
A simple and interpretable
baseline for predictive
maintenance

Ivan Klenovskiy Follow

Oct 20, 2019 · 9 min read

Futuristic picture since we are doing ML

A while ago I have encountered a predictive maintenance

problem on my data science job. Highly unbalanced classes

(since the number of breakages is typically less than 1%), huge

https://towardsdatascience.com/@iklenovskiy?source=post_page-----3f94736ed99a----------------------
https://towardsdatascience.com/@iklenovskiy?source=post_page-----3f94736ed99a----------------------
https://medium.com/m/signin?operation=register&redirect=https%3A%2F%2Ftowardsdatascience.com%2Fa-simple-and-interpretable-baseline-for-predictive-maintenance-3f94736ed99a&source=-6480de9acc52-------------------------follow_byline-
https://towardsdatascience.com/a-simple-and-interpretable-baseline-for-predictive-maintenance-3f94736ed99a?source=post_page-----3f94736ed99a----------------------

number of non-interpretable sensors — ok, but what is next?

Since I lacked any experience with such tasks, I started

googling and reading everything about ‘’data science for PM’’ I

could possibly Knd.

To my disappointment, most of the articles I have discovered

did not provide me with valuable insights — they were either

some complex Arxiv papers, which tested new theoretical

methods on unavailable data, or some high-level blogging

posts, short on reusable ideas.

After a couple of months of hands-on experience solving a

predictive maintenance (set to PM further) problem with

machine learning, weary with toil, I decided to share the

baseline approach I have developed so far. It may be fruitful to

people who, as me a couple of months ago, do not know what

to do and want to have some sort of a beacon nearby.

In the post, I will explain the business side of the problem and

list typical requirements to the algorithm from the client, which

may signiKcantly restrict the set of data science tools available.

Next, I will explain my approach in details and underline its

pros and cons. Finally, I will share some practical hacks and bits

and pieces of code which can be helpful in implementing it.

Business problem
You can skip this part if you are interested only in technical things.

Every ML algorithm installed in a business process should

somehow increase proKts. In PM we usually have a large-scale

machine, consuming expensive resources to produce some sort

of Knal output through a complex multi-stage process. With

time those machines break down unexpectedly, causing an

increase in idle time and a loss of valuable resources, since a

malfunctioning machine typically wastes them.

This is where an ML algorithm can enter the scene — it can

predict malfunctions (I use stops, breakages, stoppages

interchangeably throughout the text) in advance, using data

from the sensors installed in the machine. However, even if we

are able to predict those stops in advance, without knowing the

cause, Knancial value of our prediction would be modest.

First, if the only information we report to engineers is that there

is a high chance of breakage in the next 20 minutes, they

cannot do much with it. Probably, they can stop the machine

and do some sort of deep maintenance but this is costly.

Moreover, with large-scale machines, they will not necessarily

discover the cause for malfunction in such a short period of

time, therefore, the value of our prediction is nulliKed. Second,

our algorithm will have a certain amount of false positives.

With the presence of false positives, stopping the machine to

check for obscure malfunction will be rarely approved from the

client side.

Hence, our algorithm, besides predicting the probability of

stoppage, should somehow hint on the possible causes. It

should provide certain guidance for the technicians searching

for a malfunction during preventive maintenance. In this case,

our ML algorithm truly solves client’s pain.

Happy manufacturing worker

Data Preparation
Now let’s take a closer look at a typical predictive maintenance

data. Here is how the outcome variable will look like once you

have Knished data preparation. Y = 1 if the stop is soon

happening and Y = 0 if there is no stop in the next K minutes.

You can see that classes are unbalanced and machine learning

models should give a higher weight for rare class in order to

distinguish anomalies causing stops with stronger attention.

Outcome variable

But to obtain this time series you will have to do some grunt

work. Usually, they will provide you with two datasets — one

with information about stops (their nature, causes, and

timestamp) and a second with all the data from the sensors.

We need to merge those two Kles to create our data set. I advise

to drop observations (code sample of data processing is

available below) when machine was broken and observations

near the stops, as this information might be noisy. For instance,

one could drop all observations for which time to next stop is

less than 5 minutes.

Next, let’s label all observations with time to next stop longer

than 20 minutes as zero, while label all observations with time

to next stop less than 20 minutes as one (you can vary this cut-

oZ based on your data). This operation slightly improves your

class balance.

Usually there are diZerent types of stops occurring in diZerent

parts of the machine. I suggest to Klter the data and choose the

most common one and then generalize the solution to other

stops. DiZerent types of stops have distinct causes, therefore,

information about each stop will be contained in distinct sets of

sensors. Hence, one generic model is unlikely to perform well.

Some code which might help you with the operations described

above:

https://gist.github.com/ikleni/fa9421f23852459e166f14a5f4edb584

Second, we should deal with the explanatory variables (Xs).

After we merge them with an outcome variable, we should try

to reduce dimensionality in order to draw meaningful

conclusions. Without any prior knowledge of the industry

speciKcs, we can’t select which ones correspond to the

important predictors based on our intuition. Just take a look at

some plots of Xs:

view raw

1
2
3
4
5
6
7
8
9

10
11
12

creating_Y.py hosted with

❤

 by GitHub

def y_prep(tmp, interval = [10,5], x = 'Time', type =
 # forward fill current stops
 tmp[['Cur_Stop', 'Cur_Stop_end']] =tmp[['Stop_t',
 # back fill future stops
 tmp[['Nxt_Stop', 'Nxt_Stop_start']] = tmp[['Stop_t
 # time since last and next stop
 tmp['delta_cur'] = ((tmp['Cur_Stop_end'] - tmp[x])
 tmp['delta_nxt'] = ((tmp['Nxt_Stop_start'] -tmp[x])
 tmp['Y'] = (tmp[x]<=interval[0]).astype(int)*(tmp[x]
 tmp = tmp[(tmp['Y'] == 0)&(tmp[x] >interval[1])|
 ((tmp['Y'] == 1)&((tmp['Nxt_Stop'] == typ)))]
return tmp

https://gist.github.com/ikleni/fa9421f23852459e166f14a5f4edb584
https://gist.github.com/ikleni/fa9421f23852459e166f14a5f4edb584/raw/159c19ac33f01c9ccadc7db3c3ccc77395d1dda8/creating_Y.py
https://gist.github.com/ikleni/fa9421f23852459e166f14a5f4edb584#file-creating_y-py
https://github.com/

Examples of sensors

However, we have a lot of techniques at our hand to reduce

dimensionality:

Drop sensors with extra-low variance

Group and aggregate (via PCA or other similar techniques)

sensors according to their location/role in the machine (this

information can be obtained from their tags)

Aggregate changes of variables (how many sensors have just

changed their regime)

Selecting variables based on raw correlation with outcome

variable would be a bad idea

In my task, aggregations of changes of variables was helpful

since it both contained information that machine is unstable

and reduced the number of variables.

Here is one such aggregated variable:

Aggregated variable and Y

And some code which might help with dimensionality

reduction:

1
2
3
4
5
6
7
8
9

10
11
12

def del_const_feat(X, thres = 5, dtype = int):
 constant_cols = []
 if dtype == int:
 for i in X.dtypes[(X.dtypes == int)].index:
 if X.shape[0]- X[i].value_counts().sort_values(
 constant_cols.append(i)
 if dtype == float:
 for i in X.dtypes[(X.dtypes == float)].index:
 if X[i].std() == 0:
 constant_cols.append(i)
 if X.shape[0]- X[i].value_counts().sort_values(
 constant_cols.append(i)

https://gist.github.com/ikleni/81fd229802d62af099a92b037af9e500

view raw

12
13
14
15

dropping_cnst.py hosted with

❤

 by GitHub

 constant_cols.append(i)

 X = X.drop(columns=constant_cols)
 return X

view raw

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

agg_feat.py hosted with

❤

 by GitHub

def agg_dev(X, feats, cat = True):
 X = X.set_index('Id')

 # for lists of discrete features
 if cat == True:

 # count how many features changed in value
 alpha = np.zeros(len(tmp_mini3)) # placeholder
 for i in feats:
 # get lagged values
 tmp_mini = X[i].shift(1).reset_index()
 tmp_mini2 = X[i].reset_index()
 tmp_mini3 = pd.merge(tmp_mini, tmp_mini2,
 on = 'Id', how = 'inner

 # add 1 for each feature which differs
 # from its lagged version
 alpha +=(tmp_mini3[tmp_mini3.columns[1]] !=
 tmp_mini3[tmp_mini3.columns[2]]).astype(
 tmp_mini['change_sum' + str(len(feats))] = alpha
 X = X.reset_index()
 X= pd.merge(X, tmp_mini2[['Id', 'change_sum' +
 how = 'left', on = 'Id')
 name = 'change_sum' + str(len(feats))
return X, name

https://gist.github.com/ikleni/81fd229802d62af099a92b037af9e500
https://gist.github.com/ikleni/81fd229802d62af099a92b037af9e500/raw/bd61a008e65dea63ca6e8b7b9c035ecba72d8bca/dropping_cnst.py
https://gist.github.com/ikleni/81fd229802d62af099a92b037af9e500#file-dropping_cnst-py
https://github.com/
https://gist.github.com/ikleni/f5cab0760f6121fed42ebc44e78bafe1/raw/64bf8f47a82a77aa3260bfd71bee9faa951bb3f1/agg_feat.py
https://gist.github.com/ikleni/f5cab0760f6121fed42ebc44e78bafe1#file-agg_feat-py
https://github.com/

https://gist.github.com/ikleni/f5cab0760f6121fed42ebc44e78bafe1

We can restrict our sensor space further.

Let’s iteratively pick each sensor and try to predict stops based

on its quantiles. If the current time series quantile of the sensor

is somewhat indicative of the stop, then the sensor contains

information about abnormal behavior of the machine. I suggest

selecting about 5–15 (this range was applicable to my

particular problem) sensors whose quantile model has the

strongest predictive power.

view rawagg_feat.py hosted with

❤

 by GitHub

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

def class_score(dt, feature, q):
 # checks how well does a particular feature
 # split the data based on quantiles

 q0, q1 = np.quantile(dt[feature], q[0]), np.quantile(dt[feature], q[
 dt['pred'] = ((dt[feature]< q0) |(dt[feature]> q1)).astype(
 if dt[(dt['pred']==1)].shape[0] > 2:
 score = dt[(dt['Response']==1)&(dt['pred']==1)].shape[
 dt[(dt['pred']==1)].shape[0]
 else:
 score = 0
 return (score,dt[(dt['pred']==1)].shape[0])

def quantile_search(dt, n_best = 20):
 # selects best features in terms of
 # quantile score
 features = list(dt.dtypes[(dt.dtypes == float)].index)
 features = [i for i in features if i not in ['Response
 results = {}
 quant_list_bot = [0.1, 0.05, 0.01,0.001, 0.0001]

https://gist.github.com/ikleni/f5cab0760f6121fed42ebc44e78bafe1
https://gist.github.com/ikleni/f5cab0760f6121fed42ebc44e78bafe1/raw/64bf8f47a82a77aa3260bfd71bee9faa951bb3f1/agg_feat.py
https://gist.github.com/ikleni/f5cab0760f6121fed42ebc44e78bafe1#file-agg_feat-py
https://github.com/

The loss of predictive power from this step depends on the data

and nature of the stops as sometimes complex interactions of a

certain order might be crucial for prediction. However, our

main goal is a simple baseline interpretability and

interpretability for the client.

Another useful thing to do is to check the behavior of selected

sensors right before the stop and during stable working period.

If you notice anomalies in your time series plots exclusively

before the stops, you have a good chance of solving the

problem.

view raw

20
21
22
23
24
25
26
27
28
29
30
31

quantile_search.py hosted with

❤

 by GitHub

 quant_list_bot = [0.1, 0.05, 0.01,0.001, 0.0001]
 quant_list_top = [1-i for i in quant_list_bot]

 quant_paired = list(itertools.product(quant_list_bot,quant_list_top))
 for i in features:
 tmp_s = list(map(lambda x : class_score(dt, i, x),quant_paired))
 tmp_ss = [i[0] for i in tmp_s]
 tmp_sn = [i[1] for i in tmp_s]
 opt_q = quant_paired[tmp_ss.index(max(tmp_ss))]
 opt_s = max(tmp_ss)
 opt_n = tmp_sn[tmp_ss.index(max(tmp_ss))]
 results[i] = [opt_q, (opt_s,opt_n)]

https://gist.github.com/ikleni/98eb3a1edcb21745082f007d79b32fac/raw/0f605689ec1fc477aeb86f4aa82176a57f504c3b/quantile_search.py
https://gist.github.com/ikleni/98eb3a1edcb21745082f007d79b32fac#file-quantile_search-py
https://github.com/

Sensors just prior to the stop (look for simultaneous jumps in certain variables)

The code which generates such plots:

https://gist.github.com/ikleni/95d93442f1042d1c7e3bf392d4322a30

Modeling
Thoughts

Given well-behaved (X,Y) (I assume that you have done other

standard data preprocessing, such as dealing with missing

view raw

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

plots1.py hosted with

❤

 by GitHub

def visual(X, iot = ['sensor1'], batch =60 , look_b =
 # obtain indexes
 stops = X[(X['Response']== 1)].Time.values
 non_stops = X[(X['delta_nxt'] >100)&(X['Y']== 1)].Time.values
 idx = np.random.choice(stops, size=batch)
 for i in idx:
 temp = X[(X.Time == i)|((i - X.Time) < look_b)&((i 
 plt.figure(figsize=(30,10))
 for n,j in enumerate(iot):
 ax = plt.subplot(4,5, n+1) # here x*y should equal len(iot)
 ax.set_title(j[5:])
 ax.plot(temp[j].values)
 plt.tight_layout()
 plt.show()

https://gist.github.com/ikleni/95d93442f1042d1c7e3bf392d4322a30
https://gist.github.com/ikleni/95d93442f1042d1c7e3bf392d4322a30/raw/99252b67b447b3976a4c58ffc8f5c1c7b7562eea/plots1.py
https://gist.github.com/ikleni/95d93442f1042d1c7e3bf392d4322a30#file-plots1-py
https://github.com/

values) data we can start the modeling stage.

Prior to testing some models, we can hypothesize about where

the signal is contained. Machines are designed in order to

operate normally. Also, they are prescribed with a stable

operating regime indicating an interval of values for each

sensor. If for some reason (engineers did not change a certain

parameter smoothly) machine deviates from the prescribed

operating regime it is likely to break. With time, machine

becomes less stable and the operating regime should account

for that shift. Rarely does this happen — this might be our

bread and butter for this task.

I expect the stops to be well predicted by deviations for each

sensor from some new range of values. Also, I expect that

interactions between several sensors will predict stoppages. For

instance, if one sensors deviates from its normal interval while

another has value w, no stoppage will occur. However, if that

same sensor deviates while another has value z, the stoppage is

unavoidable.

I do not expect (this assumption was good for my task) that

interactions between a large number of sensors will be helpful

for this task. Especially, if we quantify the aggregate number of

sensors which are currently out of their standard range of

values. This overall machine stability should be one of the key

features in the model.

Approach

Having all this in mind, I chose to predict stops with a majority

voting ensemble of small models, based on 2–3 sensors and

aggregate features. This approach allows to identify which

sensors signal the stop. This information can be later directed

to engineers, who, based on their knowledge, can identify the

cause and Kx the problem.

First, I select a set of pairs (triples) of sensors from our

restricted set using basic LGBM model with speciKcally tuned

parameters. Selection is done via iterative search over pairs,

according to the AUC score on k-fold time series cross-

validation. Besides sensor data, those small models include

aggregate features and some intuitive sensor-based features,

such as:

Mean

Trend

Z-score

Std

Code for variable generation:

1
2
3
4
5
6
7
8

def feature_creation(temp, i):
 names = []
 temp[i+'_'+'mean' + '_' + '60'] = temp[i].shift(1).rolling(
 names.append(i+'_'+'mean' + '_' + '60')

 temp[i+'_'+'std' + '_' + '60'] = temp[i].shift(1).rolling(
 names.append(i+'_'+'std' + '_' + '60')

After determining the set of small models, their predictions are

combined by basic ensembling. 0.5 quantile is found and if it is

higher than a predeKned boundary, I predict Y = 1 and the stop

should soon occur. Alarm!

The above approach is slightly simpliKed and more can be done

to improve its precision, such as:

Other ensembling techinques (RNN and other …)

Other Krst level learners

view raw

8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

feature_creation.py hosted with

❤

 by GitHub

 temp[i+'_'+'std' + '_' + '10'] = temp[i].shift(1).rolling(

 temp[i+'_'+'var_diff'] =temp[i+'_'+'std' + '_' + '
 names.append(i+'_'+'var_diff')

 temp[i + '_'+ 'z_score'] = (temp[i] - temp[i+'_'+'
 temp[i+'_'+'std' + '_' + '60']+1)
 names.append(i + '_'+ 'z_score')

 temp[i+'_'+'trendL'] = temp[i].diff().rolling(60 ,
 names.append(i+'_'+'trendL')

 temp[i+'_'+'trend'+'_'+'short'] = temp[i].diff().rolling(
 names.append(i+'_'+'trend'+'_'+'short')

 temp = temp.dropna()
 return names

https://gist.github.com/ikleni/77c73b3b589cb818f81c3ea456e04daf/raw/e0cdb06022d796619682d8a02bafee8ac2958106/feature_creation.py
https://gist.github.com/ikleni/77c73b3b589cb818f81c3ea456e04daf#file-feature_creation-py
https://github.com/

Search over leftover sensors and add them to some of the

small models

Build a single model for each production regime

(summer/winter substantially diZer in the distributions of

sensor values, this can be checked via Kolmogorov-Smirnov

test)

Results
Images, in my view, here are more revealing than words or

metrics, if you see that algorithm rarely predicts stops but when

in does something indeed happens with the machine — we are

Kne:

Good performance of the baseline

Bad performance

On my data the described framework was able to predict stops

with a precision of about 40% and a recall of around 40%,

which is a good result for a baseline in predictive maintenance.

Towards Data
Science
Sharing concepts,
ideas, and codes.

Follow

22

https://medium.com/m/signin?operation=register&redirect=https%3A%2F%2Ftowardsdatascience.com%2Fa-simple-and-interpretable-baseline-for-predictive-maintenance-3f94736ed99a&source=post_sidebar--------------------------follow_sidebar-
https://medium.com/m/signin?operation=register&redirect=https%3A%2F%2Ftowardsdatascience.com%2Fa-simple-and-interpretable-baseline-for-predictive-maintenance-3f94736ed99a&source=post_sidebar--------------------------bookmark_sidebar-
https://towardsdatascience.com/?source=post_sidebar--------------------------post_sidebar-
https://medium.com/m/signin?operation=register&redirect=https%3A%2F%2Ftowardsdatascience.com%2Fa-simple-and-interpretable-baseline-for-predictive-maintenance-3f94736ed99a&source=post_sidebar-----3f94736ed99a---------------------clap_sidebar-

Moreover, it provides engineers with references to particular

sensors, as they know which sensors signal a higher likelihood

of stopping. Thus, they can do a narrowly focused preventive

maintenance.

I will end with a short summary of the pros and cons of this

approach:

Pros

Simplicity and interpretability (with such a small number of

sensors per model, you can emphasize what part of the

machine drives the threat of stop)

Low constraints on GPU usage and memory

Cons

Suboptimal in terms of accuracy (well trained NN with all

the features might outperform this baseline)

Computation time constraints (all those iterative searches

require time)

Human time constraints (this approach requires human

guidance)

I will add links to the omitted code later. Also, I give credit

to Kaggle Bosch competition, which I used to create all

those images…
)

