused the increase in supermarket profit by simply moving the
beer to the nappies department.

We can measure the quality of association rules precisely. Let us suppose
that a group of tuples constitutes an observation; we can say that an
observation satisfies the premise (consequence) of a rule if it contains at least
one tuple for each of the items. We can than define the properties of support
and confidence.

• Support: this is the fraction of observations that satisfy both the premise
and the consequence of a rule.

• Confidence: this is the fraction of observations that satisfy the
consequence among those observations that satisfy the premise.

Intuitively, the support measures the importance of a rule (how often
premise and consequence are present) while confidence measures its
reliability (how often, given the premise, the consequence is also present).
The problem of data mining concerning the discovery of association rules is
thus enunciated as: find all the association rules with support and confidence
higher than specified values.

For example, Figure 13.17 shows the associative rules with support and
confidence higher than or equal to 0.25. If, on the other hand, we were
interested only in the rules that have both support and confidence higher
than 0.4, we would only extract the rules jacket → T-shirt and T-shirt →
jacket.

Figure 13.16 Database for basket analysis.

Transaction Date Goods Qty Price

1 17/12/98 ski-pants 1 140
1 17/12/98 boots 1 180
2 18/12/98 T-shirt 1 25
2 18/12/98 jacket 1 300
2 18/12/98 boots 1 70
3 18/12/98 jacket 1 300
4 19/12/98 jacket 1 300
4 19/12/98 T-shirt 3 25

484 Chapter 13
Data analysis

Variations on this problem, obtained using different data extractions but
essentially the same search algorithm, allow many other queries to be
answered. For example, the finding of merchandise sold together and with
the same promotion, or of merchandise sold in the summer but not in the
winter, or of merchandise sold together only when arranged together.
Variations on the problem that require a different algorithm allow the study
of time-dependent sales series, for example, the merchandise sold in
sequence to the same client. A typical finding is a high number of purchases
of video recorders shortly after the purchases of televisions. These rules are
of obvious use in organizing promotional campaigns for mail order sales.

Association rules and the search for patterns allow the study of various
problems beyond that of basket analysis. For example, in medicine, we can
indicate which antibiotic resistances are simultaneously present in an
antibiogram, or that diabetes can cause a loss of sight ten years after the onset
of the disease.

Discretization This is a typical step in the preparation of data, which
allows the representation of a continuous interval of values using a few
discrete values, selected to make the phenomenon easier to see. For example,
blood pressure values can be discretized simply by the three classes ‘high’,
‘average’ and ‘low’, and this operation can successively allow the correlation
of discrete blood pressure values with the ingestion of a drug.

Classification This aims at the cataloguing of a phenomenon in a
predefined class. The phenomenon is usually presented in the form of an
elementary observation record (tuple). The classifier is an algorithm that
carries out the classification. It is constructed automatically using a training
set of data that consists of a set of already classified phenomena; then it is
used for the classification of generic phenomena. Typically, the classifiers are
presented as decision trees. In these trees the nodes are labelled by
conditions that allow the making of decisions. The condition refers to the

Figure 13.17 Association rules for the basket analysis database.

Premise Consequence Support Confidence

ski-pants boots 0.25 1
boots ski-pants 0.25 0.5
T-shirt boots 0.25 0.5
T-shirt jacket 0.5 1
boots T-shirt 0.25 0.5
boots jacket 0.25 0.5
jacket T-shirt 0.5 0.66
jacket boots 0.25 0.33
{T-shirt, boots} jacket 0.25 1
{T-shirt, jacket} boots 0.25 0.5
{boots, jacket} T-shirt 0.25 1

Section 13.5 485
Data mining

attributes of the relation that stores the phenomenon. When the phenomena
are described by a large number of attributes, the classifiers also take
responsibility for the selection of few significant attributes, separating them
from the irrelevant ones.

Suppose we want to classify the policies of an insurance company,
attributing to each one a high or low risk. Starting with a collection of
observations that describe policies, the classifier initially determines that the
sole significant attributes for definition of the risk of a policy are the age of
the driver and the type of vehicle. It then constructs a decision tree, as
shown in Figure 13.18. A high risk is attributed to all drivers below the age
of 23, or to drivers of sports cars and trucks.

13.5.3 Data mining perspectives
Data mining has been developed recently and is a result of various
application demands. It is interdisciplinary, using large thematic areas of
databases, artificial intelligence and statistics. It is a modern discipline, still
in the early stages of development, but evolving very rapidly.

Observing the actual development of the discipline, some issues emerge.
In the first place, it seems necessary and urgent that it is systematized, to
allow the various problems of data mining to be viewed together. Up to now,
they have been considered separately by researchers and managed using
specific systems for each specific problem. We expect to see, in the near
future, the definition of standard paradigms for the formulation of data
mining problems and of general techniques for their resolution.

It is then necessary to deal with the management of large data sets. The
current algorithms of data mining are not yet able to guarantee high

Figure 13.18 Classifier to identify risk policies.

POLICY(Number, Age, AutoType)

Age < 23

falsetrue

AutoType = ‘Sports’

false
true

AutoType = ‘Trucks’

false
true

486 Chapter 13
Data analysis

scalability in the face of very large databases. The problem can be
approached using sampling techniques, which consist of carrying out data
mining on reduced – but significant – samples of the database.

Finally, we need to know the extent to which the data mining tools can be
generic, that is, application-independent. In many cases, problems can be
solved only if one takes into account the characteristics of the problems
when proposing solutions. Aside from the general tools, which resolve the
problems described in the section and few other problems of a general
nature, there are also a very high number of problem-specific data mining
tools. These last have the undoubted advantage of knowing about the
application domain and can thus complete the data mining process more
easily, especially concerning the interpretation of results; however, they are
less generic and reusable.

13.6 Bibliography
In spite of the fact that the multi-dimensional data model was defined
towards the end of the seventies, the first olap systems emerged only at the
beginning of the nineties. A definition of the characteristics of olap and a
list of rules that the olap systems must satisfy is given by Codd [31].
Although the sector was developed only a few years ago, many books
describe design techniques for dws. They include Inmon [49] and Kimball
[53]. The data cube operator is introduced by Gray et al. [45].

The literature on data mining is still very recent. A systematic
presentation of the problems of the sector can be found in the book edited
by Fayyad et al. [40], which is a collection of various articles. Among them,
we recommend the introductory article by Fayyad, Piatetsky-Shapiro and
Smyth, and the one on association rules by Agrawal, Mannila and others.

13.7 Exercises
Exercise 13.1 Complete the data mart projects illustrated in Figure 13.4 and
Figure 13.5, identifying the attributes of facts and dimensions.

Exercise 13.2 Design the data marts illustrated in Figure 13.4 and
Figure 13.5, identifying the hierarchies among the dimensions.

Exercise 13.3 Refer to the data mart for the management of supermarkets,
described in Section 13.2.2. Design an interactive interface for extraction of
the data about classes of products sold in the various weeks of the year in
stores located in large cities. Write the sql query that corresponds to the
proposed interface.

Exercise 13.4 Describe roll-up and drill-down operations relating to the
result of the query posed in the preceding exercise.

Section 13.7 487
Exercises

Exercise 13.5 Describe the use of the with cube and with roll up clauses in
conjunction with the query posed in Exercise 13.3.

Exercise 13.6 Indicate a selection of bitmap indexes, join indexes and
materialized views for the data mart described in Section 13.2.2.

Exercise 13.7 Design a data mart for the management of university exams.
Use as facts the results of the exams taken by the students. Use as
dimensions the following:

1. time;

2. the location of the exam (supposing the faculty to be organized over
more than one site);

3. the lecturers involved;

4. the characteristics of the students (for example, the data concerning pre-
university school records, grades achieved in the university admission
exam, and the chosen degree course).

Create both the star schema and the snowflake schema, and give their
translation in relational form. Then express some interfaces for analysis
simulating the execution of the roll up and drill down instructions. Finally,
indicate a choice of bitmap indexes, join indexes and materialized views.

Exercise 13.8 Design one or more data marts for railway management. Use
as facts the total number of daily passengers for each tariff on each train and
on each section of the network. As dimensions, use the tariffs, the
geographical position of the cities on the network, the composition of the
train, the network maintenance and the daily delays.

 Create one or more star schemas and give their translation in relational
form.

Exercise 13.9 Consider the database in Figure 13.19. Extract the association
rules with support and confidence higher or equal to 20 per cent. Then
indicate which rules are extracted if a support higher than 50 percent is
requested.

Exercise 13.10 Discretize the prices of the database in Exercise 13.9 into
three values (low, average and high). Transform the data so that for each
transaction a single tuple indicates the presence of at least one sale for each
class. Then construct the association rules that indicate the simultaneous
presence in the same transaction of sales belonging to different price classes.
Finally, interpret the results.

488 Chapter 13
Data analysis

Exercise 13.11 Describe a database of car sales with the descriptions of the
automobiles (sports cars, saloons, estates, etc.), the cost and cylinder
capacity of the automobiles (discretized in classes), and the age and salary of
the buyers (also discretized into classes). Then form hypotheses on the
structure of a classifier showing the propensities of the purchase of cars by
different categories of person.

Figure 13.19 Database for Exercise 13.9.

Transaction Date Goods Qty Price

1 17/12/98 ski-pants 1 140
1 17/12/98 boots 1 180
2 18/12/98 ski-pole 1 20
2 18/12/98 T-shirt 1 25
2 18/12/98 jacket 1 200
2 18/12/98 boots 1 70
3 18/12/98 jacket 1 200
4 19/12/98 jacket 1 200
4 19/12/98 T-shirt 3 25
5 20/12/98 T-shirt 1 25
5 20/12/98 jacket 1 200
5 20/12/98 tie 1 25

14
14Databases and the

World Wide Web

The evolution of the Internet is one of the most important phenomena in
information technology. The users are rapidly increasing in number and
variety, from companies with high-speed networks to individuals with slow
modem connections. Companies often arrange private networks that make
use of the same protocols and tools developed and used on the Internet.
These are called intranets and are sometimes connected to the Internet. A
major technology on both Internet and intranets is the World Wide Web
(www), often called simply the Web; the Web has introduced a new
paradigm for both the dissemination and the acquisition of information,
which is easy to use, flexible and economical.

The Web was originally an interface for access to distributed documents.
It is now a platform for information systems of all types, having in common
only the fact of being accessible, directly or indirectly, through generic tools,
called browsers. Systems of this type are often called Web Information
Systems (wis); coupled to dbmss, they are able to support and provide access
to large amounts of data. For this reason, the inclusion of Web-based
technology for data management is essential in a database textbook.

At the same time, wiss also present specific problems. In the first place, the
type of supported information is highly heterogeneous. Since the beginning,
the Web has been used to manage textual and multimedia information
(images, audio, video). In contrast, traditional information systems mainly
manage data that can be represented by means of simple data structures: sets
of tuples with atomic values. In summary, the structure of the information
managed through the Web is more complex and less structured and regular
than that used in databases.

Another distinguishing feature of wiss is that they typically offer greater
flexibility to the user in the interaction with the system: interaction is driven

490 Chapter 14
Databases and the World Wide Web

by the interest of the user rather than following pre-designed patterns. In
contrast, users have limited opportunity for changing the data content. For
instance, in electronic commerce, users can manipulate only the content of
their private ‘baskets’, containing the sale details of the purchased goods,
but cannot alter the content of the Web data describing offers.

Furthermore, the interaction between a Web browser and a source of
information makes use of tools that are different from those used in
traditional systems. Although the substantial standardization of browsers
makes the interfaces fairly uniform, their characteristics can vary, depending
on the device being used for accessing the Web. Think of the differences that
can exist between the capabilities available on a powerful workstation with
a big screen on a high-speed intranet and that of a portable computer with a
small screen and a mobile telephone connection.

In addition, applications are offered to a very large community, all the
Internet users. Therefore, the goals to be taken into account are much wider
and more diverse than in traditional information systems.

For all these reasons, a rethinking of the wis development process itself is
required. This will apply both to the components explicitly developed and
to those to be integrated into them.

In this chapter, we will look at the interaction between the techniques of
databases and those of the Web. After recalling the fundamental concepts of
the Internet and the Web, we will illustrate the evolution of wis applications
and the main categories into which they can be classified. In the two
following sections we will deal with the aspects that are most relevant to
databases. First, we address the problems concerning modelling and design
of Web sites, by focusing on those Web sites in which data plays an
important role. We call them data-intensive Web sites and we believe that
their importance will increase significantly in the near future. Finally, we
will deal with the technology for integrating Web sites and databases.

14.1 The Internet and the World Wide Web
We now give a brief overview of those aspects of the Internet and the World
Wide Web that are a prerequisite for the rest of the chapter.

14.1.1 The Internet
The Internet can be defined as a federation of networks that communicate by
means of the same set of protocols, those of the tcp/ip (Transmission Control
Protocol/ Internet Protocol) family. Usually, a node of the Internet is part of a
local network, which interconnects workstations or personal computers
located within a small area. Local networks communicate with each other
within network hierarchies, for example the network of a university, the
network of all the universities in a country, an overall national network and
so on.

Section 14.1 491
The Internet and the World Wide Web

Each node (computer) on the Internet has an IP address, which uniquely
identifies it; ip addresses consist of four numbers, for example 131.175.21.1.
Usually, a machine on the Internet also has a symbolic name, made up of
identifiers separated by dots, which can be used instead of the ip address. For
example, the symbolic name morgana.elet.polimi.it can be used to refer to
the above ip address.

Through the address structure, the federal network organization becomes
transparent, as the user (person or program) can refer to any node with a
known address. From the logical point of view, each Internet node can
connect directly with any other node. Communication takes place by means
of a layered organization, which involves various protocols, including the
already-mentioned tcp/ip, whose details go beyond the scope of this text. A
fundamental characteristic of all the applications that operate on the Internet
(and more generally on any other network that uses the tcp/ip protocols) is
the adoption of the client-server paradigm, which we discussed in
Section 10.1. The clients manage the interaction with the user and the
servers carry out the requested operations, providing the clients with
appropriate responses. Servers offer a set of predefined functions (in
particular, Web services), based on standard protocols (such as http), which
in turn use the services provided by tcp/ip.

14.1.2 The World Wide Web
Let us introduce the World Wide Web through a series of steps. A hypertext
is a document with a non-sequential structure, made up of various parts,
related by means of links. The components can be directly accessed by
following the links, without the rigidity of the sequential physical structure.
To give a first example, let us illustrate how the content of a book could be
organized by means of a hypertext, with a hierarchical structure (see
Figure 14.1). The root contains a general description (for example the
preface) and allows access to succeeding chapters, each of which is still
organized with a possible brief introduction and links to its sections. In the
course of the text, there can be references to one point or another (as in a
traditional book there are references to pages or sections) or to a
bibliography.

The concept of hypertext can be generalized in various ways. In the first
place, we have spoken of a single document, while the same technique can
be used to correlate many documents, originated by different people at
different times. From the conceptual point of view, there is no difference
between the internal links of a document and those to other documents.
Furthermore, the documents can be not only textual but also of other types,
such as images, video or audio. In this case, we refer to a multimedia
hypertext, often abbreviated to hypermedia. Finally, as we are referring to the
Internet, the set of documents that make up the hypermedia can be
distributed over many nodes (see the schema in Figure 14.2). To summarize,

492 Chapter 14
Databases and the World Wide Web

we can say that the World Wide Web is a distributed multimedia hypertext
with independent components, as it connects documents of various types
produced and maintained by different subjects over the Internet.

Not only does the Web allow access to static documents as described
above, but it also offers the opportunity to launch programs that dynamically
generate new pages. Thus, the generation of a given page can be based on
contents extracted from a database.

The major technological components of the Web, which allow
implementation of the ideas that we have described above, are briefly
addressed below. They are the html (HyperText Mark-up Language)
language, the url (Uniform Resource Locator) concept for referencing
resources, and the http (HyperText Transfer Protocol) communication
protocol.

14.1.3 HTML
The documents that make up the hypertext structure of the Web are written
in html; html allows the formatting of documents and the description of
hypertext links. We will not dwell on the details of html, but will highlight
some important aspects.

Figure 14.1 Hypertext with a hierarchical structure.

Figure 14.2 A distributed multimedia hypertext.

Section 1.1

Section 1.2

Section 1.3

Section 2.1

Section 2.2

Section 3.1

Preface

Chapter 1

Chapter 2

Chapter 3

Node A Node B

Text X

Text U

Text Y

Image Z

Node C

Text V

Text W

Section 14.1 493
The Internet and the World Wide Web

HTML documents can be displayed by means of Web browsers (such as
Netscape Navigator and Microsoft Internet Explorer), which can access local
documents (behaving like a word processor in read-only mode) or documents
located at remote sites. As regards formatting, it is important to underline
that html describes the logical characteristics of a document and not the
physical ones. For example, it can specify that a phrase must be emphasized,
but not how the emphasis is created. This characteristic is very important,
because the same document can be viewed by different clients, each with a
different viewing device and browser. With modern browsers, the emphasis
might be a change of font or a change of colour, whereas on a textual browser
on an old-fashioned monochromatic terminal, it might be blinking.

 As stated above, a fundamental feature of hypertexts is the possibility of
creating links, connecting different documents or also different parts of the
same document. The links are specified by associating a url with a portion
of text (or with an image), called an anchor. The url specifies the resource (for
example, the document or program) to which the anchor refers. The simplest
form of url consists of the specification of a local file. The text that forms an
anchor is usually displayed underlined. When the user selects an anchor (by
means of a mouse click), the browser requests the service corresponding to
the url. For example, an anchor with text Charles Jones and url
charlie.html causes the display of the string Charles Jones underlined; a
click on that string opens the file charlie.html in the same directory.

A more general format for a url is:

[Protocol://][Server/]Resource

where:

• the Protocol is one of those available on the Internet, for example http
(which we will look at below), ftp (for the remote transfer of files), Telnet
(for terminal emulation) or an electronic mail protocol;

• the Server is usually specified by means of the symbolic name, but an IP
address could be used as well;

• the Resource is in many cases a directory path followed by a file name, but
can include parameters or can be an electronic mail address.

An example of a url that uses the http protocol to retrieve the file with
the name index.html from the directory vldb2001 of the server
www.dia.uniroma3.it is:

http://www.dia.uniroma3.it/vldb2001/index.html

html also allows the creation of pages in which the users can insert values
of parameters, to be sent to the server. These pages use the form construct,
which provides fields where users may insert data. An action is associated
with a form, specifying the URL of the program that must be executed when

494 Chapter 14
Databases and the World Wide Web

the form itself is completed (and ‘submitted’ to the Web server). The data
specified by the user is transmitted to the program as parameters or as input
data. The page can be used for providing content to be stored in the wis (for
example, by inserting tuples in a database), or for retrieving content, or for
a mix of the two.

14.1.4 HTTP
The World Wide Web is operated by HTTP servers (also called Web servers),
system programs that offer their services to browsers via http, which in turn
uses tcp (and then ip) at the lower level. http consists of four phases.

1. Opening the connection: the browser (which has the role of client) contacts
the http server, at the address and with the protocol indicated in the
url, in order to verify the accuracy and availability. In particular, a tcp
connection is requested;

2. Establishment of the connection: the server (if available) accepts the
connection and sends a confirmation;

3. Request: the client sends a message to the server, with the request for a
service, the details of the resource invoked and possible parameters for
that invocation;

4. Reply: the server communicates whether the request can be satisfied and,
if so, the results; at the same time, the server terminates the connection,
without retaining any information to be used in subsequent
connections.

It is important to underline the fact that the http protocol has no memory
(it is stateless). Thus, when a client issues several http requests to the same
server, the server itself is not able to maintain information about the
operations already carried out on behalf of the same client and of their
results. This choice is motivated by the simplicity of the protocol, which
manages each request separately without keeping records of the context.
Clearly, this represents a limitation of the protocol, because it becomes
difficult to carry out procedures that require multiple interactions, such as
those necessary for database transactions. We will briefly look at how we can
overcome this limitation in Section 14.4.

14.1.5 Gateways
Web servers can invoke programs and pass parameters to them, such as the
data input by the user in a form. Let us look at the basic concept, which we
will develop in Section 14.4 with reference to database access. A gateway is
any program called by a Web server. It can be a compiled program written in
a high-level language, such as c, c++, or Java, or in interpretable languages
such as Perl or Tcl (used for operations on strings), or even in scripting
languages for operating system shells. As the name suggests, a gateway

Section 14.2 495
Information systems on the Web

allows the establishment of a connection between the Web and another
environment. A gateway is invoked by using a url similar to those used for
accessing an html file with the http protocol. It thus specifies the name of
the file, possibly preceded by the http:// string and by the specifications of
the server and the directory. Parameters can be specified by appending them
to the url.

The communication mechanism between Web servers and gateways is
called Common Gateway Interface (cgi) and is shown in Figure 14.3. It is
divided as follows.

1. The user requests the url by clicking on an anchor, or by sending a
form. In both cases, parameters can be transmitted to the http server.
There are various techniques for the transmission of parameters, but we
omit the details.

2. The server launches the gateway (also called a CGI program), according to
the cgi protocol, and transmits the parameters.

3. The gateway is executed, with the parameters received, and possibly
interacts with other resources, for example, a database.

4. The gateway returns the results to the Web server.

5. The Web server transmits the results to the client.

From our perspective, the most typical use of the cgi protocol is for
interfacing a dbms; in this case, the cgi program contains queries or updates
to the database. We will return to this topic in Section 14.4.

14.2 Information systems on the Web
We said at the beginning of this chapter that the Web is a general interface
for access to information systems of all types. We predict that in the near
future it will become the standard interface, or at least the prevalent one.
Certainly, the number of information systems on the Web (wis) and their
capability will increase rapidly. In order to prepare for a discussion on the
role of databases in wiss, we need to identify the main categories of wis.

Before entering into the discussion, an observation is appropriate. The
Web originated in the scientific world, and it spread first through individual
users and not professional ones. Only later did it become a working tool. A
term often used to describe use of the Web is surfing, which suggests a usage
that is superficial and recreational. We will focus on the Web as a device for
pursuing processional or business-oriented objectives in the context of

Figure 14.3 The cgi communication mechanism.

Browser HTTP
server

CGI
program

. . .HTTP CGI

496 Chapter 14
Databases and the World Wide Web

databases, where surfing is not a central issue. However, data-intensive
applications offer large collections of data to end users, thus supporting
forms of surfing.

14.2.1 Publication and consultation on the Web
The original objective of the Web was to make information available, in
particular in the form of html pages. Many organizations use the Web for
making information available to worldwide users. This information is
organized in html pages that are usually purpose-built, although most of
them are based on pre-existing information. The users of these systems
consult the information published on the Web.

As the demand and the quantity of published information increases, it
becomes apparent that the manual management of html documents is
difficult.

• Data may change. These changes need to be propagated to the data
content of the Web site, but the process is labour-intensive. Data is inter-
connected with the hypertext organization and the graphic presentation;
this makes Web site evolution more difficult.

• The Web site can store data in a redundant fashion, in order to facilitate
legibility and navigation. For example, consider the pages about
university professors. On each of these pages there could be not only a
link to the main page of the department, but also the name and address of
the professor, which is the same as the address of the department. If the
department changes its address, the modification would thus affect many
pages.

These two problems are eased if data is stored in a database. This allows
the pages to be constructed automatically,1 supports the separation of the
various aspects and eliminates the problems of redundancy.

The second main reason for the interaction of Web sites and databases is
the fact that the information itself might already be stored in databases. In
these cases, the reason for publication on the Web is to enable easier access
to a large amount of relevant information, which can be published on the
Web at relatively little cost.

14.2.2 Transactions on the Web
Initially, the databases accessible through the Web were updated by other
means, such as already existing applications or specific functions for loading
and modifying data, managed locally. A natural step at this point was to
allow for updates through the Web, possibly through pages structurally

1. The fact that the page construction is static or dynamic, that is, on-line or off-
line, is not important here. The crucial aspect is that the effort of construction of
the pages is supported. We will return to this aspect in Section 14.5.

Section 14.2 497
Information systems on the Web

similar to those used for display, so distributing the work to different
individuals. For example, in a university site, the updates concerning the
staff of each department could be managed by the administration of the
department itself. Access by means of the browser thus substitutes for other
user interfaces, bringing the benefit of uniformity.

14.2.3 Electronic commerce and other new applications
Apart from the increased number of users and the uniformity of the
interfaces, the applications described above can be thought of as traditional
in the context of information systems. On the other hand, the Web has
produced many new applications, which are possible due to the spirit of
collaboration and participation that animates many of the Internet users.

One of the most important and challenging new applications is electronic
commerce, that is, the use of the Web for selling goods and services. Many
companies sell products on the Web, for example, books, software tools, air
tickets, and so on; the information about offered products has to be organized
and stored at the company’s site, typically by means of a dbms. This
application is largely an extension of existing systems: traditional mail order
is often based on information systems and databases, which are used only by
company personnel. Now, with Web-based systems, access is offered directly
to the purchaser. Clearly, the security problem becomes critical at this point,
especially for the payment for sales, which is usually done by communicating
credit card numbers on the Web.

Several other new applications of Web technology are less tightly
connected with database technology, although they might need the support
of a dbms for the management of large data sets.

One new application is that of discussion groups. The discussion group idea
has been taken up by commercial organizations; for example, the companies
that sell books through the Web usually offer the possibility of writing
comments and revisions, which become public property. The management of
the information can be carried out by means of simple files, but, if the size
increases, it can be useful to have the support of a database.

Further developments of the potential offered by the Web are affecting
other types of systems. For example, support is being developed for forms of
co-operative work. The idea has already been widespread in the technical and
scientific community for years, and concerns tools, in particular software,
able to harness the power of individual or group activity, also known as
Computer-Supported Cooperative Work (cscw). The most advanced forms of
co-operative systems require the controlled sharing of documents and the
co-ordination of activities and workflow. The software dedicated to this
purpose, known as workflow management systems (wfms), enables the
organization of work within offices by controlling activities and the flow of
the documents that they produce. The Internet provides a very useful
infrastructure for the creation of workflow systems and the Web is the

498 Chapter 14
Databases and the World Wide Web

natural interface. It should be underlined, however, that a workflow often
requires a level of structuring of activities and support of integrated and
specific software systems that can be in conflict with the open nature of the
Web. We can say that these applications are usually offered to a particular
range of users who co-operate according to specific rules and make use of
specific tools that are not generally available. Therefore, workflows are often
used over intranets. However, sometimes the same infrastructure should be
used for both protected and open applications. This need led to the
development of extranets, networks that are controlled by given
organizations, but are also open to some form of external access. On
extranets, users are classified and each user is enabled to use different
applications. A classical example is the extranet offered by express delivery
companies, where information is provided by the company’s employees in a
protected way, but customers can monitor the delivery of their mail by using
the same Web interfaces.

Another original aspect of the Web is the possibility of offering integrated
services, handled by different subjects. Co-operation here can be loose or
rigid. An example of the former is the ‘list of useful links’ or ‘related sites’,
which are found on many pages; an example of the second is an interface that
allows bibliographical search over many sites. An example of the latter is the
activity of data farming: given the large amount of data available on the Web,
a company or entity can acquire and organize information through the Web,
possibly for integration into its data warehouse.

A different direction that is developing in wiss is that of embedded
systems. These systems do not use traditional terminals or personal
computers as interfaces, but use a range of devices, such as mobile phones,
wireless palmtop computers, data collection devices or control systems for
industrial installations. A common characteristic of these systems is the
limitation of the resources (computing power, memory, bandwidth and size
of display, if any). Currently, this type of system presents few aspects of
specific interest from the point of view of databases. On the other hand, in
the near future we expect a rapid growth of ‘terminals’ connected to the
Internet, incorporated into vehicles or domestic appliances for example, and
then the demand for database interaction will increase. As an example,
consider a system in a vehicle that uses a gps device to determine the
position of the vehicle on any part of the Earth’s surface and obtains, from
the Web, weather or tourist information for the area. Alternatively, for
domestic appliances, think of a system for carrying out maintenance and
software updating through the Internet.

14.3 Design of data-intensive Web sites
In this section we will briefly discuss how the techniques for the design of
databases, which we described in detail in Chapters 5–7, can be adapted for
the design of Web sites. Clearly, the design of Web sites is a complex activity

Section 14.3 499
Design of data-intensive Web sites

and cannot be dealt with in a few pages; we will therefore give an overview
of the main issues.

Let us first clarify the extent of the design activity that we are now going
to consider.

One could think of the entire Web as a unified source of information. This
is not a helpful view, as there is no coherence in the form in which the
information is offered, in its quality, substance or usability. At the other
extreme, we could consider the Web as a set of ‘independent pages’, each of
which constitutes a specific source of information. This is the point of view
of the lists of bookmarks managed by browsers and of search engines, which
select links to single pages. Both alternatives are obviously inappropriate for
setting the scope of Web design. In fact, design has to concentrate on a
system that is dedicated to a specific application need and under the control
of a single subject, or at least of various co-ordinated subjects who share the
same design goals. Since Web sites usually enjoy this property, we set Web
sites as the extent of the design activity.

We further concentrate our attention to data-intensive Web sites. That is,
sites whose primary purpose is to deliver large amounts of information to a
variety of users. These needs are best served by sites with very regular
structures. For example, the various departments of a university, each with
its own professors and courses, often have similar Web pages,
homogeneously interconnected. Correspondingly, a database may store
information about professors and courses. Given the regularity of Web pages,
it becomes convenient to design portions of the Web with techniques similar
to those used to design databases. Our attention, therefore, will be mainly
centred on sites with at least a certain degree of regularity in the information
offered, whose goal can be described as the ‘publication of the contents of a
database’ for consultation purposes.

14.3.1 A logical model for data-intensive hypertexts
Let us consider a company that has a database with the conceptual schema
and the logical schema in Figure 14.4. (This is a simplified version of a case
shown earlier.) Suppose that the company wishes to organize a Web site that
offers the content of the database for consultation. A simplified, but
reasonable organization for this site includes:

• a home page, with links to all the branches and two other pages,
containing links to all the projects and to all the employees of the
company, respectively;

• a page for each branch, with a list of departments, each with a link to the
respective manager and a link to another page with a list of employees of
the department;

• a page for each project, with a list of links to the employees of the project;

500 Chapter 14
Databases and the World Wide Web

• a page for each employee, with personal information and links to the
branch and to the projects in which he or she is participating.

The pages for projects, employees, departments, and branches, within
each of the categories, are certainly similar to each other. For example, in
Figure 14.5 we show the pages for two employees: these contain the same
information, with different values, and have the same organization. We find
here the classical distinction between schema and instance: the regular
structure of the page is the schema, while the actual content corresponding
to a given employee is an instance that conforms to the schema. Thus, it
makes sense to have the notion of a page schema to describe the common
structure of a set of pages. We can have the page schema EMPLOYEE of which
the two pages shown are instances.

Based on the above considerations, we can define a model for Web
hypertexts, which describes the page structure and the way in which the
pages are correlated. We present a simple model sufficient for the site
described above. It uses the sole construct of the page schema, which is
analogous to the notion of class in the object-oriented model shown in
Chapter 11. Each page can have atomic or complex attributes. Besides the
classic ones (integer, character, date, and so on), atomic types also include
multimedia types (for describing documents, images and sometimes videos
and sound). Complex attributes are built by means of the list constructor
(because pages have a physical order). Links connect page schemas as in the
object model, but each link instance consists of both a reference and an

EMPLOYEE(Surname, Firstname, Branch, Department)
DEPARTMENT(Branch, Name, Phone, Manager)

BRANCH(City, Address)
PROJECT(Title, Budget, ReleaseDate)

PARTICIPATION(Employee, Project, StartDate)

Figure 14.4 The e-r schema and the logical schema of a database on the
employees of a company.

EMPLOYEE

MANAGEMENT

PROJECT

DEPARTMENT

BRANCH

MEMBERSHIP

COMPOSITIONPARTICIPATION

(1,1)(0,1)

(1,N)(0,1)

(1,1)

(1,N)

(0,N)

(1,N)

Surname

Firstname

Salary

Title
Budget

ReleaseDate

StartDate

Phone

Name

City

Address

Section 14.3 501
Design of data-intensive Web sites

associated anchor, usually a value whose content identifies the page referred
to. Using syntax similar to that of Chapter 11, we can define the page schema
EMPLOYEE as follows:

page-schema Employee
 (Surname: string;
 Firstname: string;
 Salary: integer;
 Dept: string;
 Branch: link(City: string; *Branch);
 Projects: list-of
 (Project: link(Title: string; *Project);
 StartDate: date;
);
)

In particular, note that each link is made up of an attribute with the role
of anchor (for example, City in the Branch link) and of a reference (for
example, *Branch in the above example). The anchor is made up by one or
more attributes of the referenced page schema. Alternatively, as we will see
shortly, the anchor can be a constant.

A peculiar characteristic of the Web is the fact that while in a database
each class usually has several instances, there are page schemas that have one
and only one instance. For example, the home page of each site falls into this
category. In the site described above, the pages that contain the list of all the
employees and the list of all the projects also have this characteristic. We can
say that these pages are unique; anchors pointing to unique pages from other
pages are constant strings. With the same syntax as above, the other page
schemas of the site can be defined as follows:

page-schema Company unique
 (Branches: list-of (Branch: link(City: string; *Branch));
 Employees: link("Employees"; *EmployeeList);
 Projects: link("Projects"; *ProjectList);
)
page-schema ProjectList unique

Figure 14.5 Web pages for two employees.

502 Chapter 14
Databases and the World Wide Web

 (Projects: list-of(Project: link(Title: string; *Project)))
page-schema EmployeeList unique
 (Employees: list-of(Employee: link(Surname:string; *Employee)))
page-schema Branch
 (City: string;
 Address: string;
 Depts: list-of
 (Name: string;
 Phone: string;
 Manager: link(Surname: string; *Employee);
 Employees: link("Employees"; *EmployeesOfDept);
)
)
page-schema EmployeesOfDept
 (Branch: link(City: string; *Branch;
 Dept: string;
 Employees: list-of(Employee: link(Surname:string; *Employee));
)
page-schema Project
 (Title: string;
 Budget: integer
 ReleaseDate: date;
 Employees: list-of(Employee:link(Surname:string; *Employee));
)

A graphic representation of the same schema is shown in Figure 14.6.

14.3.2 Levels of representation in Web hypertexts
The schema described above can be considered as the description of the
hypertext at a logical level. In fact, it represents the hypertextual structure,
but it does not describe all the details of the hypertext itself, such as the
actual layout of the pages or some additional links, which are usually
included in Web sites. For example, one of the pages about the employees
could be that in Figure 14.7, rather than the one in Figure 14.5. Both pages
correspond to the same page schema and to the same database content; what
changes is the page layout and the graphical presentation.

A further observation we can make on the site illustrated above is that the
same data content can be presented through different page schemas. For
example, rather than each employee’s page having a link to the branch and
the list of projects, we could have more information about the branch and a
link to a page that lists the employee’s projects. The definition of the page
schema would become:

page-schema Employee
 (Surname: string;
 Firstname: string;
 Salary: integer;
 Dept: string;
 City: string;
 Address: string;
 Projects: link("CurrentProjects"; *ProjectsOfEmp);
)

Section 14.3 503
Design of data-intensive Web sites

Figure 14.8 shows the pages of our usual employees, according to the new
organization.

The above considerations allow us to distinguish among three distinct
aspects of a data-intensive Web site.

• The information content, which, in a data-intensive site, is made up of
data. As in databases, we can distinguish between schemas and instances.

• The hypertext structure, which describes how the information content is
organized into pages and the links that allow navigation among the pages.

Figure 14.6 Logical schema of a hypertext.

Project: Title: string

Projects: list-of

PROJECTLIST unique Employee: Surname: string

Employees: list-of

EMPLOYEELIST unique

Branches: list-of

Branch: City: string

COMPANY unique

Projects: "Projects"

Employees: "Employees"

Surname: string
Firstname: string
Salary: integer
Dept: string

Projects: list-of

Project:
StartDate: date

Title: string

EMPLOYEE

Branch: City: string

Employee: Surname: string

Title: string
Budget: integer
ReleaseDate: date
Employees: list-of

PROJECT

City: string
Address: string
Depts: list-of

BRANCH

Name: string

Phone: string

Manager: Surname: string

Employees: "Employees"

Dept: string
Employees: list-of

EMPLOYEESOFDEPT

Branch: City: string

Employee: Surname: string

504 Chapter 14
Databases and the World Wide Web

In a data-intensive site, the hypertext structure can be defined by a
hypertext schema, with references to the database schema for the data.

• The presentation, which describes the graphic aspects and the
deployment of the contents and links within the pages; the definition of
the presentation can also refer to the hypertext schema.

This division shows some similarities with the levels in database
architectures (external, logical and physical) as discussed in Chapter 1.
Keeping with the analogy, we can also extend the notion of independence
with a new level, which we can call ‘hypertext independence’. In fact, the
hypertext structure of a site can be modified without altering the structure
of the associated database. Also, the presentation can be modified, without
necessarily modifying the hypertext structure or the database structure.
Presentation is in a sense the implementation level of hypertexts. In contrast

Figure 14.7 Web page with the same information as one of those in
Figure 14.5, with a different presentation.

Figure 14.8 Another two employee pages, with different contents.

Section 14.3 505
Design of data-intensive Web sites

with databases (where physical structures are not visible) presentation
characteristics are visible to the users, even if they do not influence the
information content.

14.3.3 Design principles for a data-intensive Web site
The distinctions among the various aspects of hypertext, contents, structure
and presentation, suggest a design method: it is appropriate first to define the
contents, then the hypertext structure, and finally the presentation.

In data-intensive Web sites, the content is made up largely of data, which
we can describe on various levels, conceptual, logical and physical.

As regards the contents, the most useful description is undoubtedly the
conceptual one, which we can consider as a major input for the design of the
hypertext. We can thus think of the design of a data-intensive Web site as
made up of two interconnected lines of activity: database design and
hypertext design.

To identify the phases of the method, we can make the following
observations. First, it is necessary that the analysis of requirements does not
concern only the specifically data-oriented aspects, as we assumed in
Chapter 6. We must also consider the objectives of the site, the user
requirements, and the desired interaction techniques. Thus, hypertext
design should use on one hand the products of conceptual database design,
and, on the other hand, the requirements specifically focused on Web
interaction aspects.

The phase of hypertext design uses the conceptual schema as input and
produces a hypertext schema as output. We identify a number of differences
between these two models.

• A conceptual model tends to map each class of real world objects to a
different entity. In hypertext, the pages are focused upon application
objects, which often embody several entities of the conceptual schema.

• In a conceptual model, the relationships are indicated in a non-redundant
way and without indications of a ‘predefined direction’. In a hypertext,
links are oriented (a reference goes from one page to another, and there
need not be the inverse link) and multiple links may correspond to the
same relationship, yielding redundant navigation opportunities. In
addition, links may correspond to paths obtained by traversing two or
more intermediate relationships.

• A hypertext has additional page schemas and links that support the
navigation (including the home page and some hierarchical structures or
forms for accessing page instances).

The logical model of the hypertext also specifies several aspects that are
not present in the conceptual data model, including the organization of the
concepts into pages and the auxiliary access structures. For this reason, it can

506 Chapter 14
Databases and the World Wide Web

be useful to introduce an intermediate level, which we can call the conceptual
level of the hypertext. This has the aim of keeping track of the aspects just
mentioned. We limit ourselves to a simple example, illustrated in Figure 14.9,
which illustrates the main features of a conceptual representation for
hypertexts. We underline the differences with regard to the conceptual
database schema in Figure 14.4.

• The DEPARTMENT entity has been transformed into an attribute, because
the concept has not been considered to be autonomous in the hypertext.
It is however, a structured attribute, which is also involved in several
relationships.

• The relationships are oriented. Many are bi-directional, but there is one,
MANAGEMENT, which is unidirectional: it is assumed that it is important to
get from a department to its manager and not vice-versa.

• The concepts COMPANY, ACTIVITIES, PERSONNEL have no counterparts in the
e-r schema; they make up the main access structures of the site. In a
complex site, there can be many concepts of this type, corresponding to a
hierarchical organization for enabling navigation to page instances.

Figure 14.10 illustrates a method for the design of data-intensive Web
sites. Let us briefly comment on the various phases.

Requirements analysis, conceptual design and logical design of the database
component can be carried out as we discussed in Chapter 6 and Chapter 7,
with some additional emphasis, in requirements analysis, on the specific
needs of the Web framework.

Figure 14.9 Conceptual schema of a hypertext.

PARTICIPATIONPROJECT EMPLOYEE
(1,N) (0,N)

ACTIVITIES PERSONNEL

COMPANY

BRANCH

MANAGEMENT

MEMBERSHIP DEPT
(1,N)(0,1)

(0,1) (1,1)

Address City

Name Phone

Surname
Firstname Salary

Title Budget ReleaseDate

Section 14.3 507
Design of data-intensive Web sites

• Conceptual hypertext design, given the requirements and the conceptual
data schema, produces the conceptual schema of the hypertext.

• Logical hypertext design produces the logical schema of the hypertext
given the conceptual one.

• Presentation design has the aim of defining the layout and the presentation
of each of the page schemas defined in the logical design.

• Site generation is concerned with the development of the connection
between the database and the Web site according to the technological
options that are discussed in the next section.

The proposed approach is modular: if a database exists already, and it is
documented by means of a conceptual schema, then the conceptual and
logical database design phases can be omitted. If instead only the logical
schema is available, then we can proceed with reverse engineering to construct
the conceptual schema, and then continue with the above method.

In the example we have been using in this section, the schema in
Figure 14.9 would be derived in the conceptual hypertext design phase,
from the e-r schema in Figure 14.4. Then, in the logical hypertext design
phase, the schema in Figure 14.6 would be defined, with the definition of the
various page schemas.

In the presentation design phase, we would design the actual appearance
of pages, for example, by choosing between that in Figure 14.5 and that in
Figure 14.7. Finally, in the site generation phase we would implement the
actual construction of pages, by using suitable techniques and tools from

Figure 14.10 A method for the design of data-intensive Web sites.

Conceptual
hypertext design

Logical
hypertext design

Presentation
design

Conceptual
database design

Logical
database design

Requirements
analysis

Site
generation

508 Chapter 14
Databases and the World Wide Web

among those discussed in the next section. A major point in this final phase
is the establishment of the correspondence between the logical database
schema (in the example, the relation schemas in the second part of
Figure 14.4) and the logical (and presentation) schemas of the hypertext. In
the following section we will see some examples that show various
alternative solutions.

14.4 Techniques and tools for database access through
the Web

In this section, we will present an overview of the techniques that can be
used for interfacing a Web site and a database. We will begin by presenting
the most common approach, based on the cgi protocol, and will then discuss
its limitations and the alternative solutions. We will also have a brief look at
the salient aspects of some tools for the development of applications.

14.4.1 Database access through CGI programs
The simplest technique for access to a database from within the Web consists
of the cgi protocol, which we described briefly in Section 14.1. The
technique is general and the principle on which it is based is simple. The
http server receives a request, recognizes that the resource indicated by the
url is a program and launches this program through the cgi protocol. The
program accesses the database and returns the results to the server, which
then sends them to the browser. We have here two separate environments,
the http server and the application program. They interact by means of an
interface (the cgi), which is very simple and well defined. Assume now that
we are interested in generating, by means of a cgi program, the pages for the
employees as shown in Figure 14.8. The html source for one of them is
shown in Figure 14.11.

<html>
<head><title>John Smith</title></head>
<body>
<H3>John Smith</H3>
<table>
<tr><td>Department :</td><td> Design</td></tr>
<tr><td>City :</td><td> London</td></tr>
<tr><td>Address :</td><td> 354 Regent St</td></tr>
<tr><td>Salary :</td><td> 45,000 per year</td></tr>
<tr><td>Current
 projects</td><td></td></tr>
</table>
</body>
</html>

Figure 14.11 The html source of the first page in Figure 14.8.

Section 14.4 509
Techniques and tools for database access through the Web

In Figure 14.12 we show a simple cgi program written in c, with
embedded sql, that takes a surname as input and generates the page of the
employee with that surname. The program could be called up using a url
that includes the surname of the employee as input parameter:

http://www.nc.com/cgi-bin/Employee?Surname=Smith

Since Surname is the key of the relation, it is guaranteed that the select
statement returns at most one tuple and so it is not necessary to use cursors.
The program opens the connection with the database, executes the query,
stores the result in suitable local variables and generates the page. The page
is transmitted to the http server, which then sends it to the client. The html
formatting is specified by means of the constants in the output statements.

main(char Surname[])
{
 char Firstname[20], Department[20], City[20];
 char Address[60];
 int Age, Salary;
 $ open connection to NewCompanyDB
 $ select Firstname, Department, City, Address, Salary
 into :Firstname, :Department, :City, :Address, :Salary
 from Employee E, Branch B
 where E.Branch = B.City
 and Surname = :Surname ;
 $ close connection
 if (sqlcode == 0){
 printf("<html>\n<head><title> %s %s",Firstname,Surname,
 "</title></head>\n<body>\n");
 printf("<H3> %s %s",Firstname,Surname,"</H3>\n");
 printf("<table>\n");
 printf("<tr><td>Department:</td><td>%s",
 Department,"</td></tr>\n");
 printf("<tr><td>City:</td><td>%s",City,
 "</td></tr>\n");
 printf("<tr><td>Address:</td><td>%s",Address,
 "</td></tr>\n");
 printf("<tr><td>Salary:</td><td>%u",Salary,
 "</td><tr>\n");
 printf("<tr><td><a href=\"/cgi-bin/ProjOfEmp?Surname=%s",
 Surname,"\">Current projects</td>
 <td> </td></tr>\n");
 printf("</table>\n</body>\n</html>");
 }
 else {
 printf("<html>\n<head><title>Not found</title></head>
 \n<body>\n");
 printf("No employee has surname %s\n",Surname,"</body>\n
 </html>");
 }
}

Figure 14.12 A cgi program that produces pages as in Figure 14.8.

510 Chapter 14
Databases and the World Wide Web

14.4.2 Development tools
We briefly mentioned in Chapter 1 the existence of tools to support database
development, in particular as regards the production of components of user
interfaces, such as forms, menus and reports.

The needs of Web applications have caused the rapid appearance of
dedicated development tools that have the same goals. The fundamental idea
is that of facilitating the construction of Web pages based on the contents of
the databases. html pages can be generated by these tools based on a
prefixed organization. Many products offer the facility of using HTML
templates, which are skeletons of html pages with a portion of the content
defined using an sql query, possibly with parameters. For example, the first
page in Figure 14.8 could be generated using the template in Figure 14.13. In
this example template, we use a simplified syntax, which is not used by any
current product, but is useful to explain essential concepts.

The template produces the same html source as the cgi program in
Figure 14.2, but without using a program in c (or other programming
language). The html code is not hidden in the output statements, but
directly specified. This is useful when debugging the structure of pages: a
browser ignores the html elements of the form <!…> and can thus show the
template, with the names of the variables ($1, $2 and so on) in place of the
respective values. The tools that allow the use of templates operate in a way
that is similar to cgi programs: the urls denote a specific program, which we
could call the ‘template manager’, that receives as input the name of the

<html>
<! tmplSQL connect database NewCompanyDB>
<! tmplSQL query "select Firstname, Department,
 City, Address, Salary
 from Employee E, Branch B
 where E.Branch = B.City
 and E.Surname = $Surname
 ">
<head>
<title></title>
</head>
<H3>$1 $Surname</H3>
<table>
<tr><td>Department :</td><td> $2</td></tr>
<tr><td>City :</td><td>$3</td></tr>
<tr><td>Address :</td><td>$4</td></tr>
<tr><td>Salary :</td><td> $5 per year</td></tr>
<tr><td>
 Current projects</td><td> </td></tr>
</table>
</body>
</html>

Figure 14.13 An html template for the construction of pages such as those
in Figure 14.8.

Section 14.4 511
Techniques and tools for database access through the Web

template and the needed parameters (in the example, the surname), accesses
the database and returns an html page as the result. The template in
Figure 14.3 can be invoked with a url such as the following:

http://www.nc.com/cgi-bin/tmplSQL?tmpl=Employee&Surname=Smith

Many other development tools have been proposed, mainly to support
access to Web sites using tools similar to those available for traditional
database applications. For example, the pl/sql language, which we will
describe in Appendix C, has been recently enriched with features that allow
the generation of html interfaces.

14.4.3 Shortcomings of the CGI protocol
The use of cgi programs is relatively simple, but has some limitations as
follows.

• Since http has no memory, it is not obvious how to manage transactions
that require multiple accesses to the database.

• The execution of a cgi program starts with the request and terminates
with the return of the results. More precisely, we have an operating
system process that is created, carried out and terminated. This means
that, at the time of creation, main memory space must be allocated for the
process. If this is large, the delay due to memory allocation can be quite
high. Furthermore, different requests to the same program generate
different processes. This is particularly onerous in the case of systems
with many requests and large cgi programs.

• Once initiated, the cgi program in turn requests a new connection with
the dbms (often requiring a user authentication); the session is then
closed before the termination of the program. Here also, we have the cost
of opening and closing sessions with the dbms, which can become
overloaded, if there are many requests. If the dbms is also used for other
activities, these can be heavily affected.

• It is not easy to create a keyword-based search service over the
information on the site, a function regarded as extremely important in
many contexts. The standard search tools usually operate only on files
that are stored statically on the site and not on dynamically generated
files. Using a database, it is necessary to introduce further application
modules that carry out the search in the database itself.

Various approaches have been suggested for dealing with these problems.
We will look at them briefly in the next subsections.

14.4.4 Simulating long connections for transactions
Various techniques have been proposed to overcome the problem of the
stateless nature of http.

512 Chapter 14
Databases and the World Wide Web

The basic idea is to maintain a continuous exchange of information
between browser and server with the aim of keeping continuity of a
connection, thus enabling transactions spanning over multiple page accesses.
To this end, one possibility is to request the user to specify an identifier and
to reuse it in every page request, suitably ‘hidden’ in the html code.

Another, simpler solution, requiring a non-standard use of the browsers,
is the following. A cookie is a small set of data (at most 4Kbytes) that the
server can send to the client in a suitable field in the heading of an http
reply. The contents of the cookie are stored as part of the configuration of the
browser and are sent back to the server that generated it each time the
browser is connected with that server. Therefore, the cookie could be used
to identify the user and thus to recognize successive actions within the same
session. These two approaches partly overcome the limitations of the cgi
approach due to the stateless nature of http.

14.4.5 Server-based alternatives to the CGI approach

Materialization A radical solution to the performance problems due to
the interaction of three different entities (the http server, the cgi program
and the dbms) consists of the materialization of the html pages of a site
based on the content of the database. This is sometimes called the push2

approach, to indicate that the data is ‘pushed’ in advance towards the site
(and thus towards the user). In contrast, the CGI solution is called pull, as the
data is extracted or ‘pulled’ from the database on request. The same
observations made in Section 10.6 about the currency of data in co-operating
systems apply to this context as well. If the data changes rather slowly or if
it is acceptable to offer on the Web data that is not exactly up to date, then
we can periodically generate the entire site from the database. Thus, we
eliminate the performance problems caused by the activation and
termination of cgi processes and we reduce the load on the database: the
requests are managed directly by the http server, which returns files
prepared in advance. Another advantage of this solution is the possibility of
duplicating the site and moving it to other environments (without
constraints for dbmss, http servers or operating systems). The obvious
disadvantage of a materialized solution is the possible obsolescence of
information on the site.

Materialization can be obtained with programs similar to those used for a
pull approach (for example, that shown in Figure 14.12). The only difference
(and additional difficulty) consists of the necessity for generating suitable
names for the files that contain the materialized pages. A simple technique

2. Note that the term ‘push technology’ is also used in a different context, to refer
to tools that allow the browser to poll a server continuously in order to update
the displayed information without user intervention.

Section 14.4 513
Techniques and tools for database access through the Web

involves the use of names made up of the juxtaposition of the names of the
page schema and key values of the page itself.3

Extension of the HTTP server functionality A solution that is gaining
popularity is based on the availability of libraries associated with http
servers. This solution is denoted by the term server API (Application
Programming Interface) and indicates the modules of a specific library that
allow direct access to the database. In this case, the dbms client is the http
server itself and not another program, as with the cgi architecture. The
programs that access the database are called by the http server and are
executed within the http process itself.

The main benefit is the reduction of activation operations, with
consequent improvement of performance. The functions offered often
include the management of transactions and authorizations.

The main disadvantage of this solution is the lack of standardization; the
apis offered by the various servers, although similar to each other, are
different, and thus the applications are not easily portable. In addition, the
fact that the applications operate as sub-processes of the http server can
affect the server, in case of malfunctions of applications.

An extreme version of this approach consists of dedicated HTTP servers;
these are systems that integrate the functions of dbms and http server.
Obviously, all the services mentioned above, such as the complete
management of transactions, management of authorizations and others, such
as load balancing, are present. At the same time, there remains the
disadvantage of non-portability, accentuated by the fact that the dbms is also
fixed.

Thin CGI To meet the demand for portability and standardization, various
suppliers have suggested an intermediate solution. The technique consists of
the use of minute CGI programs (known as thin CGI), which have the sole aim
of receiving the Web server requests and of opening a connection to another
module. This module is called the CGI server, since it acts as a server for the
thin cgi requests. The thin cgi processes are subject to activation and
termination, as for each cgi. However, this concerns very small processes,
which are unlikely to cause performance problems. Conversely, the cgi
server is a permanently active process (a daemon) and thus presents no
problems of activation and termination. Furthermore, it keeps the
connection with the dbms open, with the double advantage of being able to
manage transactions and security.

3. We have not discussed the concept of keys with reference to the logical model
for hypertexts, but it is similar to that seen in earlier chapters for the relational
and the e-r model.

514 Chapter 14
Databases and the World Wide Web

14.4.6 Client-based alternatives to the CGI approach
Radical solutions for avoiding a heavy load of interactions between client
and dbms mediated by the http server and the cgi program consists of the
elimination of the mediation itself. The basic idea of this approach is shown
in Figure 14.14 compared with the basic cgi solution. For the database client,
there are various solutions, which we will illustrate briefly.

• Browser extensions These are software modules executed by the
browser as dynamic libraries. Many browser extensions exist to manage
data of a particular type, for example, graphical formats. Among them,
there can be modules used to access a remote database. These can be
stored on the client machine (creating problems of distribution and
software update) or can be incorporated into the html code (but the
browser has to load them from the network, and this can be expensive).

• External helpers As an alternative to extensions, browsers can initiate
or hand over control to external tools (helpers or viewers). This can also be
done for an sql interpreter or a local application that accesses a remote
database. In this case, the user interacts only with the helper, and
traditional client-server interaction can take place; the browser simply
initiates the interaction, without being further involved.

• Proprietary browsers Some dbms vendors have evaluated the
possibility of creating browsers specializing in database access. The
initiative has not had particular success, because the users are usually
interested in having general-purpose browsers. In a small number of
cases, this technology could be used to limit the functionality of the
client, or to extend it in a controlled way.

In general, client-based solutions are almost exclusively suitable for a
known context and predefined user population (typically within an
intranet). This is due to the complexity of the distribution and of the
updating of tools and to the fact that the compatibility with the various
browsers of programs taken from the network is never really complete.

Figure 14.14 Comparison of cgi and client-based solutions.

Browser CGI
program

HTTP CGIHTTP
server

Browser
HTTP HTTP

server

Database
client DB

DB

Section 14.4 515
Techniques and tools for database access through the Web

Client-based solutions are usually implemented by means of new
languages, whose development is closely related to the Internet and the Web.
The first and most popular item here is Java, a modern object-oriented
language, which was conceived with portability and security in mind.
Portability is achieved by means of an intermediate level of representation
for its programs (the byte-code) for which interpreters are available on many
machines. As regards security, the execution environment of a program
defines a closed set of resources that the program is allowed to use; explicit
authorization is needed for using further resources. Given these features,
Java has been widely used to extend browsers: in fact, if a browser includes
an interpreter for Java byte-code (called Java Virtual Machine, jvm), then it
can run any Java application downloaded from a Web server. The security
features guarantee that the new potential does not become dangerous. A
major use for Java is the development of applets, programs that can be
embedded in Web pages and then executed by the browser, thus offering
extensions to the client side.

Another client-based solution is Javascript, a language that allows
dynamic extension and modification of the content of html pages. It is a
scripting language (that is, an interpreted language) with a rich set of
browser specific commands that enriches the interface functions, without
the need for an execution environment, as required by Java.

Both Java and Javascript are based on interpreters integrated in a browser,
and are therefore portable. A proprietary solution has instead been proposed
by Microsoft ActiveX: this is an architecture that extends the functions of
browsers by allowing them to execute applications. This solution takes
advantage of the popularity of Windows platforms and can provide good
performances, but cannot in general guarantee portability and security.

In the framework of Java solutions, it is important to mention the jdbc
(Java Data Base Connectivity) protocol. Its goal is to allow Java applications
to access relational databases, in a way similar to that used by the odbc
protocol (see Section 10.5), independently from the specific dbms. The
architecture includes a layer (the driver manager) that isolates the application
from the server. In practice, there are four options listed below and shown in
Figure 14.5.

1. JDBC on a native driver: in this solution, a Java module translates the Java
calls produced by the jdbc driver manager into a format used by a
driver external to the Java environment (typically a pre-existing
database driver written in the native language of the machine).

2. JDBC/ODBC bridge: this is a special case of the previous architecture (an
odbc driver is used instead of a generic database driver). The jdbc/
odbc bridge translates the Java calls produced by the jdbc driver
manager into calls of the odbc protocol, external to the Java
environment. The availability of the odbc driver for the target dbms is
then needed.

516 Chapter 14
Databases and the World Wide Web

Neither of these solutions is portable, since each requires the presence of
natively executable components. These are often considered intermediate
solutions that can exploit the availability of pre-existing drivers.

Two other pure-Java and portable solutions are:

3. Java middleware server: this architecture entails the use of a Java
component responsible for providing the services required by the driver
manager, offering a multiplicity of targets. This component is typically
implemented by companies specializing in the construction of software
gateways.

4. Java driver: this solution implements in Java, for a specific dbms, the
services required by the driver manager. These drivers are typically
offered by DBMS vendors, for their specific products.

Overall, jdbc is an interesting solution with great potential for solving
interoperability problems in a portable way. It now presents a few
immaturity problems, but its relevance goes beyond the context of Web
applications.

14.5 Bibliography
There are many sources of information on the Internet and the Web, in
traditional printed form and in electronic format, available though the Web
itself. We mention a few general reference sources. A comprehensive
discussion of network protocols is provided by Comer [32]; an introductory
presentation of information services on the Internet (including the Web but

Figure 14.15 jdbc architectures.

Native driver

DBMS

(DBMS Specific)

DBMS

JDBC/ODBC Bridge

ODBC Driver

JDBC/native Bridge

JDBC Driver Manager JDBC Driver Manager

Java ApplicationJava Application Java Application

JDBC Driver Manager

Java Application

JDBC Driver Manager

JVM

DBMSDBMS

JDBC Driver
(DBMS Specific)

JDBC Middleware
(Various DBMSs)

Type 1 Type 2 Type 3 Type 4

JVMJVMJVM

Section 14.6 517
Exercises

not limited to it) by Liu et al. [55]; a complete presentation of html by
Graham [43]. Greenspun [47] considers many issues, including a general
discussion of wis, electronic commerce, as well as an introduction to html
and architectural aspects, such as cgi and Server api. A series of articles on
wis has recently appeared, edited by Isakowitz, Bieber and Vitali [50]. A
general discussion on the development of Web sites is carried out by
Rosenfeld and Morville [70].

A survey of the research and technological issues related to database
approaches to the Web is presented in Florescu, Levy and Mendelzon [42].
They also discuss the solutions based on semi-structured data models, which
have recently been proposed to take into account the need for flexibility and
irregularity of the data managed on the Web.

An overview of the major issues to be faced in the design of data-intensive
Web sites is presented in Ceri, Fraternali and Paraboschi [16]. The conceptual
and logical models for Web sites, as well as the design methodology we have
briefly sketched, are described in more detail by Atzeni, Mecca, and
Merialdo [4] & [5].

Discussions of the architectural issues on the interconnection of databases
and the Web can be found in the books by Ju [51] and by Cheng and Malaika
[24].

Much additional information can be found on the Internet itself, both by
means of search engines and by looking at the Web sites of the vendors.

14.6 Exercises
Exercise 14.1 Consider the Web site of your university or company and
examine the services it offers, classifying them according to the types
discussed in Section 14.2.

Exercise 14.2 Find on the Internet one or more sites that fall in each of the
categories discussed in Section 14.2 (‘Publication and consultation’;
‘Transactions on the Web’; ‘Electronic commerce’; ‘Co-operative and
workflow applications’).

Exercise 14.3 Find on the Internet a Web site that could be used as a source
for a data farming activity.

Exercise 14.4 Consider the conceptual schema shown in Figure 5.26 and
design a Web site that can be used to publish the content of the database.
Show both the conceptual and the logical schema of the hypertext.

Exercise 14.5 We want to build a Web site for the training company
example discussed in Chapter 6 and Chapter 7. Therefore:

• find the user requirements for the site, by choosing the pieces of
information that are interesting for the public (outside the company);

518 Chapter 14
Databases and the World Wide Web

• design the conceptual schema of the hypertext;

• design the logical schema of the hypertext.

Exercise 14.6 Following the same steps as in the previous exercise, design
the Web site for the database whose e-r schema is shown in Exercise 5.6.

Exercise 14.7 Using the database for soccer games considered in
Exercise 14.4, write a cgi program that generates the list of games played by
a given team in a specific period.

Exercise 14.8 Write a cgi program that generates a page for a course (whose
code is given as input parameter) offered by the training company, with a
list of all the editions.

Part V

VAppendices &
Bibliography

A
Appendix A Microsoft Access

Access, produced by Microsoft, is the most widespread dbms for the
Microsoft Windows environment. Access can be used in two ways:

• as an independent database manager on a personal computer;

• as an interface to work on data residing on other systems.

As an independent database manager, it suffers from the limits of personal
computer architecture: It offers limited support for transactions, with rather
simple and incomplete mechanisms for security, data protection and
concurrency control. On the other hand, it has a low cost and the
applications to which it is targeted do not typically require a sophisticated
implementation of these services. The system interface exploits the potential
of the graphical environment and offers a user-friendly interface, both for the
user and for the database designer.

When it is used as a client of a relational server, Access makes available its
own interface features for the interaction with the external system. In this
context, Access can be seen as a tool that allows the user to avoid writing sql
code, as it acquires schemas and simple queries using a graphical
representation that is easy to understand. These inputs are translated into
suitable sql commands in a transparent manner. The odbc protocol,
described in Chapter 10, is normally used for communication between
Access and the database server.

We focus the description of Access on its use as a database manager,
placing particular emphasis on the definition of schemas and queries. The
version we refer to is Access 97, available as a separate product or as part of
the suite of applications in Microsoft Office 97 Professional. For a complete
description of the system, we refer the interested reader to the manuals that
are provided with the program, and to the on-line guide, accessed using the
Help menu.

522 Appendix A
Microsoft Access

A.1 System characteristics
The system is activated in the traditional way in which Windows
applications are started, by selecting the program icon in a window or menu.
The icon is shown in Figure A.1.

At the start, the program asks whether we wish to create a new database
or open an existing one. It provides a list of databases that have been used
earlier by the program. The creation of a database can begin with an empty
database or with a schema selected from a series of predefined models (useful
for inexperienced users). Each database corresponds to a file with a standard
mdb extension. To open a pre-existing database, we need to select the
corresponding file. To create a new database, or open a pre-existing one, the
commands New database or Open database can also be used from the File
menu. The newly created or opened database is represented by a window,
which appears within the main window of the application. Figure A.2
illustrates this situation; we call the window listing the database components
the database window. The main window contains a set of drop-down menus
(File, Edit, etc.) and the toolbar. The menus and the toolbar vary according
to the window appearing on the foreground within Access. Figure A.2 shows
the contents of the toolbar when the database window is in the foreground
in the application.

The database window contains a list of the families of system components:
tables, queries, forms, reports, macros and modules. To move from one family
to another, the user clicks on the corresponding button. When a family is
selected, all the names of the elements of the family present in the database
appear in the window. If there are more elements than the window can
contain, a scroll bar makes it possible to navigate along the list. In
Figure A.2, we can see the set of elements of the Table family present in the
database selected. We observe that the database contains two tables, CITY and
PERSON.

At this point, for each family, we can select one of the three buttons that
appear in the right hand side of the window:

• using the Open button, Access shows the contents of a selected element;

• using the Design button, Access reopens the design phase on a selected
element;

Figure A.1 The program icon.

Section A.2 523
Definition of tables

• using the New button, Access creates a new element of the family.

Thus, the commands New and Design are for access to the information on
the design of the component (to its schema), while Open accesses its contents.

We will now describe the definition of tables and queries. Then we will
briefly illustrate the functions offered for the management of forms, reports,
and macros.

A.2 Definition of tables
To define the schema of a new table, we must select the Table family and click
on the New button. At this point, Access offers a choice of five different table
definition mechanisms: Datasheet view, Design view, Table wizard, Import
table and Link table. Using Datasheet view, the table schema is defined in a
way similar to the definition of a spreadsheet, presenting a grid of cells where
the user may define column names. This interface is provided for users
experienced in applications like Microsoft Excel or Lotus 123, making the
use of a relational system easier for them. The options Import table and Link
table permit the importing of a table from an external source. The first
command copies the entire contents in an internal structure at table
definition time, whereas the second constructs a connection that allows the
table contents to be recovered dynamically from the remote resource. (It
actually defines a view on a remote system.) The Table wizard option allows
the use of a ‘wizard’, which is a support tool that guides the creation of a
table by asking a series of questions and supplying a collection of examples.
Access also provides wizards in other contexts, and they are of great help to
inexperienced users. For the management of all situations falling outside of

Figure A.2 The window containing the elements of the database window.

524 Appendix A
Microsoft Access

the predefined examples, or in the case of expert users, it is more convenient
to use directly the services offered by the Design view option, on which we
concentrate our presentation.

Firstly, the attributes are defined, using the window that appears in
Figure A.3. We need to specify the name and the domain for each attribute.

In Access, the attributes are called fields, the domains types. Each attribute is
characterized by a set of field properties. The set varies according to the
domain associated with each attribute. The domains that can be associated
with an attribute are similar to the domains of standard sql, with a few
changes. The domains offered by Access are:

• Text: allows the representation of strings of characters (corresponds to the
sql domain varchar).

• Memo: allows the representation of strings of text as long as 64,000
characters; it is not a domain explicitly allowed by sql, but it can be
intended as a variant of varchar. (Indexes cannot be built on memo
attributes.)

• Number: represents the family of numeric domains, both integer and real.
The field properties allow the specification of whether the attribute
represents precise or approximate values, and the degree of accuracy of
the representation. This domain corresponds to the sql domains numeric,
decimal, integer, smallint, float, double and real.

• Date/time: represents temporal instants and corresponds to the sql
domains date, time and timestamp. It can represent only the date, only the
time or both (specified in the field properties).

Figure A.3 Window for the definition of the table schema.

Section A.2 525
Definition of tables

• Currency: represents monetary values. It is essentially a special case of the
Number domain, characterized by an exact numeric representation on
eight bytes with two decimal places.

• AutoNumber: assigns a unique value to each row of the table. This domain
makes it possible to associate a compact key to the table.

• Yes/No: corresponds to the sql domain bit.

• OLE object: represents a generic object that can be managed using ole
(Object Linking and Embedding). ole is a protocol that allows the
specification of which application must manage an object in the Windows
environment. In this way, word processor documents, spreadsheets,
images, or multimedia information can be inserted into the database. The
application specified by ole is given the task of presenting and updating
the attribute contents.

• Hyperlink: allows the management of references. The reference can be
internal (the identifier of a resource internal to the database or accessible
on the local machine) or external (such as, for example, the url of a
resource available on the Internet).

• Lookup wizard: is used during the insertion phase. It defines a mechanism
that on insertion offers the choice of a value among those in a predefined
list or extracted using a query on the database.

The field properties appear in the lower half of the schema definition
window. They are as follows:

• Field size: represents the dimension of the attribute. It is used only for the
domains Text and Number. For the Text domain, the dimension is a value
that represents the maximum length of the character string. For the
Number domain, the admissible values are:

° Byte: integer on eight bits (values between 0 and 255);

° Integer: integer on 16 bits (values between −32,768 and 32,767);

° Long integer: integer on 32 bits;

° Single: floating point representation on 32 bits;

° Double: floating point representation on 64 bits;

° Replication ID: identifier of 128 bits, unique for each tuple, even in a
distributed system.

• Format: describes the representation format of the attribute values.
Wherever possible, Access uses the values specified for the Windows
environment (Internationalization option on the Control Panel). For the
representation of dates, numbers, and boolean values, it allows the choice
of various predefined formats (seven predefined formats for date, six for

526 Appendix A
Microsoft Access

number, three for boolean). Other formats can then be defined. We can
also specify how to represent values according to whether they are
positive, negative, or null.

• Decimal places: (definable only for attributes of domain Single and Double)
specifies how many decimal places must be used in the representation.

• Input mask: specifies the format that must be used for the input of data.
Take, for example, an attribute that holds a telephone number, made up
of a three digit prefix and of a seven digit number, separated by a dash.
We can specify an entry mask, which distinguishes the two parts and
presents the dash, allowing the user to insert only the digits. Access offers
a wizard to assist in the creation of input masks.

• Caption: represents the name that can be given to the attribute when it
appears in a form or in a report. The attribute names are typically short,
in order to have a compact schema and to write concise queries. For
displaying information to the user, it is instead convenient to use an
extended name that better represents the attribute content.

• Default value: specifies the default value for the attribute. It corresponds
exactly to the default option of sql. Each time a new tuple is inserted, the
default value will appear as a value for the attribute. The result of an
expression can also be used as a default value, like =Date(), which assigns
the current date to a field of the Date/Time domain.

• Validation rule: describes a constraint that the attribute must satisfy.
Access automatically verifies that each value inserted belongs to the
domain of the attribute. As well as this check, Access allows the
specification of a generic constraint for each attribute (similar to the check
clause in sql). This constraint is expressed by using the syntax used for
the specification of conditions in qbe, which we will see in the next
section.

• Validation text: specifies the message that must be displayed when an
insertion or an update introduces a value that does not satisfy the
integrity constraint.

• Required: specifies whether the tuples must always present a value on the
attribute. This property can be true or false and corresponds to the not
null constraint in sql.

• Allow zero length (valid only for attributes of the domains Text and
Memo): specifies whether empty strings (that is, strings whose length is
zero) can be allowed, or whether an empty string must be considered as a
null value. According to the context, it can be useful to manage the
empty strings differently from the null value. Bear in mind that the null
value is treated in a particular way by sql; an inequality comparison on
strings may be satisfied by an empty string, but not by a null value.

Section A.2 527
Definition of tables

• Indexed: specifies whether an index should be constructed on the
attribute or not. The possible options are No, Yes (Duplicates OK) and Yes
(No duplicates). The third option defines an index of type unique on the
attribute. This is also the way in which unique constraints are defined. It
is not possible to define indexes on the attributes Memo, AutoNumber,
Yes/No and OLE. With this technique, it is possible to define indexes only
on a single attribute. For the definition of more complex indexes, we must
operate at table level.

Once the various attributes are defined, the session terminates with the
indication of the attributes that must be considered the primary key of the
table. These attributes are specified by selecting them and then choosing the
Primary key item in the Edit menu. The attributes that make up the key are
denoted by a key icon in the column preceding the name. Access will
automatically define a unique index on the attributes that make up the key.

We can then define further properties at the table level (to which access is
gained through the Property item in the View menu). The table properties are
as follows.

• Description: a textual description of the contents of the table.

• Validation rule: specifies a constraint that must be satisfied by each tuple
of the table. Constraints that involve multiple attributes can be defined as
table properties. The syntax is identical to the one used to express
conditions on queries. The constraint is checked at the end of the
insertion of each tuple.

• Validation Text: defines the message that appears when the system detects
a violation of the constraint.

• Filter: specifies a condition that must be satisfied by the tuples that
should be shown when displaying the table contents.

• Order by: defines which attributes should be used to order the tuples of
the table.

To specify indexes on many attributes, we must open the index definition
window, by selecting the Index button on the toolbar, or selecting the Index
option in the View menu (when the table definition window is in the
foreground). The window contains a table (shown in Figure A.4) with
columns Index name, Field name, and Sort order. To define an index on more
than one attribute, we insert in the first row the index name, the name of the
first attribute and the ordering direction. In the next row, we leave empty the
name of the index and introduce the name of the second attribute together
with the corresponding ordering direction. This is repeated for all the
attributes in the index.

Before ending the definition session, we must save the result (by selecting

528 Appendix A
Microsoft Access

the Save option in the File menu). The system at this point asks for a name to
be given to the table. The name can contain spaces.

A.2.1 Specification of join paths
A join path is a relationship between pairs of attributes of two tables and is
used to specify that a join between those tables is normally used and is based
on equality of those attributes. A join path is graphically represented by a
line connecting the two tables (see Section 7.3). For example, in the ‘Person
and City’ database, there is a join path between attribute City of birth of
PERSON and attribute Name of City. Access allows the definition of join paths
(called Relationships in Access): for each join path, it is possible to specify
whether a referential integrity constraint is associated with it. All this
happens without the input of any text. The process is exclusively graphical.
We briefly describe the procedure.

First, the Relationships option in the Tools menu is selected. This causes the
opening of a window (see Figure A.5) in which we can insert the schemas of
the tables created, selecting them from a list. A join path between two tables

is defined by clicking on an attribute in the graphical representation of the
first table, then holding down the mouse button, and moving the pointer to
the corresponding attribute in the second table. Once the link between the
attributes is built, Access opens a window that presents the attributes
involved in the join path. The window allows either the extension of the join

Figure A.4 The index definition window.

Figure A.5 The join path definition window.

Section A.2 529
Definition of tables

condition to other attributes or the modification of the relationship thus
defined. This window is shown in Figure A.6. By clicking on the Join Type
button, we have the possibility of choosing which type of join, inner, outer
left or outer right, must be used when combining the tuples of the two tables
(in contrast with sql, the full outer join is not available). Each time we define
a query that accesses the two tables, the join condition represented by the
join path will be automatically used.

Once the join path is defined, we can specify whether the path must be
associated with a referential integrity constraint. In the same window,
Access permits the definition of a policy for reaction to violations. In this
way, we can impose that updates and deletions introducing referential
integrity violations are followed by corresponding updates and deletions in
the joined tables. If the policy is not specified, each modification that
introduces a violation is simply refused. Compared with the sql-2 standard,
Access allows a limited set of reactions, corresponding to the two policies of
cascade delete and cascade update. To specify the various referential
integrity constraints, we should apply the design criteria described in
Chapter 6. Access does not allow more than one path between two tables to
appear in the graph. If more than one join path between two tables must be
defined, it is necessary to introduce more representations of the same table
into the graph (as in Figure A.5).

A.2.2 Populating the table
Once the schema is defined, tuples can be inserted into the tables to populate
them. Access provides a simple graphical interface to do this task. By
opening a table, clicking on the Open button of the main database window, a
tabular representation of the table contents is displayed. This consists of a
grid with attribute names as column headings, and rows describing the table
tuples. At the bottom, there is an empty row for the insertion of new tuples
into the table (see Figure A.7).

The insertion is carried out by placing the pointer in the last row and
typing a value for each attribute. If the inserted value does not satisfy all the

Figure A.6 The join property window.

530 Appendix A
Microsoft Access

constraints defined on the attribute, the insertion is immediately refused.
Moving the pointer out of the row implicitly indicates that the insertion is
terminated. At this point the system checks that all the constraints are
satisfied; this requires confirmation that the attributes requiring a value have
been specified and that the introduced values satisfy the defined validation
rules. To modify the value of attributes, it is sufficient to put the mouse
pointer on the value to be modified, click on it and type the new value.
When the cursor is moved to a different row the constraints are checked and
the modification is made permanent.

A.3 Query definition
To define queries, Access makes available two different tools: a graphical tool
for the formulation of qbe (Query By Example) queries, and an sql
interpreter. We will first describe the characteristics of the qbe interface,
then analyze the sql interpreter.

A.3.1 Query By Example
The name qbe refers to a family of languages that try to provide a practical
implementation of the basic ideas of domain relational calculus (see
Section 3.2.1). The major point, as we saw, is that a query is expressed by
describing the characteristics which must be possessed by the elements of
the result. In the qbe offered by Access, the definition of a query requires the
filling of a table schema with all the attributes and conditions that
characterize an ‘exemplary’ row of the result.

To define a new query, the Query component must be selected in the main
database window. By selecting New, and choosing the Design view option,
the query design window is opened. This window is divided into two halves
(see Figure A.8 and Figure A.12). The top half is initially empty and is filled
with a description of the schemas of the tables involved by the query,
selected from a list. The tables are connected by the predefined join paths.
(We can interpret the top half of the window as showing the portion of the
Relationships diagram relevant for the query.) In the bottom half of the

Figure A.7 The window for viewing the instance of the table.

Section A.3 531
Query definition

window, an initially empty table appears, with a set of columns without
names and with predefined rows labelled Field, Sort, Show and Criteria.

The cells of the row Sort can be empty or can contain one of the options
Ascending or Descending. When the row is not empty, an ordering of the
tuples of the result is imposed, according to the values of the attribute
associated with the column in which the option appears. If there are many
columns with a non-empty value in the Sort row, columns are considered
from left to right (tuples are first ordered on the first column on the left; for
equal values of the first column, the second column is considered, and so on).

The cells of the Show row contain a square that may or may not contain a
checkmark. If the square contains a checkmark, the attribute that appears in
the column must be part of the result of the query. The state of the square
changes by clicking on it with the mouse.

The cells of the Criteria row contain the conditions that must be satisfied
by the tuples in the result of the query. If we are interested only in tuples
that have a given constant value for an attribute, we can specify this by
simply inserting the constant value into the Criteria cell in the column that
has that attribute in the first row. The condition can also be more complex
and can include richer comparisons, expressions and references to other
attributes, as we will illustrate with a sequence of examples.

To put the names of the attributes in the columns, we can use two
techniques. Firstly, we can directly type the name of the attribute in the first
row of the column, possibly preceded by the name of the table to which it
belongs. Otherwise, we can select the attributes that appear in the
representation of the schemas on the top half of the window, ‘dragging’ them
to the appropriate columns. Once the query is formulated, to execute it, we
select the button on the toolbar that contains the exclamation mark. After
the execution, the table resulting from the query appears in place of the
query definition window.

Figure A.8 qbe query that returns the first names of the people called
Brown.

532 Appendix A
Microsoft Access

Let us look at some examples of query definition. Suppose we have a
database with a table PERSON(First Name, Last Name, Address, City, City of birth,
Date of birth), and a table CITY(Name, Number of inhabitants). To find the first
names, in alphabetical order, of the people called Brown, we can fill the
schema as in Figure A.8.

A query applies the conjunction of the distinct conditions when more cells
of the same Criteria row are filled. If a query needs to select the tuples that
satisfy the disjunction of many conditions, different rows should be filled
with the distinct criteria. The system automatically uses the label Or on the
additional rows. Thus, to find the first names, last names and addresses of the
people living in Boston called Brown or White, we create a schema as shown
in Figure A.9.

The list of table attributes presented in the top half also contains an
asterisk, which, as in sql, represents all the attributes. Thus, to extract all
the attributes of the tuples of the PERSON table who are resident in their cities
of birth, we can formulate the qbe query shown in Figure A.10.

In this query, to impose the identity of the two attributes, we put, as
selection value on the attribute City, the attribute name City of birth enclosed
in square brackets. Square brackets are the syntactic construct that Access
uses to distinguish references to schema components from string constants.
Access also allows the formulation of conditions using the normal operators
of comparison (<, >, <=, >=, <>) and the operator Like, used to compare
strings with regular expressions containing the special characters ∗ and ?
(which correspond respectively to the characters % and _ of standard sql). To
find the first names and last names of the people born before January 31st

Figure A.9 Query that returns the people in Boston called Brown or
White.

Figure A.10 Query that returns the people born in their cities of
residence.

Section A.3 533
Query definition

1965 and who have a last name beginning with C, we can formulate the query
shown in Figure A.11.

For each query, it is possible to specify a set of properties, at different
levels. At the level of a single column, we can specify a viewing format
different from the one chosen in the design of the table schema. Another
important property is the elimination of possible duplicates present in the
result. To specify that the duplicates must be removed, we must open the
window presenting the query properties (using the Property option in the
View menu) and assign the value Yes to the property Unique values.

To formulate queries that require more than one table, it is a good idea to
have all the tables needed by the query appear in the upper window. The
tables should be selected from the dialogue box that appears as soon as a new
query is created. The tables will appear linked by the join paths that were
defined at the end of schema design. In the table in the lower half of the
query definition window, we can add a further row, labelled Table, by
selecting the option Table names from the View menu. This row presents the
name of the table from which the attribute is extracted. The join conditions
between the tuples of the tables do not need to be specified when they are
predefined. If the query requires join conditions that are different from the
predefined ones, it is possible to modify the paths directly in the graphical
representation appearing in the top half of the window.

Suppose we wish to formulate a query that finds the people born in cities
with fewer than 100,000 inhabitants. If the join condition between the
PERSON and CITY tables is predefined by a join path, we can formulate the
query in Figure A.12.

Whenever the join path is not predefined, we must make the condition
explicit in the table, formulating a query like that in Figure A.13, which uses
references to attribute names in the Criteria rows.

It can be necessary at times to introduce into the top half tables whose
attributes are not part of the query result. An important case of this type is
that in which information must be extracted from two tables that do not have
a direct join path, but in which the join involves an intermediate table. In
this case, even if the query uses only attributes of the two unconnected
tables in the result and in the conditions, the intermediate table must be
present in the top half, with an approach similar to that used in relational

Figure A.11 Query that returns the first names and last names of people
whose last names begin with C born before January 31st 1965

534 Appendix A
Microsoft Access

algebra and calculus (Chapter 3), and also in sql (Chapter 4). In fact, without
a join path connecting the two tables, the system computes the cartesian
product of the two tables, eventually applying the conditions that appear in
the schema of the qbe query.

Let us now look at the formulation of qbe queries using aggregate
operators. The aggregate operators provided are Sum, Avg, Min, Max and
Count. They correspond to the standard sql operators with the same names.
Access also provides the operators DevSt (the standard deviation), Var (the
variance) First and Last (the value of the attributes in, respectively, the first
and last tuples). To use these operators, we must introduce a new row into
the query schema, the Total row. This row is introduced by selecting the
Totals option in the View menu. We will look at a simple example of the use
of aggregate operators, defining a query that allows us to find the number of
tuples present in the PERSON table, as shown in Figure A.14.

Note that the Count value appears in the Total row. This causes the result
of the query to be not the value of the First Name attribute of the PERSON

table, but the number of tuples. Any of the attributes of the PERSON table can
appear in the row Field. For the sake of coherence with sql, Access could
have permitted the use of the asterisk in this context (∗). However, since in
the evaluation of the other aggregate operators the asterisk creates

Figure A.12 Query which returns the first names and last names of the
people born in cities with fewer than 100,000 inhabitants
(using the predefined join path).

Figure A.13 Query that returns the first names and last names of the
people born in cities with fewer than 100,000 inhabitants
(without predefined joins).

Section A.3 535
Query definition

complications, Access does not permit its use when the Total row is
activated.

In the query in Figure A.15, the Last Name attribute is characterized by the
value Group by in the Total row. This specifies that the attribute is used to
group the tuples of the PERSON table. The second column represents the
application of the Count operator to each single grouping.

Access permits the expression of conditions on the result of the aggregate
operators, corresponding to the use of the having clause in sql. This is
obtained with the simple specification of the desired values in the Criteria
row, in a way similar to the expression of simple conditions on tuples. Thus,
to find the last names that are possessed by at least two persons, we could
write the qbe query in Figure A.16, which returns the last names possessed
by more than one person, indicating for each last name the number of times
that it appears in the PERSON table.

Consider now a query with grouping in which the tuples must be selected
beforehand, based on the values of attributes that are not used in the
grouping. It then becomes necessary to distinguish the conditions that must

Figure A.14 Query which returns the number of people.

Figure A.15 Query that returns the number of people having each last
name.

Figure A.16 Query which returns the number of people who possess each
last name, for the last names possessed by more than one
person.

536 Appendix A
Microsoft Access

be applied before and after the grouping. In sql this distinction occurs by
placing the preliminary conditions in the where clause and the later
conditions in the having clause. In qbe, the distinction occurs by placing the
value Where in the Total row for the attributes that are used only before the
grouping operation. The presence of the value Where is incompatible with
an active Show cell. The reason is that, as in sql, the result of the queries that
use aggregate operators may contain only the result of the evaluation of the
aggregate operators and the attributes on which the grouping is carried out.
For example, to find the persons born after January 1st 1975 having the same
last name of another person born after the same date, we can use the Count
operator and formulate the query in Figure A.17.

There are other ways to formulate this query that do not use the Where
term. One consists of the definition and saving in the database of a
preliminary query that extracts only the people born after January 1st 1975;
a second query, which starts from the first query result, can then be defined.
The first query result is grouped on the last name attribute in order to find
the people who share the last name with others. In fact, Access associates a
name to each saved query and a query can extract data both from the
database tables, and from the queries already defined. Each query that is
saved and made persistent can thus be considered as a definition of a view
on the database.

A.3.2 The SQL interpreter
As well as the query language qbe, Access provides an sql interpreter,
which can be used as an alternative to qbe. Access allows a rapid switch from
the qbe context to that of sql and vice-versa, by selecting the option on the
left-most button of the toolbar or by selecting the options SQL View and
Design View from the View menu. The switch from one environment to the
other transforms the current query into the corresponding query in the
other representation.

The switch from qbe to sql is always possible. Each time there is a request
for the computation of a qbe query, the query is first translated internally
into the corresponding form in sql, and is then executed by the sql engine.
The reverse switch, however, is not always possible, as the sql language is
more powerful than qbe, for example allowing the expression of queries

Figure A.17 Query which returns the homonyms in the set of people born
after January 1st 1975.

Section A.3 537
Query definition

with the union operator. The qbe language is a powerful and friendly
language when formulating queries that use only selections, projections and
joins. In this case, the possibility of formulating queries without the need of
writing a text according to a rigid syntax, is a considerable help. On the
other hand, qbe does not provide an adequate mechanism for the
representation of complex queries, such as those that require the use of
nested queries in sql. When an sql query that uses a nested query is
translated into qbe, the translation simply returns the text of the entire
nested query in the appropriate cell of the Criteria row.

As regards the syntax recognized by the interpreter, this is a slight
variation of the standard sql syntax, with support for new functions and a
few syntactic and semantic differences. Some of the differences are as follows:

• the top clause can be used to select a certain number of tuples from the
result;

• square brackets are used to enclose the identifiers of the tables and
attributes (necessary when spaces or special characters appear within the
identifiers);

• the join operator must always be qualified by the term inner or outer;

• the evaluation of the count operator is different: if an attribute is given as
argument, the operator does not compute the distinct values of the
attribute, returning instead the number of not null values for the
attribute (as if the all option were explicitly specified); the distinct
option is not recognized inside the count argument.

For example, consider the qbe query in Figure A.18, for which the query
property is specified that only the first 10 elements have to be returned and
for which a join path is predefined. It thus corresponds the following query
in the sql dialect of Access:

select top 10 Lastname, count (Lastname) as HomonymNumber
from Person inner join City on Person.[City of birth]=City.Name
where [Number of inhabitants] > 200000
group by Lastname
having count (Lastname) > 1
order by count(Lastname) desc

Figure A.18 Query which returns the number of homonyms in a city with
more than 200,000 inhabitants.

538 Appendix A
Microsoft Access

A.4 Forms and reports

Forms allow the presentation of the database contents in a pleasing and
structured way, often preferable to the flat representation of the rows of the
tables.

Forms are normally similar to pre-printed forms, characterized by a set of
slots in which data must be inserted, and a set of labels that specify which
item of data must be inserted into a particular slot. Forms can be used for the
insertion of data, creating an electronic version of the pre-printed form, and
can also be used to view and modify the contents of the database.

Form generation tools are a frequent component of the support
environment of commercial dbmss. Access, in place of the simple and old
character interface, exploits the potential of the Windows environment and
permits the creation of sophisticated graphical forms. The form definition
tool allows the definition of the position and meaning of each component of
the form, offering a wide choice of character fonts, colours, drawings and
graphical symbols.

To create a new form, we must click on the New button in the Form
component on the main database window. The system first asks whether we
wish to use the basic design tool or a wizard. Using a wizard, we can create
a simple form on the schema of a table in a few moments. Access offers a
choice of wizards for the creation of forms. The various wizards differ in the
structure of the forms they produce. If the services of a wizard are not used,
the tool presents a blank page in which the designer can insert the
components of the form. The same interface can be used to explore and
modify the structure of a pre-existing form, selecting the form in the main
database window and then clicking on the Design button.

A form is composed of several elements, which need to be defined one by
one. The basic element of a form is the control, an object that corresponds to
a rectangular area of the screen and can be of three types: bound, unbound
and calculated. A bound control is a component of the form associated with
an attribute of the table. This component is responsible for representing the
value of the attribute for the particular tuple considered. The representation
of values generally requires the printing of a sequence of characters; for
attributes with an ole domain, the representation is delegated to the
application managing the attribute content. An unbound control contains a
fixed value. This kind of control is typically used to define the form labels.
The constant value can be a sequence of characters, or a generic object. For
example, if we wish to insert a logo into the form, we can assign the figure
that represents the logo to an unbound control. Finally, calculated controls
allow the viewing of the results of expressions, evaluated on an arbitrary
combination of constant parameters and attribute values. Calculated controls
cannot be used to insert or update attribute values.

When a form has been designed, its use permits immediate access to and
modification of the database content. The insertion of new tuples occurs by

Section A.5 539
The definition of macros

writing the attribute values directly into the corresponding bound controls.
Forms also permit querying of the database, offering a friendly search
command (Find option in the Edit menu). To modify the value of an attribute,
the tuple is selected and the new value is written directly in the slot
presenting the old attribute value. The modification is made permanent by
moving to a different tuple (typically by pressing on the page-up or page-
down key, which are used to scroll the elements in the form). Figure A.19
shows a form on the tuples of PERSON, extended with an attribute that
contains a picture.

Forms are generally constructed on a single table. We can define forms that
contain other forms within themselves, by specifying links between the
values in the forms. In this way, we can, for example, define forms for the
management of tables with one to many relationships, in which the included
form presents all the elements of the table associated with the element in the
including form. Think of a pair of tables that describe orders and items
appearing in the orders. A form can illustrate at the most external level the
common characteristics of the order, for example, customer, date or
payment. An included form can then be used to present all the items
included in the order.

A report is defined in a similar way to a form, with almost identical tools
and concepts. The main difference lies in the fact that a report has typically
the aim of providing a description of the database contents at a summary
level. For this reason, reports typically contain calculated controls that
compute aggregate functions, and do not permit the viewing of particular
tuples. Another difference from forms is that, in general, reports are printed,
instead of being used interactively.

A.5 The definition of macros
Macros are a way of specifying a set of actions that the system must carry
out. In this way, we can automate the execution of a set of tasks. Using
macros, we can perform the following actions.

Figure A.19 A form that presents the content of table Person.

540 Appendix A
Microsoft Access

• Let a form interact with other forms or with reports. For example,
consider a form that describes the data of clients, and one which
describes orders. We can add to the first form a button that activates the
second form, presenting the order data for the client presented on the
first form. We can also add a button that allows the printing of a report
that lists the credit balance of the client, with the total amount of
merchandise ordered, delivered and paid for by the client.

• Select and group tuples automatically. In a form, we can insert a button
that allows the immediate selection of the tuples that satisfy given
conditions.

• Assign values to the attributes. Using a macro, we can assign to a control
of a form a value obtained from other controls or other tables of the
database.

• Guarantee the correctness of data. Macros are very useful for the
manipulation and validation of the data in the form. For example, we can
define a macro that reacts to different incorrect values of an attribute with
different messages, and guarantee that the inserted data is correct.

• Set properties on forms, reports and attributes. Using macros, we can
automate changes of any property of these objects. For example, we can
make a form invisible when its contents are needed but not to be seen.

• Automate the transfer of data. If we need to transfer data repeatedly
between Access and other applications (both reading and writing), we
can automate the task.

• Create a customized environment. We can specify a macro that opens a set
of tables, queries, forms and reports each time a database is opened; the
toolbar can also be personalized.

• Specify reactions to certain events. For each element of a form, we can
specify which macro must be executed after each event of access,
selection or modification on the element. This characteristic makes up the
basis for the definition of reactive behaviour in Access, which however
must not be confused with what is offered by active databases, described
in Chapter 12. This behaviour occurs in Access only when a particular
form is used for the manipulation of the database; the access or
modification event is not detected if the same operation is executed
directly in sql or using another form.

To define a macro, it is necessary to follow the usual steps: first, the New
option of the Macro component in the main database window must be
selected. At this point, Access presents the window for macro design. The
top half of the window contains a table with two columns: Action and
Comment. The macro is made up of a sequence of actions described in the
Action column, each on a different row, to which a brief description can be

Section A.5 541
The definition of macros

added. In the lower half of the table a set of attributes appears, which, for
each single action, specify the parameters of the action. We can specify
conditions that must be verified when a command is executed, adding the
Condition column. We can also use simple control structures.

The available commands can be divided into families. We list the most
significant commands in each family.

• Execution: RunCommand (invoke a command, like a menu option),
OpenQuery (execute a query), RunMacro (execute a macro), RunSQL
(execute an sql command), RunApp (execute an external application),
CancelEvent (disregard an event), Quit (close the session), StopMacro
(terminate the execution of the macro) and StopAllMacros (terminate the
execution of all macros).

• Access to data: ApplyFilter (apply a selection condition to the tuples)
FindNext (move to next tuple), FindRecord (access a tuple), GotoControl
(position the cursor in a form control), GoToRecord (go to a particular
tuple).

• Modification of data: SetValue (assign a particular value to an attribute),
DeleteObject (removes an object), OpenForm, OpenQuery, OpenReport,
OpenTable (commands that open respectively a form, a query a report and
a table).

There are other command families, such as those for the transfer of data
between Access and other applications, for the modification of the window
dimensions and to open dialogue windows with the user.

A simple macro is described in Figure A.20. The macro is associated with
modifications on the Price attribute of the ITEM table. The macro assigns to the
attribute Expensive the value Yes, if the Price is greater than 1000, otherwise
it assigns the value No to the attribute.

Figure A.20 The macro definition window.

542 Appendix A
Microsoft Access

B
Appendix B DB2

Universal Database

db2 Universal Database1 belongs to a ‘historic’ family of database
management systems produced by ibm. The oldest member of this family is
sql/ds, one of the first commercial systems based on the relational model,
made available by ibm at the beginning of the eighties. In its turn, sql/ds has
its roots in System R, one of the first prototypes of relational dbmss
developed, in the early seventies, in the ibm research laboratories in San
José. It was in the development environment of this prototype that sql was
born. This language soon became the standard for all dbmss based on the
relational model.

Together with a complete support for the relational model, db2 offers some
object-oriented features and a rich set of advanced features, including:

• support for the management of non-traditional data types, such as texts,
images, sounds and video;

• support for the management of data types and functions defined by the
user;

• some extensions of sql that include powerful On Line Analytical
Processing (olap) operators and special constructs to specify recursive
queries;

• support for parallelisms based on both ‘shared memory’ configurations,
in which a database is managed by a symmetric multiprocessing (smp)
machine, and ‘shared nothing’ configurations, in which a database is
partitioned among different machines connected by a network.

1. For the rest of the chapter, we will refer to this product simply as db2.

544 Appendix B
DB2 Universal Database

The server component of db2 is available on Windows nt, os2 and several
Unix-based platforms. The client component is also available on Windows
and Macintosh environments for personal computers. Client and server can
communicate on the basis of diffuse communication protocol standards (tcp/
ip, NetBios, etc.). Moreover, db2 systems can participate in heterogeneous
and distributed multi-database environments, using a protocol called
Distributed Relational Database Architecture (drda), adopted by many other
database management systems. Finally, db2 provides support for the main
interface standards (such as odbc, jdbc) and adheres to sql-2.

In the rest of this appendix, we will describe the general characteristics of
the system, paying particular attention to its advanced functionality. We will
not discuss the db2 triggers here, because, although they form an advanced
feature of the system, they have already been presented in Chapter 12.

For a more detailed presentation of this system, we refer the reader to the
book by Chamberlin [20], one of the inventors of sql.

B.1 DB2 overview

B.1.1 Versions of the system
The db2 system is available in four versions, which manage architectures of
increasing complexity.

• Personal edition: is a version of db2 for pcs, available on Windows and
os2 environments. It allows the creation and manipulation of single user
databases.

• Workgroup edition: allows shared access to local databases, by local and
remote users and applications. It can be used on symmetric
multiprocessor machines having up to four processors.

• Enterprise edition: allows shared access to both local and remote
databases, by local and remote users and applications. It can be used on
symmetric multiprocessor machines having even more than four
processors. It can also participate in multi-database system architectures
that communicate by means of the drda protocol.

• Enterprise-extended edition: as well as the functionality of the Enterprise
edition, this allows the partition of a database among many computers
connected by a communication network, each of which can be a parallel
machine with even more than four processors.

For each of these versions, the system supplies an application development
environment (called Software Developer’s Kit) supporting various
programming languages (for example, c, c++, Java). There are also several
ibm products complementary to db2, including a tool for the integration of
heterogeneous databases (db2 DataJoiner), a product for the development of

Section B.1 545
DB2 overview

data warehouses (Visual Warehouse), an olap tool (db2 olap Server), and a
set of data mining applications (Intelligent Miner).

B.1.2 Instances and schemas of DB2

We can define many different instances2 of db2 servers on the same computer.
Each instance has a name and its own configuration and can manage many
databases, which remain the property of the instance. In this way, we can
adapt the system to specific application needs. For example, we can define
and configure a db2 instance for operational applications and another, with
different configuration parameters, for decision support applications. There
is, however, a predefined instance, created during the installation of db2,
which is simply called db2. The databases of an instance are organized into
schemas having a name and composed of collections of tables. The default
schema into which the new tables are inserted has the same name as the user
account.

db2 clients possess a list of instances and databases to which they can have
access. They are supplied with tools to create new instances, new schemas
and new databases. To interact with the server, a client must first access a db2
instance and then establish a connection with a database of this instance. A
client can connect at the same time to many databases of an instance and can
then send db2 commands both at the instance level (for example to create a
new database) and at database level (typically an sql statement). If in a db2
operation the name of the schema is not specified, then the default schema is
referred to.

B.1.3 Interaction with DB2

We can interact with a db2 database in two ways, as specified below.

• In an interactive manner, in which sql commands are sent to the system
and their results are immediately shown on the screen. Both a simple
textual interface and a user-friendly graphical interface are provided.

• Through the execution of programs written in traditional programming
languages, in which sql commands are embedded. Both static and
dynamic sql are available (see Chapter 4). In the former, the structure of
sql statements is known at compilation time, whereas in the latter the sql
statements are generated at run time.

In contrast with other database management systems, db2 does not offer a
4gl, that is, an ad-hoc application development language. Although this
means that we need external compilers to develop applications, it allows the
creation of software that is easily portable from one system to another.

2. The term ‘instance’ denotes here an installation of db server and has nothing
to do with the notion of ‘database instance’ introduced in Section ...

546 Appendix B
DB2 Universal Database

In the next section, we will describe how a db2 database is managed, using
the above techniques.

B.2 Database management with DB2

B.2.1 Interactive tools
The simplest way to interact with db2 is by means of a user interface that
accepts and immediately executes commands issued by the user. The
traditional user interface of db2 consists of a textual environment, called the
Command Line Processor (clp), which is available on all platforms. The clp is
invoked at the operating system level with the db2 command. It accepts both
sql and db2 administration commands and returns results and messages
directly onto the screen. If a command is longer than a line, we must signal
the continuation on the following line with the backslash (\) character. In the
clp environment, it is not possible to access a database if the database server
has not been explicitly activated using the db2start command. An example
of interaction with clp is shown in Figure B.1. The prompt db2 => indicates
that the system is ready to receive commands.

For Windows and os2 environments, some advanced tools are also
available. They facilitate database management using windows and pop-up
menus. These tools can be profitably used in a classic client-server
architecture, in which a database resident on a Unix server is accessed and
managed by clients made up of pcs. The db2 interactive graphic tools are
described below.

Control Center This allows the administration of a database using table
creation operations, definitions of integrity constraints, authorization
controls, backups, restores, and so on. As shown in Figure B.2, the Control
Center interface has two main windows. In the one on the left, the db2
objects available are shown (instances, databases, tables and so on), according
to a hierarchical organization. These objects can be declared explicitly by the

Figure B.1 The db2 Command Line Processor.

Section B.2 547
Database management with DB2

user, or the Control Center can be requested to search on the local network
for all the db2 objects to which access is possible.

In our case, we can observe that two machines containing db2 objects are
available. They are called respectively Bernina and Cad2. The information
about the first machine has been expanded, as shown by the minus symbol
next to the icon. We can see that this system contains a single db2 instance
(the default instance). This instance contains two databases: one called Emps
and another called Sample. For the first of these, all the components are
shown, whereas the information about the second is not expanded, as shown
by the plus symbol next to the icon.

The window on the right contains information on the object selected in the
window on the left. In our case, all the tables of the Emps database are shown.
This database contains two schemas: the base schema and the db2admin
schema. The tables of the sysibm schema are system tables. By clicking the
right mouse button on any object of the screen, we obtain a menu that allows
us to perform actions on the selected object. For example, by clicking on the
Tables icon of a database, we can create a new table. The system guides the
user in the execution of many of these actions. Recent releases of db2 also
provide a version of the command center that is accessible from a Web
browser.

Command Center This tool allows the user to type and execute sql
commands and to compose scripts, that is, sequences of sql statements to be

Figure B.2 The db2 Control Center.

548 Appendix B
DB2 Universal Database

executed, if necessary, at particular times. The Command Center is made up
of three integrated environments: Script, Results and Access Plan. To move
from one to another it is sufficient to click on the corresponding panel. In the
first environment, we can type single sql commands or scripts made up of
sequences of sql commands. This environment also accepts db2 commands
for the administration of a database. For example, commands to create a
database, to make a backup copy or to define access privileges. In Figure B.3,
an example of an sql query formulated within the Script environment of the
db2 Command Center is shown.

This is a classic query that searches for employees who earn more than
their respective managers, in a schema containing the following tables:

EMPLOYEE(EmployeeId, Surname, Department, Salary)
DEPARTMENT(DepartmentId, Name, Location, Manager)

The commands written in the Script environment can be executed by
clicking on the Execute icon, made up of gears. The result is displayed in the
Result environment. An example of the contents of this environment
following the execution of the query in Figure B.3 is shown in Figure B.4.
Moving back and forth between the two environments is then possible to
work interactively with a database. The commands or scripts typed in the
first environment can be saved in a file or in the Script Center (see below) for
successive executions.

The third environment shows the access plans created by the db2
optimizer for the execution of sql commands typed in the first environment.
The access plans have a tree form: the leaves of the trees correspond to the
tables involved in the sql command and the internal nodes correspond to
operations carried out by the system to execute the command. Typical
examples are the scanning of a table, a certain type of join between two
tables, the ordering of an intermediate result. These trees are created by

Figure B.3 An sql query expressed in the db2 Command Center.

Section B.2 549
Database management with DB2

clicking on the appropriate icon on the top of the window. In Figure B.5 a
portion of the access plan of the query in Figure B.3 is shown. In the smallest
window, the entire graph that represents the access plan is shown and the
portion of the graph that is being examined is highlighted. In the selected

Figure B.4 The result of an sql query in the db2 Command Center.

Figure B.5 The access plan generated by db2 for an sql query.

550 Appendix B
DB2 Universal Database

portion, a series of preparation operations is reported (scan, sort and filter),
which precede the join operation between the DEPARTMENT and EMPLOYEE

tables. The values indicated in the node provide an estimate of the cost
expected for the operation. By clicking on the single nodes, we can access
other data relevant to the corresponding operation, such as more detailed
estimates of the cost of execution and of the cardinality of the results. From
detailed analysis of the access plans, we can optimize queries, for example by
introducing indexes for avoiding an ordering operation.

Script Center The Script Center allows the creation, modification and
schedule of sequences of commands that can be sql, db2 or operating system
statements. A script can run immediately or its execution can be scheduled
for particular dates and times. A script can be programmed to be executed
repeatedly, for example at ‘3.00 am each Saturday’. An example of the
contents of the Script Center is shown is Figure B.6. Observe that it must be
explicitly indicated whether the script contains db2 statements (including
sql commands) or operating system commands.

Journal The Journal keeps track of all the events that happen in a
database. In particular, we can use the Journal to examine all the query/
update operations that have been executed (in the Jobs panel), the backup/
restore operations performed (Recovery panel), the possible signals for
attention produced automatically by the system (Alerts panel), and all the
messages generated by the system on the execution of the various operations
(Message panel).

Information Center The Information Center supplies a large amount of
information on the db2 system. Using this tool, we can obtain help on
various topics. These include subject-oriented descriptions such as ‘creation
of a table’ or ‘backup of a database’, explanations of the db2 messages and of
the error codes, and a list of example programs that illustrate the various
features of db2.

Figure B.6 The db2 Script Center.

Section B.2 551
Database management with DB2

B.2.2 Application programs
The db2 system provides many tools for the development of application
programs for databases, in which the sql commands are embedded in host
languages, such as c, c++, Java, fortran and cobol.

As described in Chapter 4, there are two techniques for embedding sql in
a programming language: static sql and dynamic sql. The difference is that
in the first case, relations and attributes involved in sql commands are fixed
in advance. The only parts of the commands that can remain unknown at
compile time are the specific values used for querying and updating. In
dynamic sql, the sql statements are provided at execution time. Below, we
will give a more detailed explanation of the first technique, which is used in
most database applications, and we will only look briefly at the tools offered
by db2 for implementing the second.

Static sql A complete example of a program in static sql embedded in c
for db2 is shown in Figure B.7. This program accesses a database containing
the tables EMPLOYEE and DEPARTMENT mentioned above. It reads the name of an
input location and prints names and salaries of the employees of the
departments in those locations, ordered by department.

The db2 prefix indicating an sql command in a host language is exec sql.
The program begins with a series of compilation directives that declare the
db2 system library (called sqlenv.h) and the sqlca structure, used by the
system to return status information. In particular, the field sqlcode in sqlca
contains an integer that codes the exit status of the last sql command
executed.

Among the definitions of global variables, note that there are some
enclosed in a section delimited by the keywords declare section. These
variables are called host and are the variables that allow the exchange of data
between program and database. Note that when a host variable is used in an
sql statement it is preceded by a semicolon: this prefix serves to distinguish
variables from attribute names. The whenever statement allows us to specify
the behaviour of the program after the execution of any unsuccessful sql
command. The statement is not therefore associated to a specific sql
operation, but to the entire program. Three options are possible for this
statement: not found, sqlerror, and sqlwarning. With the first option, we can
specify what to do when the result of a query is empty (sqlcode = 100); with
the second, when an error occurs, (sqlcode < 0); with the last, when a
warning occurs, that is, the signalling of an unexpected but not serious event
(sqlcode > 0). In our program, it has been established that, when an error
occurs, the control passes to a routine that loads into a buffer the error
message generated, prints it and ends the program. Nothing is specified for
empty results and for warnings.

Before interacting with a database, a connection must be established with
it by means of the connect to statement. Following this, sql commands can
be freely executed. The effects of these commands on the database become

552 Appendix B
DB2 Universal Database

permanent only after the execution of the commit statement. (The example
program does not include update operations so it does not use such a
statement). To carry out the planned operations, the program makes use of
the cursor technique illustrated in Section 4.6. A cursor is first defined over
an sql query that contains the host variable DeptLoc. Then, after having
stored in this variable a string read by the input, the cursor is opened and
the query is executed. Then, using the fetch statement, the result is first
copied, one tuple at a time, into the host variables and then displayed. This
operation is controlled by examining the value assumed by the system

#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <sqlenv.h>
exec sql include sqlca;
void main() {
 char CurrDept[10]; /* Program variable declaration */
 exec sql begin declare section; /* Host variable declaration */
 char EmpSurname[10]; /* Employee surname */
 char DeptName[10]; /* Department name */
 char DeptLoc[15]; /* Department location */
 long EmpSalary; /* Employee salary */
 char msgbuffer[500]; /* Buffer for DB2 error messages */
 exec sql end declare section;
 exec sql declare C1 cursor for /* Cursor declaration */
 select distinct emp.surname, emp.salary, dep.name
 from employee emp, department dep
 where emp.department = dep.department_id and
 dep.location = :DeptLoc
 order by dep.name;
 exec sql whenever sqlerror go to PrintError;
 exec sql connect to emps; /* Connection to the database */
 printf("Enter a location:"); scanf("%s", DeptLoc);
 exec sql open c1; /* Opens the cursor */
 exec sql fetch c1 into :EmpSurname, :EmpSalary, :DeptName;
 if (sqlca.sqlcode==100)
 printf("No department in this location.\n");
 while (sqlca.sqlcode == 0) {
 if (strcmp(DeptName,CurrDept)!=0) {
 printf("\nDepartment: %s\nEmployee\tSalary\n",DeptName);
 strcpy(CurrDept,DeptName);
 } /* end if */
 printf("%s\t%d\n", EmpSurname, EmpSalary);
 exec sql fetch c1 into :EmpSurname, :EmpSalary, :DeptName;
 } /* end of while */
 exec sql close c1; /* Closes the cursor */
 exec sql connect reset; /* Resets the connection */
 return;
PrintError: /* Retrieves and prints an error message */
 sqlaintp(msgbuffer, 500, 70, &sqlca);
 printf("Unexpected DB2 error: %s\n", msgbuffer);
 return;
} /* end of main */

Figure B.7 An sql program embedded in c for db2.

Section B.2 553
Database management with DB2

variable sqlcode. In particular, a message is generated when the result is
empty (sqlcode = 100) and copy and print operations continue as long as
there are still tuples to be viewed (sqlcode = 0). The cursor is then closed and
the connection released.

To create a db2 application, the program is first precompiled by sending
the prep filename command in the clp or in the Command Center. The result
of the precompilation is then compiled and linked according to the
techniques adopted in the environment at disposal for any program written
in the chosen host language.

Dynamic sql db2 supplies three different methods for the creation of
applications based on dynamic sql: the Call Level Interface (cli), the Java
Database Connectivity interface (jdbc) and embedded dynamic sql. In all
three cases special statements are available to perform the following main
dynamic sql operations as described in Chapter 4:

• preparation of an sql command, with the invocation of the db2 optimizer
that creates the access plan;

• description of the result of an sql command, specifying the number and
type of attributes;

• execution of a prepared sql command, with the assignment of values to
possible host variables used in the command;

• loading of the result, one tuple at a time, into program variables for their
later use.

The cli is based on odbc (see Chapter 11). This interface provides a library
of functions that can be directly invoked by programs to access a database.
For example, the function sqlconnect() allows connection to a db2 database,
the sqlprepare() function prepares an sql command for its execution, the
sqlexecute() executes a prepared sql command and finally the sqlfetch()
function loads a tuple into host variables of the program. The great advantage
of the programs that use the cli technique is that they have no need to be
precompiled. Furthermore, they can be used on other dbmss that support
odbc.

The jdbc interface (see Chapter 14) is based on the same principle as cli,
but is dedicated to the development of programs written in Java and is thus
purely object-oriented. In particular, this interface is supplied with the
executeQuery(String) method. This takes as entry a string containing an sql
command and returns an object of the predefined class RESULTSET, made up
of a set of tuples. This class possesses a number of methods that allow the
programmer easily to manipulate the tuples contained in the objects of the
class. As well as standard Java applications, this interface allows the
development of applets, that is, programs that can be loaded and executed by
a Web browser (see Chapter 14). In this way, db2 databases can be accessed

554 Appendix B
DB2 Universal Database

by any computer connected to the Internet, without needing to install the
client component of the db2 system on it.

Finally, dynamic sql can be embedded in programming languages in a way
similar to static sql. However, in contrast to the cli and the jdbc interface,
these programs need to be pre-compiled. There are particular statements
(preceded by exec sql) that allow the specification of the dynamic sql
operations. In particular, the preparation phase of an sql command is
implemented using the prepare name from variable statement, where the
variable stores an sql command. This sql command can contain question
marks that indicate the presence of parameters that are to be supplied during
the execution phase. In the case of queries, the cursor mechanism can be
used, as happens with static sql.

If the number and type of attributes of the sql commands are not known
in advance, we can use a describer. This is a data structure that describes the
type, length and name of a variable number of attributes of relations. The
db2 system supplies for this purpose the predefined describer sqlda, which
is a record containing a variable number of fields of sqlvar type, one for each
attribute to be described. The number of these fields is stored in the sqld
field of sqlda. The sqlvar fields are records themselves, containing a number
of fields, including sqlname, sqltype and sqlen, which respectively store the
name, type and length of an attribute. In the preparation phase, we can
indicate the use of this describer with the following syntax: prepare name
into sqlda from variable. After the execution of this statement, the
description of the command stored in the variable is loaded into the sqlda.
Using this technique, we can easily implement, for example, a personalized
user interface, capable of accepting and executing arbitrary sql commands.

B.3 Advanced features of DB2
As mentioned at the beginning of the chapter, db2 offers a set of advanced
features. Although not standardized, these features give an interesting
indication of the system characteristics of current database management
systems.

B.3.1 Extension of SQL for queries
db2 adheres to the entry level of sql-2, but also provides several extensions.
These extensions allow a notable increase in the expressive power of the
language, especially as regards the query operations. We will look at some of
them by means of examples.

CASE In the select clause of sql for db2, we can specify conditional
expressions. These expressions allow the generation of values that appear in
a column of the result, based on conditions defined on other columns of the
result itself. They are specified with the case construct. Assume that we have
a table containing information on vehicles, with the schema:

Section B.3 555
Advanced features of DB2

VEHICLE(RegistrationNumber, Type, Manufacturer, Length, NWheels)

Assume now that we wish to calculate a tax on the vehicles registered after
1997, based on a tariff that refers to the type of vehicle. A possible solution
is as follows, where the value is calculated on the basis of values that appear
in the Type column of the VEHICLE relation.

select RegistrationNumber,
 case Type
 when 'car' then 42.50 * Length
 when 'truck' then 25.00 * NWheels
 when 'motorbike' then 37.00
 else null
 end as Tax
from Vehicle
where RegistrationYear > 1997;

The case expressions can also be used for update operations. For example,
the following sql command specifies a modification of the salary in the
EMPLOYEE relation, based on the values in the Department column.

update Employee
set Salary =
 case
 when Department = 'Administration' then Salary * 1.1
 when Department = 'Production' then Salary * 1.15
 when Department = 'Distribution' then Salary * 1.12
 else Salary
 end;

It should be observed that in standard sql the only way to perform the
same operation would be to use multiple commands.

Nesting of queries An interesting facility offered by sql for db2 is the
ability to nest queries, not only in the where clause, but also in the from
clause. This characteristic is based on a principle of orthogonality of
programming languages, which requires that independent features can be
combined without restrictions. In the sql context, orthogonality suggests
that a select statement, returning a table, must be allowed to appear
anywhere a table is expected, including the from clause.

As an example, look again at the schema:

EMPLOYEE(EmployeeId, Surname, Department, Salary)

Suppose we wish to find the employees who earn 30% more than the
average salary in the department to which they belong. The query can be
expressed in db2 with the following sql statement.

select Surname, Salary
from Employee as Emp, (select Department, avg(Salary)
 from Employee
 group by Department)
 as AvgSalDept(Department, AvgSalary)
where Emp.Department = AvgSalDept.Department and
 Emp.Salary > AvgSalDept.AvgSalary * 1.3

556 Appendix B
DB2 Universal Database

This query can also be expressed in a standard way, by moving the nested
sql statement, which determines the average value of salaries, within the
where clause. It is however easy to show that this functionality increases the
expressive power of the language: we can write sql queries embedded in the
from clause that cannot be expressed in another way.

Suppose for example, that the schema possesses a further table with the
schema JOBS(Employee, Project), which stores the projects in which the
employees participate. The average number of projects in which the
employees of the Production department participate can be retrieved as
follows:

select avg(NumberOfProjects)
from Employee as Emp, (select Employee, count(Project)
 from Jobs
 group by Employee)
 as NoProjects(Employee, NumberOfProjects)
where Emp.EmployeeID = NoProjects.Employee and
 Emp.Department = 'Production'

This query cannot be expressed with a nesting in the where clause, because
it requires the use of the result of an aggregation (count) to evaluate another
aggregation (avg). However, in the where clause, we can use the result of a
nested query only for a comparison of values. (See Chapter 4.)

OLAP operations db2 provides some extensions of the group by clause, to
specify queries that involve complex aggregations of data. These operations
are particularly useful for database analysis oriented to decision making. As
we said in Chapter 13, these operations are commonly termed On Line
Analytical Processing (olap).

Suppose we have a database that registers the sales of a chain of stores,
organized according to the following schema:

SALE(Store, Item, Income)
LOCATION(Store, City, State)

PRODUCT(Item, Category)

As we said in Chapter 13, this could be the star schema of a data mart
constructed for specific analysis activity. In this data mart, the SALE table
stores the facts on which the analysis is focused (centre of the star), while
LOCATION and PRODUCT constitute the dimension tables.

A first sql extension provided by db2 allows the specification of
aggregations on different levels of the same dimension with the rollup
construct. For example, the statement that follows allows the calculation of
the total income of the chain, grouped by store, city and state (all levels of
the ‘Location’ dimension).

select Location.Store, City, State, sum(Income) as TotIncome
from Sale, Location
where Sale.Store = Location.Store
group by rollup(State, City, Location.Store)

Section B.3 557
Advanced features of DB2

A possible result of the command is shown in Figure B.8. Observe that this
instruction also calculates the global total of the incomes. In the result tables
the tuple components for which there is no applicable value (for example, the
store in the third tuple) are filled by db2 with null values. As we said in
Chapter 13, these components should instead represent ‘all the possible
values’. To improve the readability of reports generated with these
operations, it is then preferable to fill these spaces with an appropriate term,
for example, ‘all’. This operation can be easily carried out using the case
construct.

We can also carry out aggregations computed along several dimensions,
possibly on different levels. This operation corresponds to the data cube
operation described in Section 13.3.3 and is carried out using the cube
construct. For example, the following instruction calculates the total number
of sales by city and by product category.

select City, Category, count(Income) as NoOfSales
from Sale, Location, Product
where Sale.Store = Location.Store and
 Sale.Item = Product.Item
group by cube(City, Category)

A possible result of this instruction is shown in Figure B.9. Observe that
in this case, too, db2 does not supply special values for components of the
result with no applicable value.

Recursion Suppose we have a table SUPERVISION(Employee, Head), which
stores the immediate superior of each employee. Now suppose we wish to
know the superiors, the superiors’ superiors, and all the other indirect
superiors of the employee Jones. It is well known that this query cannot be
expressed in either relational algebra or sql-2 because, intuitively, it would
require an unpredictable number of joins of the SUPERVISION table with itself.

Figure B.8 Result of a roll-up operation.

Store City State TotIncome

White Los Angeles CA 34
Black Los Angeles CA 32
NULL Los Angeles CA 66
Brown San Francisco CA 25
NULL San Francisco CA 25
NULL NULL CA 91
Red New York NY 28
NULL New York NY 28
NULL NULL NY 28
NULL NULL NULL 119

558 Appendix B
DB2 Universal Database

The query can, however, be expressed in db2 using the following
recursive command.

with Superior(Employee, SuperHead) as
 ((select Employee, Head
 from Supervisor)
 union all
 (select Supervisor.Employee, Superior.SuperHead
 from Supervisor, Superior
 where Supervisor.Head = Superior.Employee))
select SuperHead
from Superior
where Employee = 'Jones'

In this command, the with clause defines the SUPERIOR table, which is
constructed recursively, starting from the SUPERVISOR table. In particular, the
construction involves a basic non-recursive query over the SUPERVISOR table
(base definition) and a recursive query that expresses a join between the
tables SUPERVISOR and SUPERIOR (recursive definition). It is interesting to
observe that the schema adopted by db2 for recursive queries is similar to
the definition of intentional predicates adopted in the logical language
Datalog, as described in Section 3.3.

B.3.2 Object-oriented features of DB2
db2 offers three independent features that can be combined for the creation
of databases with object-oriented characteristics: complex data types, user
data types, and user functions.

Complex data db2 provides three types of pre-defined data types that can
be used to store complex data in a table (for example, images), which are
called generically lobs (Large Objects).

• Blob (Binary Large Object) represents a data item in binary form, up to
two gigabytes. Blob data cannot be assigned or compared with data of
other types.

Figure B.9 Result of a cube operation.

City Category NoOfSales

Los Angeles milk 2453
Los Angeles coffee 988
New York milk 789
New York coffee 987
Los Angeles NULL 3441
New York NULL 1776
NULL milk 3242
NULL coffee 1975
NULL NULL 5217

Section B.3 559
Advanced features of DB2

• Clob (Character Large Object) represents a data item composed of a
sequence of one byte characters, up to two gigabytes. The Clob data can
be compared with data of string type (Char and Varchar).

• Dbclob (Double-Byte Character Large Object) represents a data item
composed of a sequence of two-byte characters, up to two gigabytes.
Dbclob data can be used only on databases with a suitable configuration.

A possible table definition that contains lob data is as follows.

create table Employee (
 EmployeeId integer not null unique,
 Name varchar(20),
 Salary decimal(7,3),
 HiringDate date,
 Picture blob(5M) compact,
 Resume clob(500K)
)

In this table, the Picture column serves to store images and the Resume
column, texts. The dimensions specified in brackets indicate a maximum
value. The compact option specifies that the data item should occupy the least
possible space on the disc, possibly trading efficiency.

There are indeed many limitations to the use of lob data in db2 sql
commands. In particular, it is not possible to compare directly columns of
lob type with operators such as =, >, < or in. It is however possible to use the
like operator. For example, the sql command

select EmployeeId, Name
from Employee
where Resume like '%DBA%'

retrieves the employees for which the DBA string appears in the Resume
column.

db2 manages lobs in a way that minimizes their movements from one
location in the memory to another. In particular, lobs can be manipulated in
applications using suitable variables called locators. These represent a lob
without physically storing it. With the appropriate use of locators, we can
defer or even avoid the loading of a lob in main memory. For example, the
copy of a lob happens simply by copying the locator. A locator is defined in
the host variable declaration section of a program with the sql command
type is TypeOfLob LocatorName. The locator can then be used like all the
other host variables to manage a lob of associated type. We can also
manipulate locators using special functions. These special functions include
posstr, which finds the position of the first occurrence of a pattern in a lob,
and substr, which returns the substring of a lob, included in the specified
positions.

As well as these basic pre-defined types, db2 provides, as external
packages, a series of extenders. These are further data types, more specific
than lobs, for the management of non-traditional data. Extenders are

560 Appendix B
DB2 Universal Database

equipped with auxiliary functions for the manipulation of the particular
data types. There is, for example, a db2 extender for text data, whose
associated functions allow the indexing of texts and searches based on
keywords.

User types A user type (called distinct in db2) is a type defined from basic
data types of db2. For example, the user types Money, Image and Text can be
defined as follows:

create distinct type Money as decimal(7,2) with comparisons;
create distinct type Image as blob(100M);
create distinct type Text as clob(500K) compact;

The as clause specifies the source data type, while the with comparisons
clause specifies that all the comparison operators defined for the source type
are also allowed on the user type. Unfortunately, only pre-defined db2 data
types can be used as source types and definitions cannot be nested.

Once defined, the user types can be freely used in the creation of tables.
For example, the preceding definition of the EMPLOYEE table can be rewritten
as follows:

create table Employee (
 EmployeeId integer not null unique,
 Name varchar(20),
 Salary money,
 HiringDate date,
 Picture image,
 Resume text
)

On columns defined on a user type, it is not generally possible to apply the
same operations that can be applied to the respective source types. For
example, it is not possible to sum two data items of Money type. We can
however, obviate this limitation with the definition of suitable user
functions, described below.

User functions The user functions can be declared explicitly using the
create function statement, which assigns a name to the function and defines
its semantics. These functions are associated with a database and can be used
only in the context of that database. An important characteristic of db2 user
functions is that they adhere to the principle of overloading, as in object-
oriented programming. We can define the same function more than once as
long as the input parameters of the various definitions differ in type and/or
number. Based on the same principle, we can also redefine pre-defined db2
functions, for example arithmetical operators. The db2 user functions can be
classified as follows.

• Internal functions: these are constructed on the basis of predefined db2
functions, called source functions, in a similar way to user types

Section B.3 561
Advanced features of DB2

• External functions: these correspond to external programs written in
traditional programming languages (c or Java). They may or may not
contain sql commands. The declaration of an external function contains
the specifications of the physical location where the code, which
implements the function, is stored. There are two types of external
function:

° scalar functions: these can receive many parameters as input but return
a single value as output: if the name of the function redefines a basic
operator (for example ‘+’) then such functions can be invoked using
the infix notation;

° table functions: these return a collection of tuples of values, which are
considered as if they were rows of a table; each time that these
functions are invoked, they return a new tuple or a special code
indicating that no more tuples are available.

Internal functions are mainly used together with user types to allow the
application of standard functions to user types. For example, with reference
to the user type Salary defined above, we can define some internal functions
with the following declarations.

create function "*"(Money, Decimal()) returns Money
 source "*"(Decimal(), Decimal())
create Function Total(Money) returns Money
 source Sum(Decimal())

In these declarations, we define the name of the function, the types of
input parameters (which can also be user types), the type of the result and
the source function. The source function is a db2 function that is applied
when we invoke the user function that is being defined. In our case, we have
redefined the product operator and have defined a new function, based on
the aggregate operator sum of sql. These declarations make sql commands
such as the following legal:

select Age, Total(Salary)
from Employee
group by Age;

update Employee
set Salary = Salary * 1.1
where Department = 'Production';

Expressions that involve, for example, the sum of a salary with a decimal
number are instead not legal because the sum operator is undefined for the
Money type.

Suppose now that we wish to define an external scalar function that
calculates the salary earned by an employee, based on his length of service,
assuming that the length of service is calculated on the basis of the date of
hiring. A possible definition of such an external function is as follows:

562 Appendix B
DB2 Universal Database

create function StandardSalary(Date) returns Money
 external name '/usr/db2/bin/salary.exe!StdSal'
 deterministic
 no external action
 language c parameter style db2sql
 no sql;

This declaration defines the external function StandardSalary, which
receives a Date item as input and returns a Money data item. The external
clause indicates the path name of the file that contains the code of the
function. The name after the exclamation mark indicates the module (c
function in our case), within the file that implements the user function. The
deterministic clause specifies that many invocations of the function on the
same values return the same result. The external action clause specifies
whether the function involves actions external to the database, as for
example the writing in a file. This information can be useful for the optimizer
to decide whether to limit the number of invocations of an external function.
The language clause specifies the programming language used to implement
the external function and the transfer method of parameters with it. The
standard method for c is called db2sql, while the one for Java is db2general.
Finally, the last clause indicates whether the function involves access to a
database or not.

We will not discuss here the techniques by which an external function is
implemented. We will just mention the fact that there are conventions for
transforming programming language types into sql data types and that the
implementation of a user function has other parameters, which allows the
control of the data flow. As an example of the use of an external function, the
following command retrieves surnames and salaries of the employees who
earn 20% more than the reference salary, also showing the value of the salary.

select Surname, Salary, StandardSalary(HiringDate)
from Employee
where Salary > StandardSalary(HiringDate) * 1.2;

Observe that the condition in the where clause is valid because: (a) the user
function returns a data item of type Money; (b) the product of this data type
by a decimal value has been defined above; and (c) the value returned by the
product is of Money type and can therefore be compared with the Salary
attribute, as established by the definition of the user type Money (see above).

The table functions constitute a particularly interesting aspect of db2.
They allow the easy transformation of an external information source into a
table that can be manipulated in sql. It is sufficient to write a program that
accesses the data source, for example a text file or an ms Excel file, possibly
filters the data based on parameters passed as input, and finally returns them
one row at a time. The return of the various rows happens as follows. The
system allocates an area of memory (called a scratchpad), which preserves its
content from one execution of the program to another. In this way, a program
can access information about the previous execution; for example, the last
position accessed in a file.

Section B.3 563
Advanced features of DB2

Suppose we have a function of this type that takes as input the name of a
city and returns sequences of values stored on a remote file, corresponding
to sales information of stores located in that city. The definition of the
corresponding table function could be as follows:

create function Sales(Char(20))
 returns table (Store char(20),
 Product char(20),
 Income Integer)
 external name '/usr/db2/bin/sales'
 deterministic
 no external action
 language c parameter style db2sql no sql
 scratchpad
 final call disallow parallel;

Note that, apart from some specific clauses, the definition is similar to the
definition of an external scalar function. The main difference is that the result
of the function is composed of many parameters, which are interpreted as
attributes of a table.

A possible sql command that uses the table function defined above is as
follows:

select Store, sum(Income)
from table(Sales('Los Angeles')) as LASales
where Product = 'Toy'
group by Store;

This command retrieves the total income taken by the stores in Los
Angeles for sales of toys. The table queried is not stored in the database (as
indicated by the keyword table), but is generated by the table function
Sales, to which is passed, as an entry parameter, the string ‘Los Angeles’.

By using user types and user functions together, we can obtain a data
management system with object-oriented features. For example, we can
define a class ‘Polygons’ using a lob user type. We can then define as user
functions a series of methods of this class for constructing a new object,
modifying it, printing it and calculating its perimeter and area.

564 Appendix B
DB2 Universal Database

C
Appendix C Oracle PL/SQL

In this appendix, we first describe the general characteristics of Oracle
Server, illustrating the various tools and the architecture of the system. We
then present the object extensions that were recently introduced. We finally
focus on the programming language pl/sql, a procedural extension of sql,
with control structures, definition of variables, subprograms and packages.
We refer to version 8.0 of Oracle Server and version 8.0 of the pl/sql
language.

C.1 Tools architecture of Oracle
Oracle is currently one of the main world producers of software, and the
range of products offered has as its foundation the database management
system Oracle Server, available for most types of computer. An important
strength of Oracle is this availability on various platforms, which facilitates
the integration among databases at various levels in an organization.

The range of Oracle products consists of the following families.

• Database servers. These are available for most platforms, including pcs,
local network servers, workstations, mini-computers, mainframes and
parallel supercomputers. The servers can then be enhanced by various
components, as follows.

° Video Option: for the management of multimedia data.

° Spatial Data Option: for the management of geographic and spatial data.

° ConText Option: for the management of unstructured text-type
information. This component adds to the server the functionality of an
information retrieval system.

° On Line Analytical Processing Option (olap): for increasing database
efficiency, when the database is used in tasks of data analysis and
decision support.

566 Appendix C
Oracle PL/SQL

° Messaging Option: to use the database as a tool for the interchange of
messages between information system users.

° Web Server: a proprietary http server allowing access to the database
with a Web interface (a data access mechanism that will acquire more
and more importance, see Chapter 14).

The observation that can immediately be made is that a database server
can now manage data of any type, structured or not, extending the range
of applications of a dbms well beyond its traditional domain.

• Communication Products. Along with the server, it is indispensable to
provide tools that allow dialogue with the outside world, given the wide
variety of protocols, systems and network interfaces that exist. To
provide efficient communication among many systems, Oracle offers a
large selection of products for communication, including the network
manager sql*Net.

• OLAP tools. This is an area that is showing increasing importance (see
Chapter 13). To satisfy these needs, we have seen that Oracle Server can
be extended with an additional olap module. As well as these, Oracle
provides external support tools and offers database servers (Oracle
Express) specially designed for data warehouse management, capable of
offering richer functionality and greater services of data analysis. The
reference architecture for these systems assumes the existence of a
replication mechanism for the central database. The server dedicated to
analysis then operates on the copy. The support tools for data analysis are
in any case able to operate even on a traditional server.

• Tool environments. The Oracle environment comprises many support
tools. The tools are organized into three families.

° Designer: provides support tools for the design of information systems,
focused on the database role. It consists of a set of tools for the
specification of organizational processes and for the description of
tasks, interfaces and application components. Then there are tools that
use these specifications automatically to generate the sql code
corresponding to the given descriptions. With these tools, the designer
can be supported in the definition of the database schema and also in
the generation of applications.

° Developer: provides tools for writing applications. For data description
and applications, all the tools of this family use the same repository as
was constructed by the tools in the earlier environment. This is a good
example of an integrated development environment. Among them, we
note the Forms tool for the definition of applications, based on the
definition of forms and targeted to different environments (Windows,
Mac, x/Motif or alphanumeric terminals). Other important components

Section C.2 567
Base domains

are Reports (a report generator) and Procedure Builder, a support tool for
the design of pl/sql code, which provides an interpreter and a
debugger for the language. All these tools offer assistance in the
production of advanced applications, such as those for client-server
environments and graphical interfaces.

° Discoverer: provides tools for the analysis of the database content.
Among these, there are tools that provide a graphical interface for
navigation on the database, together with tools that allow the execution
of more sophisticated data analysis. These tools all offer an interface
that does not require knowledge of sql, and that tries to mask the
complexity of the database. A representative tool of this family is Data
Query.

• Gateways. A very important issue in the database world is that of
interoperability, or rather the need to make different database managers
co-exist and interact (as we have seen in Chapter 10). For this purpose,
Oracle provides a set of applications that are capable of making Oracle
communicate with various other products.

• Groupware. A slowly growing market is that of support tools for co-
operation in the work environment, known as Computer-Supported
Cooperative Work (cscw). The objective is that of providing tools that
exploit the computer network as an organizational resource, in a more
structured manner than is actually offered by tools such as electronic
mail. Oracle exploits the database server as a basis for co-operation tools.

The presence of so many products makes it very difficult to describe the
interaction with the system, as what is important in one context or platform
may not be valid in another. For this reason, we will not describe the use of
the system, but will concentrate instead on three aspects of Oracle Server:
the base domains, the object-relational extensions and the pl/sql language.
The base domains are dealt with because they constitute one of the basic
design choices of a dbms, and this knowledge is necessary for the use of pl/
sql. The object-relational extensions illustrate a concrete application of the
ideas presented in Chapter 11. pl/sql is the main subject of this appendix. It
is described because it represents one of the most sophisticated and best
known examples of procedural extension of sql, an important aspect in the
exploitation of a dbms.

C.2 Base domains
Oracle extends the base domains defined in standard sql.

• binary_integer. This is a domain of integers with a binary representation
on 32 bits. It allows the sub-domains natural (from 0 to 231 − 1) and
positive (from 1 to 231 − 1). The most similar sql domain is the integer
domain.

568 Appendix C
Oracle PL/SQL

• number. This is the most general domain for the representation of numbers
and is characterized by precision and scale. This domain permits the
representation of both integer and real values; it has the power to
describe the whole family of numeric domains of standard sql (for
example, decimal, double, float and integer). Each declaration of a
numeric domain with the sql syntax is translated by the system in a
declaration on the number domain, with appropriate values of precision
and scale.

• char. When it is characterized by length, it represents strings of
characters, otherwise it defines a domain of a single character. The
maximum length of the string is 255. It corresponds exactly to the char
domain of sql.

• varchar2. This allows the representation of strings of characters of
variable length. The maximum length is equal to 2000 characters. This
corresponds to the domain varchar of sql. The term varchar can actually
be used. The name varchar2 was chosen to prevent future modifications
of the varchar domain in standard sql from having an impact on
applications. A designer using the domain varchar2 has the guarantee
that the behaviour of the program in future versions of Oracle will remain
unchanged; instead, the varchar domain depends on the decisions of the
sql standardization committee. If an application is developed that must
be used only in the Oracle environment, there are no strong objections to
the use of this domain; otherwise it is preferable to write code that
respects the standard as far as possible.

• long. The name would lead us to suppose that this concerns a numeric
domain (similar to the type long in c). It is in fact a domain of strings of
characters of variable length with a maximum length of 231 − 1. It is
therefore an extension of the varchar2 domain.

• raw. This allows the representation of data in binary form, seen as strings
of bytes of variable length. It is managed as if it contained strings of
characters, except that the system never tries to interpret it for
conversion (as for example happens for characters, when transferring
from a system with ascii codes to a system with ebcdic codes). The
maximum length for an attribute is 255 bytes.

• long raw. This extends the raw domain by allowing a maximum length
equal to 231 − 1 bytes.

• date. This represents instants of time and corresponds to the timestamp
domain of standard sql. As well as the date, hours, minutes and seconds
are also represented. There is no domain corresponding to the time
domain of standard sql.

• rowid. Oracle internally allocates a unique identifier to each tuple. The

Section C.3 569
The object-relational extension of Oracle

identifier is a binary value using six bytes. The six bytes indicate the file
to which the tuples belong, the block number within the file, and the
position of the tuple within the block.

• LOB (LargeOBject): this is a family of domains that were introduced in
version 8 of Oracle Server. These domains can be considered as extensions
of the long and long raw domains. The domains of this family are Binary
LOB (BLOB), Character LOB (CLOB), and National Character LOB (NCLOB).
There are a few differences between long and LOB domains, the main one
being that lobs are managed with locators. That is, if a table has a lob
attribute, then its value is a reference to a database area where the actual
value of the lob is kept. Locators are more compact, have fewer
restrictions than long attributes, and offer a richer access to the data
(possibly identifying a fraction of the lob content, located anywhere in
the data). A variant of the lob domain is the BFILE (binary file) domain.
The BFILE domain represents references to files kept outside the server.
Data accessed by a BFILE attribute cannot exploit the transactional
support the server offers for internal data.

C.3 The object-relational extension of Oracle
Version 8 of Oracle has introduced several object features into the relational
engine. The approach follows the guidelines delineated in Section 11.3: an
object-relational system is compatible with previous relational applications
and provides object orientation features, minimizing the need for a complex
migration of existing data, long retraining of personnel and expensive
rewriting of applications.

The basic component of the object extension are the type definition
services, which improve significantly the domain definition services of
relational systems and are comparable to the type definition mechanisms of
modern programming languages. The SQL interpreter offers a create type
command, which permits the definition of object types. Each element of an
object type is characterized by an implicit identifier (the object id or oid).
The command:

create type EmployeeType as object
(RegNo char(5),
 FirstName varchar(25),
 LastName varchar(25),
 DateOfBirth date,
 member function Age() return number)

defines an object type EmployeeType, with attributes RegNo, FirstName,
LastName and DateOfBirth. EmployeeType also contains a method Age(),
available on all the objects of EmployeeType. Types can be used to in the
definition of tables, as in the following command:

create table Employee of EmployeeType

570 Appendix C
Oracle PL/SQL

Each row of the EMPLOYEE table is an EmployeeType object, with the
attributes and methods described in EmployeeType. The following query
extracts information from the objects that return a value for Age between 35
and 45:

select E.RegNo, E.FirstName, E.LastName, E.DateOfBirth
from Employee E
where E.Age() between 35 and 45

Type definitions can be arbitrarily composed. The following type
definition reuses EmployeeType in the definition of an object structure
describing departments:

create type DeptType as object
(DeptName varchar(25),
 Director EmployeeType,
 member function NoOfEmployees() return number)

Each object of DeptType contains an object of EmployeeType. A command
for the insertion of values into a table DEPT containing objects of DeptType,
can be:

insert into Dept values ('Administration',
EmployeeType('23456', 'Mary', 'Lafayette', '6/6/1951'))

An alternative to the direct import of objects is represented by the use of
references to object types, denoted by the keyword ref. A definition of
DeptType which does not explicitly contain an object of EmployeeType, but
instead makes reference to it, is:

create type NewDeptType as object
(DeptName varchar(25),
 Director ref EmployeeType,
 member function NoOfEmployees() return number)

Each object of NewDeptType refers to an EmployeeType object defined in an
external object table. The NewDeptType object keeps an internal
representation of the oid of the EmployeeType object.

The create type command can be used for the definition of arrays and
typed tables, two constructors absent from the relational model. The
definition of arrays uses the construct varray (that is, varying array). This
construct permits the definition of a structure that contains an ordered list
of elements. Each element is identified by its position in the array, and the
array can contain between zero and a maximum number of elements. The
maximum number of elements must be specified by the definition command.
An example of use of an array is the structure defined in the next two
commands. The Polygon varray keeps the geometric coordinates of the
vertices of a polygon with at most 10 vertices:

create type Vertex as object
(Xcoord number,
 Ycoord number);

create type Polygon as varray(10) of Vertex;

Section C.3 571
The object-relational extension of Oracle

The definition of a typed table has a similar structure. A typed table is like
a varray, except that a table can contain an arbitrary number of elements and
that the elements are unordered and there is no direct access mechanism to
them. For example, the following command defines a typed table on
EmployeeType elements:

create type EmployeeTableType as table of EmployeeType

Varrays and tables can be used in other table or type definitions, at an
arbitrary level of nesting. We offer two definitions that build structures with
respectively a nested varray and a nested table. The first creates a table of
polygons; the second defines a table representing a department.

create table Polygons as
(Figure Polygon);

create table Dept as
(DeptName varchar(25),
 Manager ref EmployeeType,
 Employees EmployeeTableType
 member function NoOfEmployees() return number)

Each element of POLYGONS contains a varray of vertices. Each element of
DEPT will be associated with a table of EmployeeType rows. To access the
content of a nested table, Oracle offers the operator the. Thus, to extract the
data contained in the EMPLOYEES nested table, we can write the following
statement:

select Emp.FirstName, Emp.LastName, Emp.Age()
 from the(select D.Employees
 from Dept D
 where D.DeptName = 'Production') Emp
 where Emp.DateOfBirth < 1/1/65

An important feature, one that facilitates the integration between the
object extensions and the existing relational data, is the definition of object
views. Object views permit the definition of an object structure on top of
existing relational data. This is based on two mechanisms. The first is the
with object oid clause, that specifies the attributes that build the identifier
of the view elements. In this way, the object identifier is not managed
internally by the system, but it is explicitly derivable from the tuple
identifiers. The second mechanism is the availability of view updating
mechanisms that allow the modification of the object view and automatically
propagate the changes to the underlying relational data. For complex view
definitions, where the system would not be able to identify an automatic
propagation from the object view update to the underlying data (such as
when the view computes a join), the system allows the definition of instead
of triggers on view updates. These are responsible for implementing the
update propagation mechanisms the designer considers adequate. An
example of object view definition is:

572 Appendix C
Oracle PL/SQL

create view EmpView of EmployeeType
with object id (RegNo) as
select RegNo, FirstName, LastName, BirthDate
from Employee

This view builds objects of EmployeeType, extracting data from a relational
table EMPLOYEE. The attribute RegNo takes the role of object identifier. In this
case, the system is able to propagate automatically updates on the object
view EMPVIEW to updates on the relational table EMPLOYEE.

We do not explore further the object-relational extension of Oracle 8. It is
important to observe that this extension has a profound impact on all the
components of the Oracle architecture (server, tools, gateways, etc). Even if
we will not make explicit reference to it, all the functionality of the object-
relational extension of Oracle Server is available in the pl/sql language that
we are going to describe.

C.4 PL/SQL language
The name pl/sql stands for ‘Procedural Language/sql’ and describes a

procedural extension of sql. It is thus possible to use the sql environment
to write applications that would otherwise require the use of a host language.
This solution offers the advantages of greater portability (from one Oracle
server to another) and is indicated for the definition of simple tasks. Another
advantage is that often pl/sql applications are more efficient, particularly
when the traditional application would generate many queries similar to
each other. pl/sql can actually reduce both the traffic on the network and
the load on the syntactic-semantic analyzer of the server.

The language is a modern programming language that offers characteristics
such as control structures, exception management, encapsulation,
prototyping and modularization. A generic pl/sql program is characterized
by a set of blocks. Each block has the following structure: first is a
declarations part, in which the objects used in the block are defined, then
the steps of the program are described, and finally the exceptions are treated.
The mandatory part is the specification of the steps of the program. Blocks
may be arbitrarily nested. The declarations of a block can be used in all the
blocks embedded in it. If a block redefines a term, then in the block itself the
term will assume the new definition.

Let us look at a simple example, which can give an idea of the general
characteristics of the language:

declare
 Sal number;
begin
 select Salary into Sal
 from Employee
 where RegNo = '575488'
 for update of Salary;
 if Sal > 30 then

Section C.4 573
PL/SQL language

 update Employee
 set Salary = Salary * 1.1
 where RegNo = '575488';
 else
 update Employee
 set Salary = Salary * 1.15
 where RegNo = '575488';
 end if;

 commit;
exception
 when no_data_found then
 insert into Error
 values('The RegNo does not exist', sysdate);
end;

This program updates the salary of the employee with the registration
number 575488. The program uses a local variable Sal in which the value of
the salary is held. If the salary is higher than 30 thousand, the salary is
increased by 10%, otherwise by 15%. If the select returns no tuples, a
no_data_found exception is generated and the program returns to the
execution inserting a tuple into the ERROR table. This contains a description
of the error and the time at which it occurred.

This program is composed of a single block. We distinguish among the
declaration part (enclosed between the keywords declare and begin), the
execution part (enclosed between begin and exception) and the part that
manages exceptions (between exception and end). Observe that the program
integrates SQL commands (select, update and insert) with control
structures typical of programming languages.

C.4.1 Execution of PL/SQL in a client-server environment

As regards the architecture of the system, Oracle offers two different
techniques for the use of pl/sql in a client-server environment.

The first solution makes the pl/sql code interpreter reside with the client.
This component is responsible for executing step by step the program
instructions, sending to the server only the sql commands to be executed.
This solution has the advantage of freeing the server from the task of
interpreting the pl/sql blocks. The client can also send to the server a pre-
compiled representation of the sql command.

The second technique puts the system component responsible for the
interpretation of the pl/sql program directly on the server. In this situation,
the client sends the entire program to the server, where it is executed. The
advantage of the second solution is that the need to exchange commands
between client and server is minimized. The Oracle system allows both
solutions, and thus it is up to the designer to choose the best solution; this
choice in complex applications depends upon many factors and requires
careful consideration.

574 Appendix C
Oracle PL/SQL

C.4.2 Declarations of variables and cursors

A pl/sql program allows the definition of variables. In the declaration, the
name of the variable is specified, together with the domain from which the
allowable values can be drawn. Variables may be assigned an initial value and
the not null option can be used to ensure that the variable cannot assume
the null value. The domains that can be assigned are the domains described
in Section C.2, with the addition of the domain boolean, which allows the
values true, false and null.

Here are some examples of variable declarations:

Description varchar(255);
Finished boolean;
Sal integer := 10;
RegNo char(6) not null default '575488';
Increase constant number := 0.1;
NewSal number := Sal* (1 + Increase);

To assign an initial value to the variables we can use the assignment
operator := or use the keyword default. If no value is assigned to the
variable, the null value is automatically assumed. An initial value is
obligatory whenever the not null clause is used. As the Increase definition
shows, we can define constants, that is, identifiers associated to a value that
cannot vary. The specification occurs by placing the keyword constant
before the domain definition. Note also that in the initial assignments we can
refer to variables introduced earlier.

Two interesting options are represented by the keywords %type and
%rowtype. Using the option %type, we can specify that the domain of a
variable must be identical to the domain of another variable or of any
attribute of a database table. With this option, we can write code that is
robust with respect to certain schema modifications. To use the option, the
attribute identifier is followed by the %type option, as shown in the following
example:

Sal Employee.Salary%type;

The %rowtype option allows the definition of pl/sql variables of record
type, characterized by a structure similar to that of a tuple of a specific
database table. An example of use of this option is shown below:

declare
 Emp Employee%rowtype;
 Num Employee.RegNo%type := '575488';
begin
 select * into Emp
 from Employee
 where RegNo = Num;
 … /*continues */
end;

Section C.4 575
PL/SQL language

pl/sql allows the definition of cursors. A cursor can also be used as the
basis for the use of the %rowtype keyword.

declare
 cursor NewCursor is
 select FirstName, LastName
 from Employee;
 Person NewCursor%rowtype;

In the example above, Person is a variable of a record type, with fields
FirstName and LastName, each having a domain equal to the attributes of table
EMPLOYEE with the same name.

Another important feature of pl/sql is the definition of variables of table
type and of record type. The definition happens in two steps, defining first
the structured type and then the variable of the type. The table variables
differ from normal tables managed by the database server in several aspects
(they are often called collections instead of tables). The main difference is that
every table type must have one attribute dedicated to the representation of
the row identifier. The table variables must also not be subject to deletions,
but their content may only be changed by insertions and updates; pl/sql
offers a rich set of predefined commands for the management of table
variables. Record types do not have particular restrictions. pl/sql also allows
the definition of nested record types. Let us look at a simple example of the
definition and use of these constructs.

declare
 type EmpNameTableType is table of Employee.FirstName%type
 index by binary_integer;
 EmpNameTable EmpNameTableType;
 Counter binary_integer := 0;
 type EmpRecordType is record
 (FirstName Employee.FirstName%type,
 LastName char(20),
 SalaryEmp integer);
 EmpRecord EmpRecordType;
begin
 for EmpRecord in
 (select FirstName, LastName, Salary
 from Employee) loop
 Counter := Counter + 1;
 EmpNameTable(Counter) := EmpRecord.FirstName;
 end loop;
 /* process the table */
end;

This example defines a pl/sql table EmpNameTable, defined from the type
EmpNameTableType, having an attribute with domain equal to the FirstName
attribute in EMPLOYEE and a second attribute of domain binary_integer, used
to access table elements. In the procedural part, the table is filled by copying
the names of the employees one at a time. In the example, we define a record
type EmpRecordType and an EmpRecord variable of this type. The variable is
used to read the tuples in the EMPLOYEE table.

576 Appendix C
Oracle PL/SQL

C.4.3 Control structures
In pl/sql, there are control structures similar to those of other modern
programming languages. Using them, we can specify various forms of
conditional, iterative and sequential execution. All these control structures
exploit the concept of block of instructions, with a possible declarative and
exception part local to the block.

Conditional execution The conditional control structures use the
following syntax:

if Condition then
 InstructionsBlock
{ elsif Condition then
 InstructionsBlock}
[else InstructionsBlock]
end if

The interpretation is intuitive: the conditions are evaluated one by one; as
soon as one is true, the corresponding block is executed and the remaining
branches are not considered; the else branch is executed when no condition
is satisfied. Let us look at a pl/sql program that increases the salary of the
employee with the registration number 575488, increasing it by 10% if the
salary is above 60 thousand, 15% if between 45 and 60 thousand, 20%
otherwise.

declare
 EmpRecord Employee%rowtype;
begin
 select * into EmpRecord
 from Employee
 where RegNo = '575488'
 for update of Salary;
 if EmpRecord.Salary > 60 then
 update Employee set Salary = Salary * 1.1
 where RegNo = '575488';
 elsif EmpRecord.Salary > 45 then
 update Employee set Salary = Salary * 1.15
 where RegNo = '575488';
 else update Employee set Salary = Salary * 1.2
 where RegNo = '575488';
 end if;
end;

Iteration The basic construct for iteration is the loop. In its most simple
form, a sequence of instructions is placed between the keywords loop and
end loop. The sequence will be executed until it finds an exit instruction. For
a cycle with an initial condition, a while condition is inserted before the
keyword loop. The condition is evaluated before each iteration. If the
condition is false, execution terminates. The for construct is used to define
the number of times that the iteration must be repeated. The for structure
specifies a range of values and the instructions enclosed by loop and end loop
are executed once for each value. The syntax is as follows:

Section C.4 577
PL/SQL language

[while Condition |
 for Counter in [reverse] StartValue..EndValue]
loop
 InstructionsBlock
end loop

Consider a program that applies the salary updates of the preceding
example to all the employees, using a cursor to scan the various elements of
EMPLOYEE.

declare
 cursor EmpCursor is select Salary
 from Employee
 for update of Salary;
 EmpNo integer;
 I integer;
 Sal Employee.Salary%type;
begin
 open EmpCursor;
 fetch EmpCursor into Sal;
 while not EmpCursor%notfound
 if Sal > 60 then
 update Employee set Salary = Salary * 1.1
 where current of EmpCursor;
 elsif Sal > 45
 update Employee set Salary = Salary * 1.15
 where current of EmpCursor;
 else update Employee set Salary = Salary * 1.2
 where current of EmpCursor;
 end if;
 fetch EmpCursor into Sal
 end loop;
end;

The same program can be written using a loop with an internal exit:

loop
 fetch EmpCursor into Sal;
 if EmpCursor%notfound
 exit;
 … /* instructions to increase the Salary */
end loop;

In the example, we have seen the use of the operator %notfound on cursors.
The operator returns a boolean value true if the last operation on the cursor
is unsuccessful. In pl/sql, a cursor is used for each query and update
command. The cursor can be explicitly defined in the program; otherwise,
pl/sql uses an implicit one. The operator presented above can be applied
both to the explicit and to the implicit cursors. The implicit one is referred
to as sql. Thus, sql%notfound is an expression that returns true if the last
command has recovered no tuples.

Let us look finally at the construct for on cursors. Cursors are used to scan
the result of a query. To represent this situation compactly, pl/sql provides
a suitable structure, characterized by the following syntax:

578 Appendix C
Oracle PL/SQL

for TupleVariable in Cursor loop
 InstructionsBlock
end loop

The cursor is opened automatically when the program reaches the cycle
and a fetch instruction is implicitly executed on each iteration. The cycle
terminates when an exit instruction appears or when all the tuples returned
by the cursor have been dealt with. The earlier loop could be written:

for EmpRecord in EmpCursor loop
 if EmpRecord.Salary > 60 then
 … /* instructions updating the Salary */
end loop;

The cursor can also be defined in line (that is, without an explicit definition
in the declaration part of a block) as happens in the following code fragment,
part of the final example in Section C.4.2.

for EmpRecord in
 (select FirstName, LastName, Salary
 from Employee) loop

C.4.4 Management of exceptions
The term exception denotes anomalous situations that the system detects at
execution time. pl/sql offers an advanced management of exceptions,
providing a set of pre-defined errors to which appropriate actions can be
assigned. It is also possible to define exceptions adapted to the specific
application needs, called user-defined exceptions.

When the system detects an exception, execution is suspended and
control is transferred to the exception management procedure (called the
exception handler). The advantage of this approach is that in this way there is
no need to introduce repeated checks on the success of the action. It is
instead sufficient to write only once the steps that are to be taken in the face
of a particular error. This produces cleaner code and permits the
construction of a system that reacts consistently to malfunctions.

Some of the predefined exceptions are the following:

• cursor_already_open (when the program executes an open command on an
already open cursor);

• dup_val_on_index (if the program tries to insert a duplicate into a table on
which a unique index is defined);

• invalid_cursor (if an illegal operation is carried out on a cursor, such as a
close on a cursor that is not open);

• invalid_number (if an sql command produces an inaccurate value, such as
the failure of a conversion of a character string to an integer);

• no_data_found (if a query returns an empty result);

• storage_error (if the memory is exhausted, or found to be corrupt);

Section C.4 579
PL/SQL language

• timeout_on_resource (if it is not possible to access a resource because of a
timeout);

• too_many_rows (if an instruction select into without cursors returns more
than one row);

• value_error (if a pl/sql instruction produces an incorrect value in an
assignment);

• zero_divide (if the program tries to execute a division by zero).

As regards user-defined exceptions, these must be specified in the
declaration part of a block, using the predefined type exception. The same
visibility rules are valid for exceptions as for variables. While pre-defined
exceptions are raised automatically at the occurrence of an event in the
system, those defined in the program must be activated explicitly in the
program by means of the raise instruction. This instruction accepts as
argument the name of the exception we wish to activate. When the exception
management procedure terminates, the program restarts at the end of the
block in which the exception was generated (and not on the instruction
following the one producing the exception). If we wish the control to be
returned to the next instruction, we must make that instruction the last of a
block, possibly by introducing a block that contains only that instruction.
Let us look at an example, in which a bank procedure withdraws a sum of
100 from the account number 12345. If the amount of the account following
the operation falls below the overdraft limit, then the transaction is refused,
and a record is written in the OVERDRAFTEXCEEDED table.

declare
 OverdraftError exception;
 OldAmount integer;
 NewAmount integer;
 Threshold integer;
begin
 select Amount, Overdraft into OldAmount, Threshold
 from BankAccount
 where AccountNo = '12345'
 for update of Amount;
 NewAmount := OldAmount – 100;
 if NewAmount > Overdraft then
 update BankAccount set Amount = NewAmount
 where AccountNo = '12345';
 else
 raise OverdraftError;
 end if;
exception
 when OverdraftError then
 insert into OverdraftExceeded
 values('12345', 100, sysdate);
 when data_not_found then
 insert into AccessToGhostAccounts
 values('12345', sysdate);
end;

580 Appendix C
Oracle PL/SQL

C.4.5 Procedures
Procedures, also called subprograms, constitute a fundamental tool for the
construction of large applications. Procedures permit the construction of pl/
sql programs with important properties like modularity, reusability,
maintainability and abstraction.

In the pl/sql environment, the subprograms have a still more important
role, as pl/sql is used very often as a tool for the definition of stored
procedures. These are pl/sql procedures that are stored and may be
considered a part of the database schema.

Let us look at how subprograms enrich the language. Considering the
example of a bank transaction in the preceding section, it is natural to try to
write more general code, producing instructions able to carry out a generic
debit on an arbitrary account. The following procedure satisfies the
requirement.

procedure Debit(ClientAccount char(5), Withdrawal integer) is
 OverdraftError exception;
 OldAmount integer;
 NewAmount integer;
 Threshold integer;
begin
 select Amount, Overdraft into OldAmount, Threshold
 from BankAccount
 where AccountNo = ClientAccount
 for update of Amount;
 NewAmount := OldAmount – Withdrawal;
 if NewAmount > Overdraft then
 update BankAccount set Amount = NewAmount
 where AccountNo = ClientAccount;
 else
 raise OverdraftError;
 end if;
exception
 when OverdraftError then
 insert into OverdraftExceeded
 values(ClientAccount, Withdrawal, sysdate);
 when data_not_found then
 insert into AccessToGhostAccounts
 values(ClientAccount, sysdate);
end Debit;

The transfer command above could thus be carried out with a simple call
of the procedure:

Debit('12345',100);

Procedures must be defined in the declaration part of a block. The syntax
for the definition is as follows:

procedure Name [(Parameter { , Parameter})] is
 LocalDeclarations
begin
 Instructions
[exception

Section C.4 581
PL/SQL language

 ExceptionHandlers]
end [Name]

The instructions and the exceptions are defined with the syntax
previously described. Each parameter follows the syntax:

ParameterName [in | out | in out] ParameterDomain [:= Value |
 default Value]

Each parameter is characterized by a name and by a domain. The
parameters can be as follows.

• Input (type in, the type assumed when no keyword is specified). In this
case, a value is assigned to the parameter when the procedure is called,
and internally to the procedure, the parameter must be considered as a
constant.

• Output (type out). When the procedure is called, the parameter must be
associated to an l-value. An l-value is a term that can appear in the left
side of an assignment instruction. The l-value is generally the identifier of
a variable to which a value will be assigned at the end of the procedure.

• Input/output (type in out). In this case, a variable must still be assigned to
the parameter. However, its value can be used within the procedure. A
value is assigned to the variable at the end of the execution of the
procedure.

From the syntax, we observe that we can associate a default value with a
parameter. This is possible only for input parameters, and is forbidden for
output or input/output parameters. If the procedure is called without an
input parameter, the default value is assigned to the parameter. The presence
of this feature complicates the mechanism managing the exchange of values
between the procedure and the program calling it. In most programming
languages, the correspondence between the parameters that appear in the
definition of the procedure (called the formal parameters) and the parameters
that are used in the call of the procedure (the actual parameters) is positional.
The first formal parameter corresponds to the first actual parameter, and so
on until the last actual parameter to which the last formal parameter will
correspond. If a domain incompatibility appears, the program is interrupted
by a value_error exception. If default values for parameters are allowed,
some parameters can be missing and the correspondence between formal and
actual parameters will require a different mechanism.

A first solution offered in pl/sql consists in an extension of the positional
correspondence between actual and formal parameters, permitting them to
differ in number. If the actual parameters are fewer than the formal, the
default value is assigned to the last formal parameters. This method requires,
however, that the parameters using the default value are always the last.

A further mechanism is name-based, and uses in the call of the
subprogram a direct reference to the formal parameters. Thus, with an

582 Appendix C
Oracle PL/SQL

arbitrary parameter order, the above call could also be written as:

Debit(Withdrawal => 100, AccountNo => '12345')

One of the advantages of the definition of default values for the parameters
is that it becomes possible to extend pre-existing procedures, assigning a
default value to every parameter added to the procedure. If the procedure is
called using the previous set of parameters, the assignment of default values
to the new parameters should keep the previous behaviour, without
requiring modification of all the calls to the procedure already present in the
program.

A function is a particular kind of subprogram, one that returns a value as
a result of its call. Functions have a structure identical to the procedures seen
above, with only two differences. Firstly, functions are associated with a
domain that corresponds to the domain of the result produced and, secondly,
in a function we can use the instruction return Expression. This instruction
terminates the execution of the function, returning as function value the
result of the evaluation of Expression. The syntax for the declaration of
functions is thus:

function Name [(Parameter { , Parameter})] return
 FunctionDomain is
 LocalDeclarations
begin
 Instructions
[exception
 ExceptionHandlers]
end [Name]

A function can also return values using the definition of parameters of
type out and in out. However, it is preferable to avoid this, because it
corrupts the natural interpretation of a function as a subprogram that returns
only a value based on parameters supplied as input data.

An important characteristic of every programming language is the way in
which the exchange of parameter values is implemented. We focus on the
output parameters, typically managed with two alternative methods. The
first is known as call by copy and consists in an initial copy of the actual
parameter into a variable corresponding to the formal parameter, with an
inverse copy at the end of the procedure. The second is known as call by
reference and considers the formal parameter as an alias for the actual
parameter. In pl/sql the choice of whether to use one mechanism or the other
is left to the system, which in each situation will adopt the choice it believes
is better. These two mechanisms usually present the same behaviour, but
there are two notable exceptions. The first is when it happens that the same
parameter is transferred more than once in the same procedure call. The
second is when in the procedure an explicit reference is made to a variable
that is also assigned to a parameter. Since the system is free to choose the
exchange mechanism, programmers must take care to avoid these situations.

Section C.4 583
PL/SQL language

pl/sql provides an overloading mechanism, consisting of the use of the
same identifier for many subprograms. A restriction is that the various
subprograms differ in the number or domain of parameters. At the time of
procedure invocation, the system will choose the particular subprogram that
is compatible in its own parameters with the actual parameters of the call.

In pl/sql, it is also possible to call subprograms recursively. Recursion is
useful for solving certain problems, like the computation of a transitive
closure. These situations cannot be managed in sql-2, but require the use of
a procedural system support. An example of transitive closure is one where
a table EMPLOYEE contains the personal details of the employee (RegNo, Salary,
Title, and Supervisor). We might need to find, for each employee with title
‘Director’, the average salaries of the employees supervised by him, directly
or indirectly. For this, we can suppose that we have defined in the database
a table EMPDIRECTOR with two attributes having the same domain of RegNo.
We can fill this table using a recursive function that returns the supervisor
for each employee; the procedure analyzes the complete hierarchy moving up
one step at a time, until a supervisor is found with title ‘Director’.

declare
 function RegNoDirector(RegNoEmp Employee.RegNo%type)
 return Employee.RegNo%type is
 RegNoSupervisorEmployee.RegNo%type;
 TitleSupervisorEmployee.Title%type;
 begin
 select Supervisor, Title into RegNoSupervisor, TitleEmp
 from Employee
 where RegNo = RegNoEmp;
 if TitleEmp = ‘Director’ then
 return RegNoEmp;
 else
 return RegNoDirector(RegNoSupervisor);
 end if;
 end RegNoDirector;

 EmpRecord Employee%rowtype;
 EmpRegNo Employee.RegNo%type;
 DirectorRegNo Employee.RegNo%type;
 cursor EmpCursor is
 select *
 from Employee;
begin
 for EmpRecord in EmpCursor loop
 EmpRegNo := EmpRecord.RegNo;
 DirectorRegNo := RegNoDirector(EmpRegNo);
 insert into EmpDirector values(EmpRegNo,DirectorRegNo);
 end loop;
end;

select D.FirstName, D.LastName, avg(E.Salary)
 from Employee E, EmpDirector ED, Employee D
 where E.RegNo = ED.EmpRegNo and
 D.RegNo = ED.DirectorRegNo
group by D.RegNo, D.FirstName, D.LastName

584 Appendix C
Oracle PL/SQL

To store the subprograms on the dbms, making them available to each
authorized user, the commands create procedure and create function are
used. These commands transform the pl/sql subprograms into stored
procedures. For example, the Debit procedure can be stored by the following
command (note the keyword as in place of is):

create procedure Debit(ClientAccount char(5),
 Withdrawal integer) as
 OverdraftError exception
 … /* the remainder of the procedure */
end Debit;

Stored procedures offer many advantages.

• They can improve productivity in the creation of applications, as it
becomes possible to construct a library of functions available to all the
applications. In this way, we can concentrate several system functions in
stored procedures. When the requirements change and it is necessary to
modify a procedure, the modifications are automatically propagated to all
the applications that use the procedure.

• Another advantage is that a stored procedure can replace the calls to
many sql commands. This simplifies the dialogue between the client and
the server, an aspect that is particularly critical when the network has a
limited capacity.

• Stored procedures can also permit the saving of space in the memory on
the server, as the calls of many users exploit the same area of shared
memory.

• We can improve the integrity and the accuracy of applications by
requiring, for example, that all the accesses to certain data are carried out
using a stored procedure. It is thus possible to have the guarantee that the
applications respect the integrity of data.

• Finally, stored procedures are a powerful tool for the definition of access
control policies. After the definition of a procedure that implements the
desired access policy, this policy can be effectively enforced by granting
to the user the right only to call the procedure and revoking the rights to
access the data in other ways.

Stored procedures can be called in various contexts: by direct dialogue of
a user with the sql interpreter, by an application using a sql embedded
interface, or by one of the tools in the rich support environment of the dbms.

We conclude the presentation of procedures in pl/sql by briefly
presenting the possibility offered by pl/sql of calling external procedures. pl/
sql programs can make use of procedures written in a traditional
programming language. This is a feature that significantly extends the power
of the database server, because there are several functions, typically those
characterized by strong algorithmic requirements, that are not efficiently

Section C.4 585
PL/SQL language

implemented in pl/sql. For example, functions that manipulate multimedia
data must typically implement complex transformations on large amounts of
data, requiring a language that allows a translation to machine executable
code. The invocation of external procedures thus allows the extension of data
management services, importing generic functions into the database server.
This extensibility constitutes one of the key technologies necessary for
transforming the database server into a Universal Server, a system
responsible of the storing and managing of any kind of data. The use of
external procedures currently incurs in a number of constraints that limit its
wide adoption. The first problem is that pl/sql and the typical programming
language have very different environments, and the integration between the
two languages requires a complex interface definition. In addition, the
mechanisms are currently available only for the c language and for limited
platforms. In general, the mechanisms required to use these services are
quite complex and usable only by experienced programmers.

C.4.6 Packages
Packages allow the regrouping of type definitions, procedures and cursors
into a single component. In a package, we distinguish a specification part
(the head) and an implementation part (the body). The specification part
defines all those properties that must be visible from the outside. The body
describes the implementation of subprograms and defines all that is needed
within the package and need not to be visible from the outside.

The syntax for the definition of a package is:

package PackageName is
 InterfaceDeclarations
end [PackageName]

package body PackageName is
 CompleteDeclarations
[begin
 InitializationInstructions]
end [PackageName]

Packages offer many advantages.

• They allow the grouping into a single logical unit of all the elements that
have to do with a particular aspect or component of the database. In this
way, it is easier to understand how the system behaves or to apply
modifications.

• They also make it possible to obtain information hiding. By separating the
interface from the implementation, it becomes possible to modify a
procedure without worrying that the applications already written must
be modified, as far as the behaviour of the system continues to satisfy the
initial assumptions. The development of applications is also facilitated, as
it becomes possible to consider only the specification part of a package,

586 Appendix C
Oracle PL/SQL

ignoring the body and thus considering a set of data that is more
restricted and easier to understand.

• Packages can contribute to an improvement in services, as the whole
package is loaded into the memory the first time that a reference is made
to one of its components, minimizing the transfers from disks to main
memory. (In general, when access to a function is required, it is probable
that shortly afterwards access will be gained to other functions of the
same package.) Objects that are defined in a package remain available for
the entire session, shared by all the procedures that are executed during
the session.

• Packages also extend the functionality of the system. For example, the
body of a package can also contain initialization instructions, which are
executed in each session the first time that a package is accessed.

To make a package permanent, the following commands are used:

create package PackageName is
 InterfaceDeclarations
end [PackageName]
create package body PackageName is
 CompleteDeclarations
end [PackageName]

To access the components of a package, we use the dot notation. Each
package component is globally identified by the package name, a dot, and
the name of the component internal to the package, be it a subprogram, a
cursor, a data type or an exception. The standard package is a particularly
important predefined package, which contains almost all the basic services
that are part of the pl/sql language. Other system components may provide
their packages, which actually extend the functionality of pl/sql in a
particular direction. For example, Oracle Server provides a dbms_standard
package, loaded each time a pl/sql statement is executed in the server
environment, which offers a rich set of services that let pl/sql applications
interact with the database engine.

15
Bibliography

[1] Abiteboul, S., Hull, R., Vianu, V., Foundations of Databases, Addison-
Wesley, Reading, Mass., .

[2] Albano, A., De Antonellis, V., Di Leva, A. (eds.), Computer-Aided
Database Design: The DATAID Project, North-Holland, Amsterdam, .

[3] Atzeni, P., De Antonellis, V., Relational Database Theory, Benjamin-
Cummings, Menlo Park, Calif., .

[4] Atzeni, P., Mecca, G., Merialdo, P., ‘To Weave the Web’, Proceedings of
rd International Conference on Very Large Data Bases, , Athens,
Greece, Morgan Kaufmann, San Francisco.

[5] Atzeni, P., Mecca, G., Merialdo, P., ‘Design and Maintenance of Data-
Intensive Web Sites’, Proceedings of th International Conference on
Extending Database Technology, Valencia, Spain, Lecture Notes in
Computer Science, vol. , pp. –, Springer-Verlag, Berlin, .

[6] Bancilhon, F., Delobel, C., Kanellakis, P. (eds.), Building an Object-
Oriented Database System: The Story of O2, Morgan Kaufmann, San
Mateo, Calif., .

[7] Batini, C., Ceri, S., Navathe, S. B., Conceptual Database Design, an Entity-
Relationship Approach, Benjamin-Cummings, Menlo Park, Calif., .

[8] Bernstein, P. A., Hadzilacos, V., Goodman, N., Concurrency Control and
Recovery in Database Systems, Addison-Wesley, Reading, Mass. .

[9] Bernstein, P. A., ‘Middleware: A Model for Distributed System Services’,
Communications of the ACM, vol. , no. , pp. –, .

[10]Bertino, E., Martino, L., Object-oriented Databases Systems: Concepts and
Architectures, Addison-Wesley, Reading, Mass., .

[11]Brodie, M. L., Stonebraker, M., Legacy Systems: Gateways, Interfaces &
the Incremental Approach, Morgan Kaufmann, San Mateo, Calif., .

[12]Cannan, S. J., Otten, G. A. M., SQL – The Standard Handbook, McGraw-
Hill, New York, .

588 Bibliography

[13]Cattel, R. G. G., Object Data Management – Object-Oriented and Extended
Relational Database Systems, revised edition, Addison-Wesley, Reading,
Mass., .

[14]Ceri, S. (ed.), Methodology and Tools for Database Design, North-Holland,
Amsterdam, .

[15]Ceri, S., Fraternali, P., Designing Database Applications with Objects and
Rules: The IDEA Methodology, Addison-Wesley Longman, Reading,
Mass., .

[16]Ceri, S., Fraternali, P., Paraboschi, S., ‘Design Principles for Data-
Intensive Web Sites’, ACM SIGMOD Record, vol. , no. , .

[17]Ceri, S., Gottlob, G., Tanca, L., Logic Programming and Data Bases,
Springer-Verlag, Berlin, .

[18]Ceri, S., Pelagatti, G., Distributed Databases: Principles and Systems,
McGraw-Hill, New York, .

[19]Ceri, S., Widom, J., ‘Deriving Production Rules for Constraint
Maintenance’, Proceedings of the International Conference on Very Large
Data Bases, , Brisbane, Australia, pp. –, Morgan Kaufmann,
San Francisco.

[20]Chamberlin, D. D., A Complete Guide to DB Universal Database, Morgan
Kaufmann, San Francisco, Calif., .

[21]Chamberlin, D. D., Astrahan, M. M., Eswaran, P. P., Lorie, R. A., Mehl,
J. W., Reisner, P., Wade, B. W., ‘sequel 2: A Unified Approach to Data
Definition, Manipulation, and Control’, IBM Journal of Research and
Development, vol. , no. , pp. –, .

[22]Chamberlin, D. D., Boyce, R. F., ‘sequel: A Structured English Query
Language’, Proceedings of ACM SIGMOD Workshop, vol. , pp. –,
.

[23]Chen, P. P., ‘The Entity-Relationship Model: Toward a Unified View of
Data’, ACM Transactions on Database Systems, vol. , no. , pp. –,
.

[24]Cheng, J., Malaika, S. (eds.), Web Gateway Tools: Connecting IBM and
Lotus Applications to the Web, John Wiley and Sons, New York, .

[25]Cochrane, R., Pirahesh, H., Mattos, N., ‘Integrating Triggers and
Declarative Constraints in sql Database Systems’, Proceedings of the
International Conference on Very Large Data Bases, Mumbay (Bombay),
, pp. –, Morgan Kaufmann, San Francisco.

[26]Codd, E. F., ‘A Relational Model for Large Shared Data Banks’,
Communications of the ACM, vol. , no. , pp. –, .

[27]Codd, E. F., ‘Further Normalization of the Data Base Relational Model’ in
Rustin, R. (ed.), Database Systems, pp. –, Prentice Hall, Englewood
Cliffs, n.j., .

Bibliography 589

[28]Codd, E. F., ‘Relational Completeness of Database Sublanguages’ in
Rustin, R. (ed.), Database Systems, pp. –, Prentice Hall, Englewood
Cliffs, n.j., .

[29]Codd, E. F., ‘Extending the Database Relational Model to Capture More
Meaning’, ACM Transactions on Database Systems, vol. , no. , pp. –
, .

[30]Codd, E. F., ‘Relational Database: A Practical Foundation for Produc-
tivity’, Communications of the ACM, vol. 25, no. 2, pp. –, .

[31]Codd, E. F., ‘Twelve Rules for On-Line Analytical Processing’,
Computerworld, April .

[32]Comer, D. E., Internetworking with TCP/IP, Volume : Principles, Protocols,
and Architecture, rd edn, Prentice Hall, Englewood Cliffs, n.j., .

[33]Date, C. J., An Introduction to Database Systems, th edn, Addison-
Wesley, Reading, Mass., .

[34]Date, C. J., Darwen, H., A Guide to the SQL Standard, rd edn, Addison-
Wesley, Reading, Mass., .

[35]Davis, W., System Analysis and Design, Addison-Wesley, Reading, Mass.,
.

[36]Eisenberg, A., Melton, J., ‘Standards in Practice’, ACM SIGMOD Record,
vol. , no. , pp. –, .

[37]Elmagarmid, A. K. (ed.), Database Transaction Models for Advanced
Applications, Morgan Kaufmann, San Mateo, Calif., .

[38]ElMasri, R. A., Navathe, S.B., Fundamentals of Database Systems, nd
edn, Benjamin-Cummings, Menlo Park, Calif., .

[39]Fairly, R., Software Engineering Concepts, McGraw-Hill, New York, .

[40]Fayyad, U. M., Piatetsky-Shapiro, G., Smyth, P., Uthurusamy, R. (eds.),
Advances in Knowledge Discovery and Data Mining, aaai Press/mit
Press, Cambridge, Mass. .

[41]Fleming, C. C., von Halle, B., Handbook of Relational Database Design,
Addison-Wesley, Reading, Mass., .

[42]Florescu, D., Levy, A., Mendelzon, A., ‘Database Techniques for the
World-Wide Web: A Survey’, ACM SIGMOD Record, vol. , no. , pp. –
, .

[43]Graham, I. S., HTML Sourcebook, nd edn, John Wiley & Sons, New York,
.

[44]Gray, J., Anderton, M., ‘Distributed Computer Systems: Four Case
Studies’, IEEE Proceedings, vol. , no. , pp. –, .

[45]Gray, J., Chaudhuri, S., Bosworth, A., Layman, A., Reichart, D.,
Venkatrao, M., Pellow, F., Pirahesh, H., ‘Data Cube: A Relational
Aggregation Operator Generalizing Group-by, Cross-Tab, and Sub

590 Bibliography

Totals’, Data Mining and Knowledge Discovery, vol. , no. , pp. –,
.

[46]Gray, J., Reuter, A., Transaction Processing Concepts and Techniques,
Morgan Kaufmann, San Mateo, Calif., .

[47]Greenspun, P., Philip & Alex’s Guide to Web Publishing, Morgan
Kaufmann, San Mateo, Calif., .

[48]Hull, R., King, R., ‘Semantic Database Modeling: Survey, Applications
and Research Issues’, ACM Computing Surveys, vol. , no. , pp. –
, September .

[49]Inmon, B., Building the Data Warehouse, John Wiley & Sons, New York,
.

[50]Isakowitz, T., Bieber, M., Vitali, F. (guest eds.), ‘Web Information
Systems’, Communications of the ACM, vol. , no. , pp. –, .

[51]Ju, P., Databases on the Web: Designing and Programming for Network
Access, idg Books Worldwide, Foster City, Calif., .

[52]Kim, W. (ed.), Modern Database Systems: the Object Model,
Interoperability, and Beyond, acm Press and Addison-Wesley, New York,
.

[53]Kimball, R., The Data Warehouse Toolkit: Practical Techniques for
Building Dimensional Data Warehouses, John Wiley & Sons, New York,
.

[54]Lamport, L., ‘Time, Clocks and the Ordering of Events in a Distributed
System’, Communications of the ACM, vol. , no. , pp. –, .

[55]Liu, C., Peek, J., Jones, R., Buus, B., Nye, A., Managing Internet
Information Services, O’Reilly & Associates, Sebastopol, Calif., .

[56]Loomis, M. E. S., Object Databases: the Essentials, Addison-Wesley,
Reading, Mass., .

[57]Lum, V. Y., Ghosh, S. P., Schkolnik, M., Taylor, R. W., Jefferson, D., Su,
S., Fry, J. P., Teorey, T. J., Yao, B., Rund, D. S., Kahn, B., Navathe, S. B.,
Smith, D., Aguilar, L., Barr, W. J., Jones, P. E., ‘ New Orleans Data
Base Design Workshop Report’, Proceedings of the International
Conference on Very Large Data Bases, Rio de Janeiro, Brazil, , pp.
328–339, ieee.

[58]Maier, D., The Theory of Relational Databases, Computer Science Press,
Potomac, Md., .

[59]Mannila, H., Raiha, K. J., The Design of Relational Databases, Addison-
Wesley, Reading, Mass., .

[60]Melton, J., ‘sql Update’, Proceedings of the IEEE International Conference
on Data Engineering , pp. –.

[61]Melton, J., Simon, A. R., Understanding the New SQL, Morgan Kaufmann,
San Mateo, Calif., .

Bibliography 591

[62]Obermarck, R., ‘Distributed Deadlock Detection Algorithm’, ACM
Transactions on Database Systems, vol. , no. , .

[63]O’Neil, P., Database: Principles, Programming, Performance, Morgan
Kaufmann, San Mateo, Calif., .

[64]Oracle Corporation, Oracle Server: Concepts Manual, Redwood City,
Calif., .

[65]Oracle Corporation, Oracle Server: SQL Language Reference Manual,
Redwood City, Calif., .

[66]Ozsu, M. T., Valduriez, P., Principles of Distributed Database Systems, nd
edn, Prentice Hall, Englewood Cliffs, n.j., .

[67]Paredaens, J., De Bra, P., Gysses, M., Van Gucht, D., The Structure of the
Relational Database Model, Springer-Verlag, Berlin, .

[68]Pressman, R. S., Software Engineering, a Practitioner’s Approach, rd edn,
McGraw-Hill, New York, .

[69]Ramakrishnan. R., Database Management Systems, McGraw-Hill, New
York, .

[70]Rosenfeld, L., Morville, P., Information Architecture for the World-Wide-
Web, O’Reilly and Associates, Sebastopol, Calif., .

[71]Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., Lorensen, W., Object-
Oriented Modelling and Design, Prentice Hall, Englewood Cliffs, n.j.,
.

[72]Samaras, G., Britton, K., Citton, A., Mohan, C., ‘Two-Phase Optimiz-
ations in a Commercial Distributed Environment’, Journal of Distributed
and Parallel Databases, vol. , no. , pp. –, .

[73]Samet, H., The Design and Analysis of Spatial Data Structures, Addison-
Wesley, Reading, Mass., .

[74]Senn, J. A., Analysis & Design of Information Systems, nd edn, McGraw-
Hill, New York, .

[75]Shasha, D., Database Tuning: A Principled Approach, Morgan Kaufmann,
San Mateo, Calif., .

[76]Sheth, A. P., Larson, J. A., ‘Federated Database Systems for Managing
Distributed, Heterogeneous, and Autonomous Databases’, ACM
Computing Surveys, vol. 22, no. 3, pp. –, .

[77]Siegel, J. (ed.), CORBA: Fundamentals and Programming, John Wiley &
Sons, New York, .

[78]Silberschatz, A., Korth, H. F., Sudarshan, S., Database System Concepts,
McGraw-Hill, New York, .

[79]Stonebraker, M., Object-Relational DBMSs – The Next Great Wave,
Morgan Kaufmann, San Mateo, Calif., .

592 Bibliography

[80]Stonebraker, M. (ed.), Readings in Database Systems, nd edn, Morgan
Kaufmann Publishers, San Mateo, Calif., .

[81]Stonebraker, M., Rowe, L. A., Lindsay, B. G., Gray, J., Carey, M. J.,
Brodie, M. L., Bernstein, P. A., Beech, D., ‘Third-Generation Database
System Manifesto’, ACM SIGMOD Record, vol. , no. , pp. –, .

[82]Smith, J. M., Smith, D. C. P., ‘Database Abstractions: Aggregation and
Generalization’, ACM Transactions on Database Systems, vol. , no. , pp.
–, June .

[83]Subrahmanian, V. S., Principles of Multimedia Database Systems, Morgan
Kaufmann, San Mateo, Calif., .

[84]Teorey, T. J., Database Modeling and Design: the E-R Approach, Morgan
Kaufmann, San Mateo, Calif., .

[85]Teorey, T. J., Fry, J. P., Design of Database Structures, Prentice Hall,
Englewood Cliffs, n.j., .

[86]Teorey, T. J., Yang, D., Fry, J. P., ‘A Logical Design Methodology for
Relational Databases Using the Extended Entity-Relational Approach’,
ACM Computing Surveys, vol. , no. , pp. –, .

[87]Tsichritzis, D., Lochovsky, F. H., Data Models, Prentice Hall, Englewood
Cliffs, n.j., .

[88]Ullman, J. D., Principles of Database and Knowledge Base Systems, vol. ,
Computer Science Press, Potomac, Md., .

[89]Ullman, J. D., Widom, J., A First Course in Database Systems, Prentice
Hall, Upper Saddle River, n.j., 1997.

[90]Vossen, G., Data Models, Database Languages, and Database Management
Systems, Addison-Wesley, Reading, Mass., .

[91]Widom, J., Ceri, S., Active Database Systems, Morgan Kaufmann, San
Mateo, Calif., .

[92]Wiederhold, G., Database Design, McGraw-Hill, New York, .

[93]Zaniolo, C., ‘Database Relations with Null Values’, Journal of Computer
and System Science, vol. , no. , pp. –, .

[94]Zaniolo, C., Ceri, S., Faloutsos, C., Snodgrass, R. T., Subrahmanian, V. S.,
Zicari, R., Introduction to Advanced Database Systems, Morgan
Kaufmann, San Mateo, Calif., .

Index
Page numbers in bold indicate main entries
or definitions.

$ (for embedded sql) 141–142
% (special char) 105–106, 532
%notfound (pl/sql) 577
%rowtype (pl/sql) 574, 575
%type (pl/sql) 574
* (asterisk)

in count 114
in references to objects 401
in target list 102, 532, 534

.. (double dot, sql-3) 427
:empty 359
? (qbe) 532
@ operator 413–414
_ (special char, sql) 105–106, 532
_system 137
2-d tree 433–434
2pc, see two-phase commit
2pl, see two-phase locking
3pc, see three-phase commit
4gl (4th Generation Languages) 139, 545
4pc, see four-phase commit

A

Abiteboul, S. 38, 80–81
abort 133, 284–285, 286–307, 311–320,

363–377
abort (log record) 313–314, 319, 371–373
absence of transparency 359
absolute 141
abstract type 423, 425–426
abstraction level in a database 6–7
Access 245, 521–541
access

control 7, 136–138
policy 584
manager 321
method 283, 321, 323, 333, 339, 353,

363
plan 321, 343, 548–550

privilege 426
strategy, see access plan
structures, see physical access structures
table, see table of accesses
times 308

accessor 405, 426
acid properties 285–286, 317, 349, 351,

438–441
ack, see acknowledgement
acknowledgement 368, 371, 374
action

in an html form 493
in a trigger 447–450, 458–460

activation
graph 456–457
of objects 440
of triggers 448–457

active
database 65, 447–463, 540
rule 86, 182, 381, 429, 447–463
transaction 309, 319

ActiveX 515
actual parameter 415, 581–582
adaptive technique 431, 482
adaptor, object— 439, 440
add method 406
after row (Oracle trigger) 450
after state 314–316, 449
after statement (Oracle trigger) 450
after trigger 448, 452–454
after trigger option 449, 450, 452
agent 441
aggregate queries in sql 113–115
aggregation 107, 116–117, 125, 132, 223,

304, 337, 422, 465–481, 534–536,
539, 556–557

Agrawal, R. 486
ahead propagation 366–367
Albano, A. 211
alerter 460
algebraic representation of queries 106–

107, 333
all (polymorphic value) 477–479
all

for nested queries 123–125

594 Index

in aggregate operators 114–115, 537
in set operators 120–121
in the target list 108

all privileges 138
allocation 323, 353, 357–360, 362, 386,

480
allocation transparency 359
allow zero length (Access) 526
alter 97–98, 137, 304
ambiguity in a specification 191
analysis

of information systems 177
of redundancies 222, 223–226, 246
of requirements 171, 183, 189–194, 204,

209, 211, 270, 408, 506–507
analyst 180, 466
anchor (html) 493, 501
and operator 104–105, 480
Anderton, M. 391
annotation 430
anomaly (transactions) 256–257, 288–290,

304–305, 390, 474
ansi (American National Standards

Institute) 85–86
any for nested queries 123–125
applet 553
application

designer 9
load 162
programs 159, 551–554
semantics 441
server 353

approximate
cost formulas 334, 340
numeric domains in sql 89

arc/info 434
Ardent Software 398
a-rdl 461
Arianna’s thread 311
Ariel 461
array 92, 323, 324, 336, 428, 570
artificial intelligence 481, 485
as, see after state
asc 113
ascending order 113
ascii 568
assertion 90–91, 98, 131, 132–133, 181,

458–460
association rule 482–484
associative access 325, 327, 337
associativity of join 54
asynchronous import 466
asynchronous

propagation 388, 390
protocol 365
write 309, 310, 316

at&t 379
atomic data type 399
atomic formula, in domain relational

calculus 68–69
atomicity 285–286, 287, 311, 316, 349,

361, 364, 368–369, 376, 378–379,
438

atomization of selections 60
attribute 6, 18–19, 22, 399

compatibility 46
in the e-r model 164, 168–169, 170, 195
set of— 22

Atzeni, P. 38, 80, 276, 517
audio data 397, 429–430
authorization 90
authorization, see access control
automatic lock requests 294
autonomy 371, 381
autonumber (Access) 525, 527
availability 310
average 556
avg 114–115, 119, 422, 534

B

b tree 327, 331–332, 480
b+ tree 327, 330–332, 437, 480
backup 315, 375, 389
bag constructor 399, 435
balanced tree 328, 331
Bancilhon, F. 441
bar graph 475
basic construct of the e-r model 165–169,

178
basket analysis 482, 484
batch 139, 324–325, 390, 468
Batini, C. 184, 211, 251
beer 483
before row (Oracle trigger) 450
before state 314–316, 449
before statement (Oracle trigger) 450
before trigger 448, 452–454
before trigger option 449, 450, 452
begin transaction 284–285, 290, 312
begin transaction (log record) 319, 369
behavioural analysis 481
benchmark 387–388
Bernstein, P. 344, 391
Bertino, E. 441
BFILE (Oracle) 569
bi-directional relationships 417
Bieber, M. 517
bill of materials 389
binary object 435
binary_integer (Oracle) 567, 575
binding transfer 125–128
bit 88
bit vector 480
bitmap index 480–481
BLOB (Binary lob) 569
blob (binary large object) 435, 558–559,

563, 569
block, see also page (physical)

header 322
trailer 322

block in pl/sql 571–572, 576, 579
body 406, 585–586
body, see Datalog rule

Index 595

bookmark 499
boolean 104, 399, 574
boot 318
bot, see begin transaction
bottom-up

strategy 198–201, 202, 205
transformation primitives 199–201, 204

bound control (Access) 538, 539
Boyce–Codd normal form 259–262, 267,

269, 272, 275, 472
branch and bound 341
broadcast 370
Brodie, M. 391
browser 353, 489–490, 493, 514, 547, 553
bs, see before state
buffer 299, 317, 332, 337, 339, 341, 373,

378, 437
management 284, 307–311, 312–318,

321, 327, 352, 371
manager, see buffer management

business rule 180–182, 183–184, 205, 241,
457, 460–461

for a derivation 180, 181
for an integrity constraint 180, 181

byte (Access domain) 525
byte-code 515

C

c 92, 141–143, 406, 544, 551, 562, 585
c++ 404, 417, 439, 544, 551
cad (Computer Aided Design) 397
calculated control (Access) 538, 539
call by copy 582
call by reference 582
Call Level Interface (cli) 553
cam (Computer Aided

Manufacturing) 397
card, see cardinality of table
cardinality

of attribute 164, 172–173
of relationship 164, 170–172, 175, 180,

219
of table 48, 333, 335, 480

cartesian product 16, 17, 54, 101–102,
107, 125, 534

cartesian space 477
cascade

for referential integrity 129–130, 529
on drop 98–99
on revoke 138
policy 96–97

cascaded check option 133–134
cascading

of aggregate operators 135–136
projections 60
triggers 449–450

case 544, 557
case (Computer Aided Software

Engineering) 209–211, 250, 397,
438, 469

casual user 9
catalogue 99–100
catastrophic failure 313, 318
Cattel, R. G. G. 441
Ceri, S. 81, 184, 211, 251, 344, 391, 461,

517
cgi (Common Gateway Interface) 495,

508–509, 511, 513
chain reaction 129, 138, 286
Chamberlin, D. D. 461, 544
char 88, 568
character 88
character set 88
check clause 93, 131–132, 460, 526
check option 133–134
check-in and check-out 438
checkpoint 312, 314–315, 362
checkpoint (log record) 313, 315, 319
checksum 322
Chen, P. P. 184, 251
Cheng, J. 517
child entity of a generalization 170, 175,

227–228
Chimera 461
class 402–404

hierarchy 414, 425, 435
classification (data mining) 484–485
classifier 484
cleaning of data 467
cli (Call Level Interface) 553
client-server 349, 351–353, 372, 378–379,

383, 388, 437–438, 439–441, 521,
567, 573

CLOB (Character lob) 559, 569
close

of cursor 141
of file 311
of scan 336

closed formula 68
clp (Command Line Processor) 546, 553
cluster 233
co2 406
cobol 551
Cochrane, R. 461
Codd, E. F. 15, 38, 80, 276, 486
coherency of methods 408
cold restart 312, 318, 320
collection 399, 575
collection of requirements 158, 189–194,

211
collisions (hashing) 325
colours (col formula) 335
column 91
COLUMNS 100
Comer, D. E. 516
Command Center of db2 547–550, 553
Command Line Processor 546, 553
commercial systems 128, 146, 298, 301,

306–307, 343, 374, 391, 429, 460,
538

commit as log record 313–314, 319, 371–
375

596 Index

commit 284–285, 286–307, 311–320, 363–
377

precedence 315, 316–317, 370
projection 291, 297, 299
protocol, see two-phase commit

commit work 284–285, 312, 378, 448, 552
Common Gateway Interface, see cgi
commutativity of join 54
compact 559
compatibility rules (hierarchical lock

manager) 303–304
compensation 439, 453
compile and go 333, 341, 353
compile and store 333, 352–353
complete (log record) 369, 371, 374
complete join 51
completeness

of a conceptual schema 203, 205
of fragmentation 356

complex
data definitions in sql 131–136
data type 399–400, 416, 423, 428
index 436–437, 527
query 125–128, 350, 384, 468, 537

composite attribute 164, 168, 170
composition of type definitions 570
comprehension of the domain 482
compression of data 429–430
computational completeness 146, 416
computational complexity 292
computer-supported cooperative work

(cscw) 497, 567
conceptual

analysis 180
data model 6, 160, 163, 505–507
design 157, 160, 162, 183, 189–215, 211,

217, 255, 262, 270, 275, 397, 506
rules 195
schema 157, 160, 162

concurrency control 284, 287–307, 344,
363–368, 390, 441

confidence 483
conflict 293, 295–296, 300–307, 390, 411

equivalence 291, 293–294, 300, 364
graph 293, 296, 300
serializability 293, 296, 300, 364
table (locking) 295

confluence 455, 456
conjunction 60, 340, 455, 480
connect to 551
consequence 483
consideration of triggers 448, 452–453
consistency 285, 286, 287, 362, 388, 408,

458, 466–467
constant in pl/sql 574
constraint, see integrity constraint
construct of the e-r model 163, 170, 189,

210
constructor 405, 426
container of objects 402
contravariance 415
control (Access) 538, 539–540

Control Center of db2 546–547
control information in a block 322
control structure 145, 419, 541, 565, 572–

573, 576–578
conversion formula for sql queries 107
cookie 512
cooperation 381–383, 391, 438, 497
coordinator (2pc) 369, 372–376, 439

failure 373–374, 375, 380
corba (Common Object Request Broker

Architecture) 377, 436, 439–441
correctness of a conceptual schema 203,

205
cost-based optimization 333–334, 339–

341, 362–363
cost–benefit analysis 481
count 114, 118, 132, 148–150, 421–422,

534–537, 556
covariance 414–415, 416
create 304, 311
create assertion 133
create distinct type 560
create domain 92
create function 560–563, 584
create index 343
create package 586
create procedure 584
create schema 90
create table 91
create trigger 449, 452
create type 569–571
create view 133–134, 148–150
criteria (qbe) 531, 533–537
criteria for data representation 194–195
cscw (computer-supported cooperative

work) 497, 567
csr, see conflict-serializability
cube 477, 557
currency (Access domain) 525
currency of data 381–383
current of 141
current row (cursor) 140–141
cursor 131, 140–142, 144–145, 407, 552,

554, 575–578
cycle

in a generalization hierarchy 170
in graph 300, 307, 456–457

cyclic reference 402

D

daemon 513
dangling tuple 51, 53, 424, 454
data 2

access 468
allocation 355, 356–358
analysis 350, 384, 465–488, 565–567
cleaning 467
cube 468, 477–479, 557
definition in sql 87–100

Index 597

definition language (ddl) 8, 85, 100,
287, 320, 327, 402, 405, 423, 447–
449

design 351
dictionary 99–100, 182, 183, 205, 209,

333, 469
farming 498
fragmentation 356–358
independence 7–8, 16
locality 308–309
manipulation language (dml) 8, 85,

100, 449, 453, 456
mart 469, 471–474, 480–481, 556
mining 466–468, 481–486
model 5–6, 15–38, 49
quality 466, 469
replicator 388–391
representation 194–195
requirement 162–163, 193, 198, 203
retrieval 474
shipping 468
source 378, 383, 466–469
warehouse 65, 350, 382–383, 387, 465–

466, 467–474, 477–481, 486
database 2–3, 20–21

administrator 9, 137, 283, 334, 337, 351,
456

design 157, 158–162, 183–184, 211, 270,
341, 521

instance 21, 29
languages 8
machine 383
management system (dbms) 3, 10
schema 21

Datalog 67, 77–80, 148
rule 77

date 89–90, 524, 568
date/time (Access domain) 524, 526
dataid project 211
Davis, W. 183
day 89–90
db2 546
db2 365, 448, 461, 543–586

trigger 452–454, 456, 459
db2start 546
dba, see database administrator
Dbclob 559
dbms, see database management system
dbms_standard 586
ddl, see data definition language
De Antonellis, V. 38, 80, 211, 276
deactivation

of objects 440
of triggers 448, 455

deadlock 301, 305–307, 349, 365–368
deallocate prepare 144
decimal 88–89, 524, 568
decision message 374
decision support 350, 465, 565
decision tree 340, 362, 484–485
declaration part (pl/sql block) 573
declarative specification of triggers 457–

458

declarativeness of query languages 67,
101, 125

declare cursor 140
decomposition 45, 47

in Boyce–Codd normal form 260–262
in third normal form 268–269

deductive database 65
deep equality 402
default 92–93, 526, 574

in update 130
default (2pc) 374
default value 92–93, 98, 526, 581–582
deferencing 427
deferred

constraint 133, 286
trigger 448

DEFINITION_SCHEMA 99, 100
delete 97, 129–130, 137, 141, 304, 311,

313–314, 448–450, 452, 459
delete-ind (array structure) 324
deletion

anomaly 256
of a tuple from a page 323
of multi-valued attributes 230, 248
on a tree structure 330–331

Delobel, C. 441
dependency preservation, see preservation

of dependency
depth (trees) 330
derivation

rule 460
business rule for a— 180, 181

derived data 223–224, 382, 447, 457, 472,
481

derived relation, see view
desc 113
descending order 113
describer 554
description of a concept 180
design

decomposition 160
of methods 408
session 437
strategy 160, 189, 196–203
technique 194, 255

designer 160–161, 190, 195, 198, 211
destructor 405
detached trigger 455
detection of deadlock 306–307
development tool 510–511
device failure 318
devst 534
Di Leva, A. 211
difference (operator) 42–43, 120, 126
difference between b and b+ trees 331–

332
differential file 325
digital library 430
dimension (star schema) 469, 470–476,

480, 556
directory (of buffer manager) 308
dirty data 469
dirty read 289, 291, 298, 305

598 Index

disaggregation 476
discovery of patterns 482
discretization 484
discussion groups 497
disjunction 337, 480
disk 352, 384
dispatcher 353, 385
display method 412–413
distinct 108, 114–115, 419–420, 537
distinct type in db2 560
distributed

concurrency control 363–368
database 284, 294, 307, 340, 349–393,

353–376, 436, 439–441
deadlock detection 365–368, 391
join 386
object 439–441
queries 354
query optimization 360–361, 362–363
request 361
transaction 349, 360–361, 363–365

Distributed Relational Database
Architecture 544

distribution
of projection with respect to union 62
of selection with respect to

difference 62
of selection with respect to union 62

dml, see data manipulation language
document management 430
documentation

of a schema 179–183, 205, 241–245
technique 182–183

domain 16, 19, 26, 29, 90–91, 98, 423,
567–569

independence 72–73
relational calculus 67, 68–72, 530

domino effect 289
dot

notation 400, 406, 426, 586
operator 103

double 89, 524, 525, 568
double dot notation 427
drda, see Distributed Relational Database

Architecture
drill-down 468, 475–477
driver (odbc) 377–378
driver manager (odbc) 377–378
drop 97, 98–99, 129–130, 132, 137, 304
drop index 343
dtp (Distributed Transaction

Processing) 351, 377, 441
dummy 471
dump 312, 315, 362
dump (log record) 313, 315, 320
duplicate 18, 25, 107–108, 120–121, 337,

399, 420, 527, 533, 578
durability 3, 4, 285, 286, 287, 311–312,

318, 349, 362, 369, 374, 389, 417,
441

dw, see data warehouse
dynamic

aspects of an application 190

cursor 145
fragmentation 385
interface 439–440
linking 413
sql 142–145, 352, 378, 545, 553–554

E

ebcdic 568
eca, see event-condition-action
eighty-twenty rule 219
election mechanism 376
electronic commerce 490, 497–498
elementary domains in sql 87–90, 92
Elmagarmid, A. K. 344
ElMasri, R. A. 10
e-mail 349, 352, 377, 567
embedded

sql 138–145, 551
systems 498
transaction 417

empty join 52
encapsulation 139, 283, 398, 403, 405,

416, 419, 426, 428, 572
Encina 379
encoding of data 482
end (log record) 318
end loop 576
end transaction 284–285, 290
end user 9, 466
engineering process 196
entity 164, 165, 178, 195, 271, 469, 473
Entity-Relationship model 6, 157, 162,

163–179, 184, 189, 194, 255, 270,
399, 408, 417, 435, 469, 471–472

entry sql 86
entry-sequenced sequential

structure 323, 324, 329
enumeration type 399, 414
eot, see end transaction
equality (objects) 401–402, 420, 426–427
equi-join 54–56, 342, 357
equivalence

of algebraic expressions 59–60
of relational schemas 234
of query languages 73, 80
of schedules 291–294, 300, 364

e-r model, see Entity-Relationship model
error code 301, 378
evaluation of patterns 482
event 364–365, 447–459, 540–541, 579

expression 454–455
logging 457
notification 441

event-condition-action (eca) 447–448
evolution of objects 440
exact numeric domain 88–89
Excel 523, 562
except 120–122, 127
exception 419, 447, 450, 454, 456, 572–

573, 578–581

Index 599

handler 578
exchange of messages 364, 370
exclusive generalization 176
exclusive lock, see also w_lock 294, 296,

304
exec sql 551
execute 144
execute immediate 143
executequery 553
execution of active rules 448, 453
existential quantifier, see quantifier
existing documentation 190
exists 126
exit 577–578
expert users 138
explicit priority (trigger) 455
exponent 89
export 468
expression (relational algebra) 56–60
expressive power 125, 419, 536, 554
extend 311
extender of db2 559
extensibility 416
extension

of classes 403–404
of database 6
of objects 416

extensional predicate (Datalog) 77
extent 403, 418, 435–436
external 562
external

application of triggers 457
data access 383
helper 514
identifier 164, 174, 175, 233, 237, 240
key 472
level 6–7, 16
program 145
query 125–128
schema 7, 8
subprogram 561–563, 584–585
table (foreign key) 95–97
table (nested loop) 337–338

extraction of data 467
extranet 498

F

fact 469, 470–475, 480
fail-stop 318
failure 312, 316, 317–318, 368, 370, 388
Fairly, R. 183
Fayyad, U. M. 486
feasibility study 158
fetch 140–141, 552, 578
field (Access) 524, 531
field properties (Access) 524–525
file 3, 435
file system 310–311, 327
fileid, see identifier (file)
filter 467, 469

final write 292
financial application 354
first 140, 534
first normal form 268
fix 307–310
fixed size tuples 323–324
fixpoint 80
flag 88
flattening, see unnesting
Fleming, C. C. 184
flexibility 354
float 89, 524, 568
floating point representation 89
Florescu, D. 517
flush 307–308, 309, 310, 315–318
folding 326
for 576–578
for each row 449
for update option 140
force 307–308, 309, 315–317, 374–375

policy 310
forced abort (transaction), see kill
foreign key clause 94–97, 133, 137
foreign key, see referential constraint
form 190, 493, 510, 522–523, 538–539,

540–541
formal model of a transaction 290
formal parameter 415, 581–582
formula

in relational calculus 68, 74
propositional— 46

fortran 551
four-phase commit 375
fourth generation languages, see 4gl
fragmentation 230, 302–303, 360, 385–

386, 389–390, 468, 480
transparency 359, 361

frame (audio data) 429–430
Fraternali, P. 461, 517
free

cursor 141
resource (from locks) 295
variable 68

from clause 101, 103–104, 107, 109, 111,
114, 125, 420–421

Fry, J. P. 184, 251
ftp (file transfer protocol) 377
full join 109–110
full outer join 53, 108–110, 529
full sql 86
function 425–426, 582
functional dependency 118, 257–259, 264,

276, 472

G

garbage collector 412
gateway (in the Web) 494–495
generalization

hierarchy 398, 404, 408–411, 412–413,
416, 420, 428, 435, 441

600 Index

in the e-r model 164, 170, 175–177, 184,
195, 226, 228

generation of triggers 457
geographic data 397–398
ghost update 289–290, 292, 296, 364
gif 429
gis (Geographic Information System) 397,

432–434
global abort (log record) 369, 370, 373–

376
global commit (log record) 369, 370, 373–

376, 379
global

atomicity 438
conflict graph 363
decision 369–373, 380
manager 382
optimization 337, 339, 341, 362
serializability 364
transaction 438

glossary 180, 192, 204, 469
Goodman, N. 344
Gottlob, G. 81
graceful degradation 354
Graham, I. S. 517
grant 137–138, 584
grant (of locks) 294
graph

activation— 456–457
acyclicity 293

graphical representation
of class structure 404
of logical schemas 241

Gray, J. 343, 391, 486
Greenspun, P. 517
group by 115, 116–120, 136, 148–150, 422,

428, 477, 479, 535–536, 556
group

operation 375
predicate 118–120
query 116–120, 475

growing phase (of 2pl) 295–296

H

Hadzilacos, V. 344
handle 412
Hansel and Gretel 312
hard failure 368
hash join 337, 338–339
hash-based structure 320–321, 325–327,

329, 436
hashing function 325–326, 338–339
having clause 118–119, 135, 149, 535–536
head (pl/sql package) 585
head (rule), see Datalog rule
heterogeneity 171, 354, 377, 379, 381, 413,

439, 467
heuristic decision 379, 380–381
hierarchical

architecture of data warehouses 468

data model 5, 16, 21
database 428
locking 302–304

hierarchy
in sql-3 425
of dimensions 473–474

high-level programming languages 92,
131

Hipac 461
historic data 466, 468
home page 430, 499
homogeneity 354, 379, 402
homonym attributes 103
horizontal

decomposition 45
fragmentation 356, 357–358
hierarchy representation 435
partitioning 230

host language 8, 551, 572
hour 89–90
html (HyperText Markup

Language) 430, 492–494
template 510

http (HyperText Transfer Protocol) 491–
492, 494, 511–512, 566

server 494, 508, 513, 566
Hull, R. 38, 80–81, 184
hyperlink (Access domain) 525
hypertext 491

conceptual model 505–507
independence 504–505

HyperText Markup Language, see html
HyperText Transfer Protocol, see http

I

ibm 85, 360, 365, 461, 543
idempotence of undo and redo 314
identical observable behaviour of

triggers 455, 456
identifier

of entity 173–175, 271, 471
of file 311
of object, see object identifier
of transaction 294, 301, 314, 319
of tuple 30

identity of objects 165, 402, 420
idl (Interface Definition Language) 439,

440–441
if-then-else control structure 146–147,

576
illegal use of a construct 203
image data 397, 429, 525, 539
immediate

constraint 133, 286
trigger 448, 451–452

impedance mismatch 139, 407
imperative language 407, 437
implementation

of class 403
of database 159, 181

Index 601

of method 404, 409, 414, 416, 426
of object 439–441

implicit cursor (pl/sql) 577
import

of data 466
of objects 437

in
operator 124, 420
type 581, 582

in doubt transaction 373, 374, 380
in out type 581, 582
in place update 324
inaccuracy 191, 466
incomplete

information 26–28
join 51

inconsistent
read 289, 292
state 373

incremental
definition of the schema 405
extraction of data 468
loading 481
propagation 388, 468

independence
data— 7–8, 16
of methods 408
of transactions, see isolation

index 90, 162, 233, 305, 320, 329, 333,
336–337, 342, 343, 436, 437, 524,
527

index-based structures 320
indexed access 337, 339, 342
indicators of performance, see performance

indicators
indirect address 436
indirect structure (tree structure) 329, 331
infinite domain 16
infinite execution of triggers 456
informal requirements 189
information 2

content 160
hiding 585
level in hypertext 503
retrieval 431–432, 565
system 1–2, 138, 171, 177, 354, 381,

389, 489–490
system development 157, 183

Information Center of db2 550
INFORMATION_SCHEMA 100
inheritance, see generalization hierarchy
init method 405–406, 409, 413, 415, 419
initial state 369, 406
Inmon, B. 486
inner join 108–109
inner join 108–109, 529
input

parameter 144, 405–406, 414–415, 419,
426, 581–582

queue 353
input/output

channel 437
cost 363

operations 287, 290
parameter 581

insert 128–129, 304, 448, 450, 570
insert (log record) 313–314
insert event 449, 452
insert privilege 137
insert-at 324
insertion

anomaly 256
in a tree structure 329
of a tuple into a page 323
of tuples in Access 529–530

insert-near 324
inside-out strategy 201–202, 205
instance 6

of a class 410
of a relation 21
of data 164
of db2 545, 546–547
of type 399

instead-of trigger 455, 571
integer 88–89, 399, 524, 525, 567–568
integration 381–383, 565, 571

of e-r schemas 201–202, 205, 208, 211
integrity

constraint 28–38, 91–92, 93–97, 98,
131–132, 179, 182, 286, 289–290,
362, 412, 423–424, 429, 447, 450,
453–454, 457–460, 467, 469, 526–
530, 546,

business rule for an— 180, 181
maintenance 458–460
rule 460, 469

Intelligent Miner 545
intensional

component of a database 6
predicate (Datalog) 77

interactive
tool 465–466, 546–550
user 139

interarrival distribution 388
interface 9, 439–440

of classes 402, 418
of methods 414, 418

intermediate
node of a tree 327–332
query results 334
sql 86

internal
application of triggers 457
function 560
identifier 164, 173, 175, 233, 240
representation of queries 101, 143, 283,

336–339
rule 190
table (foreign key) 95–97, 459
table (nested loop) 337–338

Internet 352–353, 489, 490, 525, 554
interoperability 350–352, 359, 377–381,

417, 439–441, 567
inter-query parallelism 384–385, 386–387
inter-relational integrity constraint 29,

93, 94–97

602 Index

intersect 120–121
intersection (operator) 42–43, 54, 120, 480
interval 90
interval predicate 327, 331, 337
interview 190
into clause 142, 144–145
intranet 489, 498, 514
intra-query parallelism 384–385, 387
intra-relational constraint 29, 93–94
inverse link 417
inverted index 432
invisible form (Access) 539–540
ip (Internet Protocol) 490, 494
irrelevant attribute 485
is not null 64, 106
is null 64, 106
Isakowicz, T. 517
isl (intention shared lock) 303
iso 85, 150
isolation 284–285, 286, 287, 304–305
iteration (pl/sql) 576–578
ixl (intention exclusive lock) 303

J

Java 515, 544, 551, 553
driver 516
middleware server 516
Virtual Machine, see jvm

Javascript 515
jdbc (Java DataBase Connectivity) 515–

516, 544, 553
driver manager 515

jdbc/odbc bridge 515
join 42, 49–56, 103, 107, 115, 123–124,

126, 134, 141, 264–265, 334–342,
385, 420–421, 427, 468, 475, 480,
533, 537, 571

and intersection 54
and keys 50
and referential constraints 50
associativity 54
commutativity 54
complete— 51
empty— 52
equi-— 54–56, 342, 357
full outer— 53, 108–110, 529
incomplete— 51
index 480–481
left outer— 53
method 337–339
path 242, 528–529, 530–534
n-ary— 53–54
natural— 42, 49, 357
outer— 53
right outer— 53
theta- — 42, 54–56, 109

Journal of db2 550
jpeg 429
Ju, P. 517
jvm (Java Virtual Machine) 515

K

Kanellakis, P. 441
key (odl) 418
key, see also primary key

and join 50
and projection 48
access methods 323–324, 327–332
in the e-r model 173
of a relation 30, 31, 32–38, 93, 107, 258,

264, 267–269, 343, 357, 424
and null values 33–34

key-sequenced structure (tree
structure) 329, 331

kill (transaction) 286, 298, 306–307, 367
Kim, W. 391
Kimball, R. 486
King, R. 184
knowledge

discovery 481–482
independence 447, 461

Korth, H. F. 10

L

Lamport clock 364–365, 391
Lamport, L. 364, 391
lan, see local area network
language transparency 359
laptop computer 390–391
large object, see blob
Larson, J. A. 391
last 140, 534
late binding 398, 413, 416
layout 179, 209
leaf node 327–332
left join 109
left outer join 53, 108–110, 529
legacy system 251, 467
levels

in hypertexts 502–504
of a tree 328–330
of refinement 196

Levy, A. 517
lexical analysis of queries 332
library 439
life cycle of information systems 158–160
like 105–106, 532, 559
linear complexity 292–293
link 430, 491, 493, 501
list constructor 399, 435
Liu, C. 517
loader 468
lob, see blob
local check option 133–134
local

area network 354, 363
deadlock 367
information systems 383
serializability 363

Index 603

variables 145, 147
location 440
locator 559, 569
Lochovsky, F. H. 38, 184
lock

escalation 294
granularity 302, 303
manager 294, 301–305, 308
policy 294–295
table 294, 302

locking 291, 294–298, 299–301, 302–305,
332, 363–366, 370–371, 441

log 311, 312–320, 362, 369–375, 441, 468
records 313–319, 369–375

logic, three-valued— 63
logical

connective 68–69, 74
design 157, 161–162, 183, 217–255, 262,

435, 472, 506
independence 8
level 6–7, 16
model 6, 161, 217–218, 505–507
optimization 333
schema 7, 8, 161–162, 182, 218, 341

login name 92
long 525, 568, 569
long transaction 344, 417, 438
Loomis, M. 441
loop 576–578
lossless decomposition 262–265, 266, 272,

356
lost update 288
Lotus 123 523
Lum, V. Y. 183
l-value 581

M

Macintosh 544
macro 522–523, 539–541
Maier, D. 38, 80, 276
main

copy 388–390
file 325
memory 284, 287, 302, 307–311, 317,

336, 339, 349, 352, 437–438
mainframe 87, 354, 387, 565
maintainability 580
maintenance of information systems 177
Malaika, S. 517
mandatory

attribute 173
participation in a relationship 171
properties of oodbmss 416–417

manifesto
of oodbmss 416–417, 441
of third generation databases 428–429,

441
Mannila, H. 184, 486
mantissa 89
many-to-many relationship 171, 232, 234

map (gis) 397, 432
Martino, L. 441
master table (foreign key) 96
materialization of a Web site, see Web site

materialization
materialized view 65, 480, 481
mathematical relation 16, 19, 166
Mattos, N. 461
max 114–115, 124, 422, 534
max (relation profiles) 334, 335
maximum cardinality 170
Mecca, G. 517
median 115
mediator 382
memo (Access domain) 524, 526–527
Mendelzon, A. O. 517
merge-scan join 337, 338
merging

of data 325, 330–331, 337
of entities 223, 231–232
of relationships 223, 232, 248

Merialdo, P. 517
message exchange 369, 381, 566
message loss 368, 374
metadata, see data dictionary
method for conceptual design 189, 204–

205
method of object 398, 402, 404–408, 409,

419, 426, 439–441, 563, 570
methodology for database design 160–162
Microsoft

Access 245, 521–541
Excel 523, 562
odbc 351, 377–378, 515, 521, 544, 553
Windows 377, 521–522, 525, 538, 544,

566
migration between classes 409–410, 416
min 114–115, 124, 422, 534
min (relation profiles) 334, 335
minimal superkey 31
minimality of a conceptual schema 204,

205
minimum cardinality 170
mining, see data mining
minus 120
minute 89–90
mirroring 313
mixed strategy 202–203, 204
mobile distributed system 390
modifications in sql 128–131
modularity 354, 439, 572, 580
molap 479–480
month 89–90
Morville, P. 517
Motif 566
mpeg 430
multi-database system 382
multidimensional schema 469
multi-index 436
multimedia 397, 429–431, 441, 489, 491,

525, 565, 585
multiple indexes 329
multiple inheritance 410–411, 417, 428

604 Index

multiprocessor architecture 383
multi-target method 404
multi-thread 353
multi-valued attribute 173
multiversion concurrency control 299
mutual activation of triggers 448, 456
mutually dependent views 133

N

name conflict 411
name-based mechanism 581–582
nappies 483
n-ary

join 53–54
relationship 172, 237, 274

natural (Oracle domain) 567
natural join 42, 49, 357
natural join in sql 111
natural language 180, 190
Navathe, S. B. 10, 184, 211, 251
navigation schema 219
NCLOB (National Character lob) 569
negation 79–80, 126
nested

block 572
index 437
invocation of methods 407
loop join 337–338, 342, 436
query 112, 122–128, 135–136, 149, 421,

537, 555–557
record 575
table 571
transaction 344, 438–439
varray 571

nesting 427–428
NetBios 544
network 349–380, 388–391, 428, 437–441,

489–516, 544, 565–567, 572
data model 5, 16, 21
partitioning 368, 374, 376

new
method 406, 412
variable 449–452, 453

new_table 452
next 140–141
nil 399
no action policy 96–97, 137
no-force policy 310
non-normalized schema 472–473
non-positional notation 18
non-specialist user 171
non-termination of triggers 449, 455–457
non-trivial functional dependency 258,

260, 267
normal form 255–276, 472
normalization 157, 161, 218, 255–279, 401,

472,
of a conceptual schema 270–276
of a relation 260
theory 276

no-steal policy 310
not in 124
not null 93, 94, 129, 133, 526, 574
not operator 104
not-ready (message) 370
np-complete problem 292
n-tuple 165
null in update 130
null value 26–27, 33–34, 62–64, 92–94,

106, 114–115, 129–130, 228, 232–
233, 399, 454, 459, 526, 574

and key (of a relation) 33–34
and relational algebra 62–64
in sql 92, 94, 114–115, 129–130

number 524, 525, 568
number of distinct values 334
numeric 88–89, 524

O

o2 398–399, 405–406, 414–415, 419, 441
o2 Technology 398
Obermarck, R. 391
object

adaptor 440
creation 401
data model 398–419, 423–427
database 139, 284, 397–445, 467, 543,

553, 558–563, 567, 569–572
identifier (oid) 21, 322, 399, 401, 416,

418, 424, 427–428, 435–438, 569–
572

request broker (orb) 439–440, 441
server 435
view 571–572

object-oriented
database (oodbms) 21, 284, 397, 398–

417, 441, 423, 447, 467, 543, 553,
558–563

database manifesto 416–417, 441
programming languages 140, 377, 398,

404, 408
object-relational database (ordbms)

140, 398, 423–429, 567, 569–572
object-valued attribute 401–404, 427
observation 484–485
occurrence of data 164
odbc (Open Database Connectivity) 351,

377–378, 515, 521, 544, 553
driver 377–378, 515

Ode 461
odl 417–419, 439
odmg (Object Database Management

Group) 398–399, 417–422, 439,
441

odmg-93 417–418
ogis, see Open gis Committee
oid, see object identifier
olap (on-line analytical processing) 350,

384–387, 465–466, 475, 479–480,
486, 543, 556–557, 565–566

Index 605

old 449, 452
old_table 452
ole (Object Linking and Embedding) 525,

538
object (Access domain) 525, 527

oltp (on-line transaction processing) 350,
384–387, 465–466

omg (Object Management Group) 398,
439, 441

omt 408
on delete 97
on update 97
O’Neil, P. 10
one-to-many relationship 171, 232, 236
one-to-one relationship 171, 228–231, 238
on-line analytical processing, see olap
on-line transaction processing, see oltp
oodbms, see object-oriented database
open (cursor) 140
open (file) 311
open architecture 355
Open gis Committee (ogis) 434
operating system 310–311, 317, 353, 377
operational

design 159
requirement 162, 203, 219

operations research 341
optimization

of 2pc 391
of a schema 161, 217
of queries 101, 123, 128, 139, 283, 321,

332–341, 344, 353, 360, 465
optional

attribute 173
participation in a relationship 171

oql (Object Query Language) 405, 408,
417, 419–422, 428–429

or operator 104–105, 148, 532
Oracle 146, 448–452, 461, 565–586

Express 566
pl/sql, see pl/sql
Server 565–569, 586
triggers 449–452

orb, see object request broker
ordbms, see object-relational database
order by 113, 527
ordered

scan 331
sequential structure 324–325

ordering
of data 18, 113, 336–337, 339, 342, 385,

468, 475, 531
of joins 337
of triggers 453

organization of tuples in pages 321–323
orthogonality of type constructors 399,

424, 428
os2 544
out type 581, 582
outer join 53, 108–110, 529
output

parameter 144, 405–407, 414–415, 419,
426, 581–582

queue 353
overflow

chain 325–327
file 325

overlapping generalization 176
overloading 398, 413, 416, 560, 583
overriding 412, 413, 416
Ozsu, T. 391

P

package 565, 585–586
page (html) 491–514

schema 500–501
page (physical) 284, 287, 294, 308–311,

317, 319, 321–332, 371, 437–438,
dictionary 322–323
header 322
manager 322
trailer 322

Paraboschi, S. 517
parallelism 284, 303, 317, 349–350, 360,

372, 383–388, 468, 480, 565
parameter (subprograms) 144–145, 402,

405–407, 414–415, 419, 426, 581–
582

parametric query 353
Paredaens, J. 38, 80
parent entity of a generalization 170, 175,

227–228
partial

generalization 176
rollback 133, 450, 458

participant (2pc), see rm
partition 422
partitioning

of entities 223, 230, 238, 248
of relationships 223, 232
of tables 116, 338–339, 422, 428

Pascal 92
passing of privileges 137
passive

behaviour 447
rm 379
rule 429

path expression 420, 436–437
pattern (data mining) 482
pattern matching (strings) 105–106
pc, see personal computer
peer-to-peer 390
Pelagatti, G. 344, 391
performance

analysis on e-r schemas 218–222
indicators 218–219, 225

persistence, see durability
persistent

class 412
object 407, 411–412

personal computer 87, 352, 521, 544, 565
physical

606 Index

access structure 16, 284, 320–332, 336,
341, 344

address 435–436
design 157, 162, 183, 233, 341–343, 481
independence 7–8
level 6–7, 16, 21
schema 7, 8, 162, 341

Piatetsky-Shapiro, G. 486
pipelining 341
Pirahesh, H. 461
pl/sql (Procedural Language/sql) 146,

448–451, 565, 567–586
plan of a query 339–341, 362
png 429
pointer 21, 322, 327–332, 436–438

swizzling 438
pointer-based data model 21–22
polymorphism 399, 406, 477
polynomial complexity 292
portability 350, 352, 417, 572
positional notation 18, 120, 581
positive 567
Postgres 461
precision (information retrieval) 431–432
precision (numeric domains) 88–90, 568
pre-commit (log record) 375–376
pre-compilation 139, 406, 439, 554, 573
predicate locking 304–305
pre-emption 306–307
pre-fetching 310
pre-flushing 310
premise (association rule) 483
prep 553
prepare 144–145, 554
prepare (log record) 369, 370–375
pre-processing, see pre-compilation
pre-relational dbms 284, 467, 469
presentation

design 506
level (hypertext) 504

preservation of dependencies 265–266,
267, 272

Pressman, R. S. 183
presumed

abort 374–375, 379
commit 374

prevention (deadlock) 306–307
primary key 94, 133
primary

identifier 223, 233, 234, 249
index 329
key 33, 35, 37, 91, 132, 233, 327, 342,

356, 428–429, 453, 460, 471–472,
527

priority in triggers 450, 455
privacy 3, 4, 136, 441, 457
private method 405
privilege 90–91, 136, 137, 138
probabilistic selection 431
probability

of collisions (hashing) 326
of conflict (transactions) 305
of deadlock 305

procedural query languages 41, 67, 101
procedure 2, 145–147, 580–585
production rule, see active rule
profiles 333–336, 344
programmer 9, 359
programming language 103, 138–147, 139,

145, 397–400, 403, 407, 417–419,
425–426, 439, 448–449, 569, 572–
573, 581–584

projection 42, 45, 47–48, 107, 117, 136,
264, 334–336, 356, 537

Prolog 77
propagation

of updates 571
ahead— 366–367

properties of decomposition 262–266
propositional formula 46
proprietary architecture 355
protocol (in a url) 493
prototyping 159, 572
public method 405, 416, 419
pull approach (Web site) 512
push approach (Web site) 512
pushing

projections down 60, 333
selections down 61, 333

Q

qbe (Query By Example) 73, 526, 530–536
quadtree 434
quality

in design 159–161, 189, 203–205, 209,
255, 266

of data 466–467
quantifier 68–69, 71, 74, 79
Query By Example, see qbe
query

language 41–80, 100–128, 400, 403,
407, 416–422, 427–428, 437, 465,
530–536

optimization, see optimization of queries
plan 283
sql 100–128

queue 301–302
quorum 376

R

r_lock 294–287, 301, 305
Raiha, K. J. 184
raise 579
raises (odl) 419
Ramakhrishnan, R. 10
range list 74
raw 568, 569
reachability 402, 412
reaction to violations 96–97, 132, 459–

461, 529

Index 607

reactive behaviour 447
read (file) 311
read committed (isolation level) 304–305
read lock, see r_lock
read uncommitted (isolation level) 304–305
read_seq (file) 311
readability

of a conceptual schema 179, 203, 205
of queries 101, 123, 125

read-ind 324
read-only message 375
read-only transaction 289, 304, 375, 379,

383
reads-from 292
read-write conflict 293
ready (log record) 370, 372–376
ready set 373
real 89, 399, 524
recall (information retrieval) 431–432
reconciliation 391
record constructor 92, 399, 414, 428, 574–

575
record type (pl/sql) 575
recovery 311–320, 368–380
recursion 65, 78–80, 167, 235, 399–402,

450, 453, 456, 543, 557–558, 583
redefinition of methods 409, 411, 412–416
redo 286, 311, 314, 315–320, 373
redo set 319–320
redundancy 204, 205, 222, 223–226, 232,

246, 255, 256–257, 357–358, 362,
389, 401, 472–474

ref 424, 570
reference to objects 401–404, 407, 424,

435, 570
references 95–97
references privilege 137
referencing clause 449, 452
referential integrity 34–38, 94–97, 137,

412, 424, 453–454, 457–460, 528–
529

refinement 414–416
reflexivity 99–100
refresh 468
regulations 190
Reiner, D. 211
rejection of a violation 96–97
relation 5, 15–25

instance 6, 21
on single attribute 22
profiles 333–336
schema 6, 21
finite and infinite— 16
mathematical— 16, 19

relational
algebra 41–67, 73, 80, 101, 106–107,

109, 111–113, 120, 124, 147, 150,
283, 333, 533–534

calculus 41, 67–77, 80, 101, 147, 534
model 5, 15–38, 161, 217, 397–400, 423,

435
storage system 283

relationship 164, 165–168, 170, 195, 271–
272, 397, 417, 528, 530

relative 141
relevance of documents 432
reliability 3, 4, 284, 287, 310, 311–320,

344, 350, 368–377, 417
control system 284, 287, 311–320

remote
execution 365
procedure call (rpc) 365
recovery 373
request 360
service 352
transaction 360

removing of generalizations 223, 226–
229, 247

renaming (relational algebra) 42, 43–45,
111–112

repeatable read (isolation level) 304–305
replication 312, 350, 359, 375, 382–383,

388–391, 457, 566
transparency 359

reply 370
report 510, 522–523, 539, 540–541
repository 566
request manager 439–440
requirements

analysis, see analysis of requirements
collection, see collection of requirements
specification, see specification of

requirements
resource (in a url) 493
resource manager, see rm
restart 301–302, 312, 318, 320, 380
restorability (fragmentation) 356
restrict 98, 138
restructuring of an Entity-Relationship

schema 217, 222–234, 246
retrieval 474
return 582
returns 426
reusability 408, 570, 580
Reuter, A. 343, 391
reverse engineering 250, 507
revoke 137, 138
revolutionary approach 398
right join 109
right outer join 53, 108–110, 529
ring 457
rm (resource manager) 369, 370–381

failure 373, 380
robustness 310
rolap 479–480
role in relationship 167
rollback work 284–285, 312, 378
rollback, see abort
roll up 479
rollup 556
roll-up 468, 475–477
root of a tree 327–332
Rosenfeld, L. 517
row 5
row type 423

608 Index

rowid 568–569
row-level trigger 448–453
rpc, see remote procedure call
rtm 298, 299
rule

analysis 456–457
Datalog— 77
engine 447
set 455

Rumbaugh, J. 408

S

sag (sql Access Group) 377
Samaras, G. 391
Samet, H. 441
sampling 467, 486
scalability 386, 387, 486
scale 88–89, 568
scale-up 386, 387
scan 324, 331, 336, 337–339, 342, 384–385
schedule 287, 291, 292–300, 305, 363–364
scheduler 287–299, 308, 363–364
scheduling of triggers 447, 453
schema 6

definition in sql 90–100
documentation, see documentation of a

schema
of a relation, see relation schema
updates in sql 97–99

scope 125, 579
scope clause 425
scratchpad 562
Script Center of db2 550
scroll option 140–141
search

in documents 431–432
on bitmap indexes 481
on trees 328–329, 331–332

second 89–90
second normal form 268
secondary

copy 388–389
index 233, 329
memory 228, 284, 287, 299, 307–311,

315, 318–319, 349, 352, 385, 417,
435, 437–438

security 136–138, 457, 521
select 101–102, 107, 421, 479, 579
select privilege 137–138
selection (relational operation) 42, 45–47,

60, 334–336, 342, 356, 386, 421,
435, 474–475, 537

selection of primary identifiers 223, 233–
234, 249

self variable 406
semantic

analysis of queries 332–333
complexity 408, 416
error in a conceptual schema 203

Senn, J. A. 183

separation of environments 465
sequence constructor 428
sequential

file 313
scan, see scan
structures 320–321, 323–325

serial
communication 370
schedule 291, 292, 364
search 384

serializability 291, 292–293, 296, 300–
301, 305, 364

serializable (isolation level) 304, 305
server, see also client-server

class 353
in a url 493

service interface 351–352
session 372, 379, 437–438, 586
set 130–131
set constraints 133
set default 96–97
set null 96–97
set

constructor 399, 428, 435
operators (relational algebra) 42
oriented behaviour 128, 130–131, 139,

448
queries (sql) 120–122

setof constructor 424
sgml 430
shared

active rules 447
lock 294–295, 304, 332
memory 383
object 401, 424

Shasha, D. 344
Sheth, A. P. 391
shipping, see data shipping
show (qbe) 531, 536
show plan 343
shrinking phase (of 2pl) 295–296
Siegel, J. 441
signature 402, 404, 406, 426
significant attribute 485
Silberschatz, A. 10
similarity search 431
simple predicate 104, 336–337
single lock primitive 294
site generation, see Web site generation
sixl (shared intention-exclusive lock) 303
size 334, 335
skeleton

code 440
schema 202, 204

sl (shared lock, hierarchical locking) 303
slave table (foreign key) 96
smallint 88–89, 524
Smalltalk 404, 417
Smith, D. C. P. 184
Smith, J. M. 184
smp, see symmetric multiprocessing

machine
smtp/mime 377

Index 609

Smyth, P. 486
snowflake schema 473–474
soft failure 368
software engineering 183
sort (oql) 422
sort, see ordering of data
sound, see audio data
sparse index 329
spatial data 397, 432–434
special indexes 480–481
specialization 175, 410, 412, 415
specification of requirements 190, 191,

198
speed-up 386, 387
split (on trees) 329–331
spreadsheet 352, 475, 523, 525
sql (implicit cursor) 577
sql 8, 64, 76, 85–154, 182, 250, 351–352,

358–361, 377–378, 407–408, 419–
420, 429, 437, 449–450, 453, 458,
465, 475, 478, 509, 521, 524, 536,
529–530, 534–537, 540, 545, 548,
551, 565–569, 572–573, 578, 584

and unions 76
in Access 536–537

sqlnet 566
sql/ds 543
sql-2 86, 88, 92, 99, 106, 108, 111, 131–

132, 145, 150, 304, 423, 426–428,
448, 460, 529, 544, 554, 557, 583

sql-3 86, 145, 150, 398, 423–428, 448
data model 423–426
query language 427–428

sql-89 86, 106
sql-92, see sql-2
sql-99, see sql-3
sqlca 551
sqlcode 141–142, 551, 553
sqlconnect() 553
sqlda 554
sqlexecute 553
sqlfetch() 553
sqlprepare() 553
stable memory 312–313, 315, 318, 373, 389
stack 322–323
standard (package) 586
standard deviation 115
standardization 85–87, 343, 351–352, 377,

381, 391, 417, 439, 448, 460, 485,
568

star schema 469–472, 473–474, 556
Starburst 461
starvation 307
stateless nature of http 494, 511–512
statement-level trigger 448–453
static

aspects of an application 190
check 415
fragmentation 385
interface (corba) 439–440
properties of objects 399
sql 142, 143–144, 352, 378, 545, 551–

553

statistical analysis 335, 481, 485
status bits 302
steal policy 310
stemming 431
Stonebraker, M. 10, 441, 391
stop word 431
storage requirement 219
stored procedure 145–146, 580–584
strict 2pl 297–298, 301, 304–305
string

of bits 88, 92
of characters 92, 105–106, 352–353,

399, 420, 526
strong encapsulation 419
structural complexity 400, 416, 421, 424,

435
structuring

mechanism 5
of requirements 193–194

stub 439, 440
subclass 408–412
subprogram 565, 580–585
subquery, see nested query
Subrahmanian, V. S. 441
subtyping 414
Sudarshan, S. 10
suicide (transaction) 286, 316
sum 114–115, 116–117, 119, 148, 421–422,

534, 561
superclass 408–411
superficial equality 402
superkey 31, 93, 236, 259–260
support (association rule) 483
surfing, see Web surfing
surrogate 436
symmetric multiprocessing machine

(smp) 543–544, 565
symmetrical replication 390
synchronization 364–365, 385
synchronous write, see force
syntactic

analysis of queries 332
error in a conceptual schema 203
notation 87

system
failure 317
records (log) 313
transactions 287

System r 85, 543

T

table 5, 15–25
alias 104, 107, 111–112, 123, 125–126
definition 91
function 561–563
of accesses 219, 225, 247
of operations 219, 225, 246
of volumes 219, 225, 246
variable, see table alias
wizard 523

610 Index

table type 575
Tanca, L. 81
Tandem 375, 389
tape 313, 315, 324
target

list 68–69, 74, 101–102, 107
of a method 404
of a trigger 448

task management 441
taxonomy of concurrency control

methods 300
tcp (Transmission Control Protocol) 490,

494
tcp/ip 490–491, 544
temporal

domains in sql 89–90
event 454

temporary
class 412
data structure 453
object 407, 411
variable 125

Teorey, T. J. 184, 211, 251
termination of triggers 455–457
testing 159
text 397, 430, 524, 525–526
the 571
theory of concurrency control 290–301
Theseus 311
theta-join 42, 54–56, 109
thin cgi 513
thin-client 353
third generation database manifesto 428–

429, 441
third normal form 267–270, 272, 276
third party 369
three-dimensional spatial data 398, 432
three-phase commit 375–376
three-tier architecture 353
three-valued logic 63, 106
tiff 429
time 89–90, 524, 568
time

management 441
zone 89–90

time-dependent series 484
timeout 301–302, 306, 365, 368, 370, 373,

374, 579
timestamp 89–90, 524, 568
timestamp 298, 300–301, 364
timestamp-based method 291, 298–299,

300–301, 363–364
timezone_hour 90
timezone_minute 90
tm (transaction manager) 369, 370–381,

439
tm_begin 379, 380
tm_commit 379, 380
tm_exit 379, 380
tm_init 379, 380
tm_open 379, 380
tm_term 379, 380
tm-interface 379

toolbar 522
top 537
top block (of the log) 313, 316
top-down

strategy 196–198, 202, 205, 210
transformation primitives 196–198, 204

total (qbe) 534–536
total generalization 176, 228
tpc (Transaction Processing Performance

Council) 387–388
tps (transactions per second) 287, 317,

384–388
training set 484
transaction 9, 133, 284–285, 286–391,

413, 438–439, 441, 447, 451–452,
465, 496–497, 521, 569

classification 360–361
formal model of a— 290
identifier 290, 369–370
manager, see tm
on the Web 496–497
processing system 284
record 313
shipping 468

transactions per second, see tps
transformer 405, 407, 426
transitive closure 583
translation

into a logical model 217
of a specification 195
of e-r schemas into the relational

model 234–241, 249, 251
transmission cost 363
transparency 358–360, 361, 381–383
tree

manager 328
physical structure 323, 327–332, 337,

433
structure of queries 333–341

trigger 86, 182, 381, 429, 447–463
trivial functional dependency 258
ts, see timestamp-based method
Tsichritzis, D 38, 184
tuning 343
tuple 16–18, 19

constraint 29, 30
constructor in sql 127
dangling— 51, 53
ordered— 17
relational calculus 67, 73
relational calculus with range

declarations 67, 74–77, 107
type 423, 425

tuple-oriented behaviour 128, 131, 139,
448

Tuxedo 379
two-dimensional spatial data 432
two-phase commit 349, 351, 361, 364,

369–376, 378–379, 388, 391
optimizations 374–375

two-phase locking 291, 294–298, 299–
301, 305, 363–364

two-tier architecture 353

Index 611

two-valued logic in sql 106
type (object database) 399–402, 416–418,

424
checking 417
constructor 5, 92, 140, 399–400, 416,

424, 428, 435, 569–570
hierarchy 416, 425
system 428

typed table 570–571

U

Ullman, J. D. 10, 38, 80–81, 276
unbound control (Access) 538
under 425
undo 285, 311, 314, 315–320, 373
undo set 319–320
unfix 307–308, 309
uniform distribution 326, 335
Uniform Resource Locator, see url
union 120–121
union 42–43, 44–45, 120–121, 135, 356,

480, 537, 558
unique constraint 93–94, 95, 133
unique index 329, 343, 527, 578
universal quantifier, see quantifier
universal server 585
Unix Systems 379
unknown (truth value) 63, 106
unlock 294–295, 301
unnesting 427–428
unstructured data 566
update 97, 130–131, 140, 141, 304, 448,

450
as log record 313–314
event 449, 452
privilege 137

update
anomaly 256
loss 288, 292, 364
of key (on trees) 331
of view, see view update

update statistics 334
update-ind 324
up-to-date data 382
url (Uniform Resource Locator) 492, 508,

525
usage privilege 137
use 307–308, 309
useful information (in a block) 322
user 92
user 9

function in db2 560
identification 136
interface 159, 349, 352–353, 403, 441,

546, 554
requirement 157, 189–190
transactions 287
type in db2 560

user-defined
domain 91–92

event 454
exception 578–579

user-friendly interface 465–468, 474–475,
521, 537

using 144–145

V

val 334, 335
Valduriez, P. 391
valid page 308–309
validation 159
value-based data model 21–22, 32–37, 49
values 128
varbit 88
varchar 88, 524, 568
varchar2 568
variable

in Datalog 77–78
in domain relational calculus 68–69
in embedded sql 140–142
in pl/sql 565, 573, 574–575, 581
in sql, see table variable

variable length strings 88
variation file 468
varray (varying array) 570, 571
varying 88
vector data structure 479
verification of data 469
version 417, 438, 457
vertical decomposition 45, 47, 230, 356,

357, 435
Vianu, V. 38, 80–81
victim page 309–310
video data 430, 431
view 7, 41, 65–67, 90–91, 131, 133–136,

536
in sql query 135–136
materialization 65, 480, 481
update 65–66, 134, 571
recursive— 65

view-equivalence 291, 292–293, 364
view-serializability 292, 293, 300
violation of constraints 96–98, 286, 458–

459, 529
virtual relation, see view
visibility of variables, see scope
Visual Warehouse 545
Vitali, F. 517
void 419
volume of data 219
von Halle, B. 184
Vossen, G. 344
vsr, see view-serializability

W

w_lock 294–295, 297, 301
wait

612 Index

graph 366–367
sequence 366–367
state 294, 297, 299, 301–302, 306–307,

366–368
wal, see write-ahead log
wan, see wide area network
warehouse, see data warehouse
warm restart 312, 318, 319–320, 373
Web 489–518, 566

Information System, see wis
publishing 496
server, see http server
site

data-intensive— 499
design 498–508
generation 507
materialization 512–513

surfing 495
well-formed transaction

for commit or abort 285
for locking 294, 296

wfms, see workflow management system
whenever 551
where 101–102, 104–106, 109, 114, 118–

119, 122, 125, 129–130, 131, 141,
421, 536

while 576–577
wide area network (wan) 354–355
Widom, J. 10, 461
Wiederhold, G. 184
window of uncertainty 371, 372, 376
Windows 521–522, 525, 538, 544, 566
wis 489, 494–498
with 558
with check option 133–134
with cube 477
with grant option 137–138
with object id 571
with roll up 479
with time zone 89–90
wizard 523, 526, 538
workflow 441

management system (wfms) 352, 441,
497

World Wide Web (www), see Web
write lock, see w_lock
write_seq (file) 311
write-ahead log (wal) 315, 316–317, 370
write-write conflict 293
wtm 298, 299
wtm_n (multiversion) 299

X

x Windows 566
xa_abort 380
xa_close 379, 380
xa_commit 380
xa_end 379, 380
xa_forget 380, 381
xa_open 379, 380
xa_precom 379, 380
xa_recover 380
xa_start 379, 380
xa-interface 379–381
xl (exclusive lock, hierarchical

locking) 303
xml 430
x-open 351, 373, 377–381, 391, 441

dtp 378–381
xor (exclusive or) 326

Y

Yang, D. 251
year 89–90

Z

Zaniolo, C. 38, 461

Click on this graphic to open the book☞

Using the book
This is an Acrobat version of the complete book.

The book will normally open showing the book cover in the main panel of the screen and a contents
list in the left-hand panel.

The following navigation aids are incorporated into this copy of the book:

Contents list
The contents list in the screen’s left-hand panel and the contents list in the book provide links to the
chapters and sections within the book. Just click on the item name to view the appropriate page.

Cross-references
All cross-references to figures or tables in the text of the book are links to the appropriate figure or
table. Bibliographic references also act as links.

Thumbnails
If you switch to thumbnail view using the thumbnail icon, the left-hand panel will display page
thumbnails. Clicking on a thumbnail will take you to that page.

Returning
This icon will allow you to retrace your steps.

More➯

Click on this graphic to open the book☞

Using the book
Searching
You can search for a word or phrase using Acrobat’s ‘find’ command in the ‘tools’ menu. On a PC
you can invoke find with control-F and find-again with control-G — on a Macintosh the commands
are command-F and command-G respectively.

Acrobat navigation
You can also move around an Acrobat document by using Acrobat’s toolbar. For an explanation of the
Acrobat toolbar click on this link: Acrobat Toolbar Help.

Viewing options
For most purposes you will find ‘single page’ viewing to be the most appropriate. To see readers
spreads you should select ‘continuous – facing pages’. Both of these options are under the ‘view’
menu.

Limitations
Please note that you will not be able to print pages from this book or make any alterations to it. You
will therefore find that some of Acrobat’s menu items and toolbar icons are greyed out.

More➯

Click on this graphic to open the book☞

Controlling Acrobat Reader
Here is a description of some of the more commonly used Acrobat Reader control buttons.

 go to first page go to last page go forward

 go to next page go to previous page

Moving between pages

 go back

Setting viewing size

 actual print size fit page to screen fit width of page to screen

Viewing pages

 page only page & bookmarks page & thumbnails

	Contents
	Preface
	Introduction
	1.1 Information and data
	1.2 Databases and database management systems
	1.3 Data models
	1.4 Languages and users
	1.5 Advantages and disadvantages of DBMSs
	1.6 Bibliography

	Part 1: Relational databases
	The relational model
	2.1 The structure of the relational model
	2.2 Integrity constraints
	2.3 Conclusions
	2.4 Bibliography
	2.5 Exercises

	Relational algebra and calculus
	3.1 Relational algebra
	3.2 Relational calculus
	3.3 Datalog
	3.4 Bibliography
	3.5 Exercises

	SQL
	4.1 Data definition in SQL
	4.2 SQL queries
	4.3 Data modification in SQL
	4.4 Other definitions of data in SQL
	4.5 Access control
	4.6 Use of SQL in programming languages
	4.7 Summarizing examples
	4.8 Bibliography
	4.9 Exercises

	Part 2: Database design
	Design techniques and models
	5.1 The database design process
	5.2 The Entity-Relationship model
	5.3 Documentation of E-R schemas
	5.4 Bibliography
	5.5 Exercises

	Conceptual design
	6.1 Requirements collection and analysis
	6.2 General criteria for data representation
	6.3 Design strategies
	6.4 Quality of a conceptual schema
	6.5 A comprehensive method for conceptual design
	6.6 An example of conceptual design
	6.7 CASE tools for database design
	6.8 Bibliography
	6.9 Exercises

	Logical design
	7.1 Performance analysis on E-R schemas
	7.2 Restructuring of E-R schemas
	7.3 Translation into the relational model
	7.4 An example of logical design
	7.5 Logical design using CASE tools
	7.6 Bibliography
	7.7 Exercises

	Normalization
	8.1 Redundancies and anomalies
	8.2 Functional dependencies
	8.3 Boyce�–�Codd normal form
	8.4 Decomposition properties
	8.5 Third normal form
	8.6 Database design and normalization
	8.7 Bibliography
	8.8 Exercises

	Part 3: Database technology
	Technology of a database server
	9.1 Definition of transactions
	9.2 Concurrency control
	9.3 Buffer management
	9.4 Reliability control system
	9.5 Physical access structures
	9.6 Query optimization
	9.7 Physical database design
	9.8 Bibliography
	9.9 Exercises

	Distributed architectures
	10.1 Client-server architecture
	10.2 Distributed databases
	10.3 Technology of distributed databases
	10.4 Two-phase commit protocol
	10.5 Interoperability
	10.6 Co-operation among pre-existing systems
	10.7 Parallelism
	10.8 Replicated databases
	10.9 Bibliography
	10.10 Exercises

	Part 4: Database evolution
	Object databases
	11.1 Object-Oriented databases (OODBMSs)
	11.2 The ODMG standard for object-oriented databases
	11.3 Object-Relational databases (ORDBMSs)
	11.4 Multimedia databases
	11.5 Technological extensions for object-oriented databases
	11.6 Bibliography
	11.7 Exercises

	Active databases
	12.1 Trigger behaviour in a relational system
	12.2 Definition and use of triggers in Oracle
	12.3 Definition and use of triggers in DB2
	12.4 Advanced features of active rules
	12.5 Properties of active rules
	12.6 Applications of active databases
	12.7 Bibliography
	12.8 Exercises

	Data analysis
	13.1 Data warehouse architecture
	13.2 Schemas for data warehouses
	13.3 Operations for data analysis
	13.4 Development of the data warehouse
	13.5 Data mining
	13.6 Bibliography
	13.7 Exercises

	Databases and the World Wide Web
	14.1 The Internet and the World Wide Web
	14.2 Information systems on the Web
	14.3 Design of data-intensive Web sites
	14.4 Techniques and tools for database access through the Web
	14.5 Bibliography
	14.6 Exercises

	Part 5: Appendices & Bibliography
	Microsoft Access
	A.1 System characteristics
	A.2 Definition of tables
	A.3 Query definition
	A.4 Forms and reports
	A.5 The definition of macros

	DB2 Universal Database
	B.1 DB2 overview
	B.2 Database management with DB2
	B.3 Advanced features of DB2

	Oracle PL/SQL
	C.1 Tools architecture of Oracle
	C.2 Base domains
	C.3 The object-relational extension of Oracle
	C.4 PL/SQL language

	Bibliography
	Index
	Using the book

